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For many parasites, the full set of hosts that are susceptible to infection is not

known, and this could lead to a bias in estimates of transmission. We used

counts of individual adult parasites from historical parasitology studies

in southern Africa to map a bipartite network of the nematode parasites of

herbivore hosts that occur in Botswana. Bipartite networks are used in commu-

nity ecology to represent interactions across trophic levels. We used a Bayesian

hierarchical model to predict the full set of host–parasite interactions from

existing data on parasitic gastrointestinal nematodes of wild and domestic

ungulates given assumptions about the distribution of parasite counts

within hosts, while accounting for the relative uncertainty of less sampled

species. We used network metrics to assess the difference between the

observed and predicted networks, and to explore the connections between

hosts via their shared parasites using a host–host unipartite network projected

from the bipartite network. The model predicts a large number of missing links

and identifies red hartebeest, giraffe and steenbok as the hosts that have the

most uncertainty in parasite diversity. Further, the unipartite network reveals

clusters of herbivores that have a high degree of parasite sharing, and these

clusters correspond closely with phylogenetic distance rather than with the

wild/domestic boundary. These results provide a basis for predicting

the risk of cross-species transmission of nematode parasites in areas where

livestock and wildlife share grazing land.

This article is part of the themed issue ‘Opening the black box: re-examining

the ecology and evolution of parasite transmission’.
1. Introduction
Management strategies for parasites could potentially be improved by incor-

porating additional realism into models of transmission, such as multi-host

interactions and environmental effects [1]. Most pathogens and parasites can

infect multiple hosts [2,3], and yet due to relative tractability, single-host single-

parasite studies form much of the field of disease ecology. More recently, the

impact of multi-host diseases, and particularly of emerging zoonotic diseases,

such as Ebola, SARS and MERS, have led to renewed interest in understanding

transmission patterns among all potential hosts [4–6]. Research directions

to improve management of multi-host diseases include determining which

hosts maintain the disease, as well as simply identifying all of the host–parasite

interactions in a system which has not been exhaustively sampled [7].
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To describe multi-host and multi-parasite systems, disease

ecologists are starting to draw on concepts from community

ecology [8]. Host–parasite interactions can be represented as a

bipartite network (where nodes of one trophic level are linked

only with nodes in a different trophic level) in the same

way as other interaction systems, such as plant–pollinator,

plant–herbivore or prey–predator networks [9]. This is par-

ticularly suitable for macroparasites, which can be counted

and therefore their abundance incorporated into the network,

as hosts with high abundance of parasites will contribute

disproportionately to onwards transmission [10,11]. Macro-

parasites are typically aggregated, with a small proportion

of the hosts infected by a large proportion of the parasites

[12]. In addition, many macroparasites, and in particular the

majority of the nematode species infecting ungulate hosts,

are generalists, meaning that they infect multiple host species

[13]. By projecting a host–parasite bipartite network into a

host–host unipartite network, a ‘potential transmission net-

work’ is constructed in which hosts are connected through

shared parasites [14].

Generalist parasites link other species within an ecosystem,

which may lead to apparent competition between host species.

For instance, parasite-mediated apparent competition may

cause exclusion of grey partridges from areas where pheasants

are present [15]. Such interactions have implications for

management of parasites in livestock in mixed-use systems.

A better understanding of the degree of sharing of parasites

between wild and domestic species could improve manage-

ment strategies for parasite control in livestock in areas

where grazing land is shared. For example, transmission

between species may have an impact on the spread and evol-

ution of drug-resistant parasites; wild deer in the UK were

recently shown to carry anthelmintic-resistant nematodes that

could be transmitted back to sheep and cattle [16].

Previous assessments of host–parasite networks are limited

by the data available, which may not be representative of the full

network. A recent study of 25 communities of metazoan para-

sites and their hosts found that very few even approached

being a complete representation of the network [17]. A frequent

strategy is to use species accumulation curves to assess whether

parasite diversity within the data asymptotes, such as in a study

of communities of nematodes in equids [18]. Alternatively,

understudied species may simply be excluded from the analysis

in order to prevent bias in the interpretation of rare species’

interactions [13,19]. The first of these approaches seeks to

assess the magnitude of undersampling; the latter seeks to

limit inference to better-sampled species.

There are methods available to calculate non-biased

estimators of within-community species richness which

have been applied to parasite species richness within hosts;

these are estimated by extrapolating data to an asymptote

using data resampling methods or by estimating the pro-

portion of rare species in the dataset [20,21]. Bayesian

hierarchical models offer an alternative approach whereby

the uncertainty of each possible association or link within

a host–parasite network is estimated from the data using

explicit assumptions about the expected distributions. In par-

ticular, zero-inflated models allow for separating zeros from

the expected abundance distribution, from zeros representing

true absence [22,23]. In addition, the use of random effects

allows for data-scarce groups to borrow strength from data-

rich groups [24], and covariates at multiple levels can

be included.
In this study, we applied a Bayesian hierarchical modelling

method to existing data from extensive post-mortem studies in

southern Africa where nematode parasites were counted and

identified. These studies, conducted over the past century, pro-

vide an excellent resource as many report estimated or exact

counts for each nematode species found in each individual

host from a wide range of wild and domestic ungulate species

[25]. Although the researchers were interested in questions of

parasite sharing between host species, they did not have the

statistical tools or computing power to assess this statistically

[26,27]. Here we combine data from these historical studies in

order to predict host breadth and parasite diversity in a

hypothetical community of ungulates and their nematode

parasites, while accounting for the uncertainty inherent in

the data. By assessing uncertainty within the host–parasite

network, we aim to identify species from which further

research would be most beneficial, and to determine whether

the structure of the network is different from a network con-

structed from observed data only. We then use the predicted

host–parasite network to project a host–host transmission

network with links weighted by the number of shared

parasite species. The predicted network will improve our

understanding of potential transmission patterns within a

multi-host multi-parasite system.
2. Material and methods
(a) Data collection
We compiled data from published reports of postmortem exam-

ination of target host species in sub-Saharan Africa with the

inclusion criteria that total parasite counts of each parasite

species were reported for each individual host (table 1). The

target host species were all wild and domestic mammalian ungu-

lates known to occur in the case study area of Makgadikgadi

Pans National Park (MPNP) in Botswana [51], which was the

focus of concurrent empirical studies on cross-transmission of

parasites between wild and domestic ungulates [52,53].

Papers were identified through a search of Web of Science

with the search term ‘TOPIC:(helminth* AND Africa AND (ele-

phant OR wildebeest OR zebra OR bushbuck OR buffalo OR

cattle OR duiker OR donkey OR eland OR gemsbok OR giraffe

OR goat OR kudu OR hippo* OR horse OR impala OR hartebeest

OR roan OR sable OR sheep OR springbok OR steenbok OR

rhino*))’. Titles and then abstracts were assessed to determine

whether the paper referred to nematodes of herbivores in Africa,

and full texts were used to determine if individual count data

were reported. In addition, we contacted authors of papers report-

ing summary data from postmortem examinations of well-studied

domestic species for which no individual count data had been

found and manually searched available indices (from 1969 to

1973 and 1985 to 2003) from the Onderstepoort Journal of Veterinary
Research, in which much of the parasitology work in Southern

Africa has been published [25].

Parasite species names were checked against several references

[54,55] for synonyms and updated where necessary. Only parasites

where a binomial species name was given were included. In a few

cases female parasites were identified to genus and males to

species, in which case female counts were divided proportionally

within an individual host to match the distribution of males. In

sheep and cattle only, some tracer animals were included that

were treated with anthelmintics (to clear them of gastrointestinal

nematode infection) before being infected naturally by grazing

for a set time period, normally four to eight weeks before slaugh-

ter. Some individual sheep, cattle and donkeys had been treated

with anthelmintics up to a year prior to slaughter.



Table 1. Wild and domestic hosts included in the study, the number of
individuals (N) and the sources of the host – parasite data.

species scientific name N source

blue wildebeest Connochaetes taurinus 5 [28,29]

bushbuck Tragelaphus scriptus 15 [28 – 30]

Cape buffalo Syncerus caffer 28 [31]

common duiker Sylvicapra grimmia 20 [29,32]

gemsbok Oryx gazella 7 [28,29,33]

giraffe Giraffa camelopardalis

(angolensis)

2 [29]

greater kudu Tragelaphus strepsiceros 9 [28,29]

impala Aepyceros melampus 46 [28,34]

red hartebeest Alcelaphus

buselaphus

2 [29,35]

springbok Antidorcas marsupialis 72 [29,35 – 37]

steenbok Raphicerus campestris 3 [29]

Burchell’s zebra Equus quagga burchellii 19 [38,39]

cattle Bos taurus (indicus) 103 [40 – 44]

donkey Equus africanus asinus 26 [45 – 47]

horse Equus ferus caballus 30 [45]

sheep Ovis aries 379 [48 – 50]
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Monthly precipitation and temperature data from the time of

slaughter and reported study location were acquired from the

Africa Drought Monitor [56].
(b) Model design and selection
Observations of counts of parasite species j in host species i were

fit to a hierarchical model with Bayesian inference. Our model

allows for explicit description of processes leading to variation

in observations and estimation of the expected underlying

parameter distributions.

The base model is a zero-inflated mixture model [22,23].

Observed count data Yij are modelled as random realizations

from a negative binomial distribution due to the characteristic

overdispersion of macroparasite infections [57]. The negative bino-

mial distribution is defined by probability pij and successes r,
which relate to the mean of the distribution, mij:

Yij � NegBinom(pij, rÞ,

pij ¼
r

rþ mij
:

The mean abundance of parasite species j in host species i, mij com-

bines the binary variable occurrence (whether a parasite species j is

found in a host species i) uij with abundance of the parasite lij

within a host species, so mij is 0 if uij ¼ 0 and lij otherwise.

mij ¼ uijlij:

The occurrence uij is modelled as the outcome of a Bernoulli trial so

that it equals 1 with probability pij.

uij � BernoulliðpijÞ:

The probability of occurrence pij is modelled with logistic

regression and is determined by a host and parasite species-
dependent random intercept aij.

logit(pijÞ ¼ aij:

The abundance lij is modelled with a log link function and deter-

mined by a random intercept for each parasite species j, such that

each parasite has abundance bj irrespective of the host and

conditional on occurrence.

log(lijÞ ¼ bj:

Host breadth is calculated for each parasite species j by summing uij

over all host species i, and parasite diversity is calculated for each

host species i by summing uij over all parasite species j. Models

were fit using the Markov-chain Monte Carlo Bayesian modelling

software JAGS v. 4.0 through the rjags and R2jags packages in R

v. 3.1.1 [58–60] using the computational facilities of the Advanced

Computing Research Centre at the University of Bristol.

Alternative models included random and fixed effects as expla-

natory variables for either the probability of occurrence (pij) or the

abundance (lij), which are presented in table 2. Fixed-effect covari-

ates included individual-level variables host age, sex, treatment

status, and rainfall and temperature at the time and place of slaugh-

ter; and host species-level variables feeding type (grazer, browser or

mixed feeder), wild or domestic, and digestive system (ruminant or

hind-gut fermenter/equid). The random-effect models explored

using different groupings (e.g. by species or by genus) of host or

parasite species to determine occurrence and abundance estimates.

Each variation was first fitted individually, and we retained an

individual effect based on whether it lowered deviance, deviance

information criterion (DIC) and non-convergence (proportion of

parameters with R̂ � 1:1) [61]. A fixed-effect parameter was con-

sidered significant and retained if the predicted 95% credible

interval did not include 0. After assessment of all individual

models, one retained random effect was combined with each

retained fixed effect one and two at a time and the final model

was selected using the same criteria, such that the model with

the lowest DIC that had non-convergence ,10% was selected.

Both rounds of selection were based on model runs of three

chains with 50 000 steps, with the first half of each chain discarded

as burn-in and the remaining samples thinned so that the final

sample included 1000 steps from each of the three chains. Initial con-

ditions were randomly selected, and non-informative priors were

used for the grand means of a and b, which were drawn from

normal distributions with mean 0 and precision 0.0001 [22]. Standard

deviations of the grand means of a and b were drawn from weakly

informative Cauchy distributions with mean 0 and precision 0.016,

truncated to non-negative values [62]. The negative binomial overdis-

persion parameter r was drawn from a gamma (0.1,0.1) distribution.

Missing data for binary variables were imputed during the

model fitting process as coming from a Bernoulli distribution

with prior probability p. Sex was assumed to be p ¼ 0.5, while

the proportion of juveniles was calculated to match the distri-

bution of juveniles in the sample ( p � 0.35). Treatment status

was only missing for domestic horses and donkeys from Theiler

[45] for which we assumed p ¼ 0.5. Continuous covariates (pre-

cipitation and temperature) were scaled to normal distributions

with mean 0 and variance 1, and missing data were drawn

from this distribution; for precipitation the distribution was

truncated with a lower bound to match the data.

For the final model estimates, the selected model was run with

three chains for 300 000 steps, with the first 75 000 steps of each

chain discarded and the remaining samples thinned by a factor of

50 so that the final sample included 4500 steps from each of the

three chains. To aid convergence hindered by negative correlation

between the grand mean and standard deviation of aij, a normal

(m ¼ 0, s ¼ 50) prior truncated to the range [28,8] was used for

the grand mean of aij and a Cauchy (x0 ¼ 0, g ¼ 1) prior truncated

to the range [0,12] was used for its standard deviation.



Table 2. Alternative model specifications in the form of modifications to equations logit(pij) ¼ aij ( probability of occurrence) and log(lij) ¼ bj (abundance).
Modifications a – h are random effects and i – p are fixed effects. Observation level effects are indicated by index k, host species-level effects are indicated by
index i and parasite species-level effects are indicated by index j.

model description new equation

a parasite genus determines occurrence logit(pijÞ ¼ ai,genus(j)

b parasite superfamily determines occurrence logit(pijÞ ¼ ai,superfamilyðjÞ

c host and parasite determine abundance log(lij) ¼ bij, where bij � normal(mi, s)

d host and parasite determine abundance log(lij) ¼ bij, where bij � normal(mi, si)

e parasite genus determines abundance log(lij) ¼ bgenus( j )

f parasite superfamily determines abundance log(lijÞ ¼ bsuperfamilyðjÞ

g host genus determines occurrence logit(pijÞ ¼ a1ij þ a2genusðiÞ

h host genus determines occurrence logit(pijÞ ¼ agenusðiÞ,j

i effect of ruminant versus equid on occurrence logit(pijÞ ¼ a1ij þ a2ruminanti

j effect of wild versus domestic on occurrence logit(pijÞ ¼ a1ij þ a2wildi

k effect of feeding type on occurrence (ref:grazer) logit(pijÞ ¼ a1ij þ a2browseri þ a3mixedi

l effect of rainfall on abundance log(lijÞ ¼ b1j þ b2raink

m effect of temperature on abundance log(lijÞ ¼ b1j þ b2temperaturek

n effect of treatment on abundance log(lijÞ ¼ b1j þ b2treatedk

o effect of host age category on abundance (ref:adult) log(lijÞ ¼ b1j þ b2 juvenilek

p effect of host sex on abundance log(lijÞ ¼ b1j þ b2femalek
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The host–host shared parasite network was calculated from

the bipartite network by multiplying the matrix for occurrence

(uij) by its transpose, to calculate the number of shared parasites

for each pair of hosts at each step.

The final JAGS model is included in the electronic

supplementary material.

(c) Network comparison
(i) Host – parasite (bipartite) network
To determine how the predicted host–parasite network differs in

network structure from the observed network, the median and

95% credible interval of occurrence (uij) from the final fitted

model were compared with the data-only (unweighted) host–

parasite occurrence network by calculating network-level indices

connectance, links per species, cluster coefficient and nestedness

using the bipartite package v. 2.05 in R [63,64]. Connectance is the

proportion of possible links that are realized. Links per species is

the mean number of links per total species (host þ parasite) in

the network. The cluster coefficient is per-species connectance,

or the mean of the realized links divided by the possible links

for each species; this is calculated for the whole network and

for each trophic level [65]. The nestedness ‘temperature’ index

ranges from 0 to 100 with 0 defined as maximum nestedness,

where rows and columns of the network can be sorted

into decreasing number of links, with each set of links exactly

matching the previous or a subset of it [66].

(ii) Host – host (unipartite) network
To evaluate how the grouping of hosts through their shared para-

sites differs in the predicted and observed networks, modularity of

the median and 95% credible interval, host–host networks were

compared with modularity of the data-only network using the

igraph package v. 1.0.1 in R [67]. Modularity represents clustering

within the network, whereby a module within a network has

many links between the nodes in that module, but few links

with nodes in different modules. In this case, modules represent
the groups of hosts that share a large number of parasite species.

Modularity and clustering were calculated using both the edge
betweenness community algorithm [68] and the fast greedy algorithm

[69] for comparison, because the edge betweenness community
algorithm tends to be more sensitive to small clusters than the

fast greedy algorithm.

The predicted number of shared parasites in the host–host net-

work was compared with the phylogenetic distance in molecular

time between each pair of hosts by Spearman’s rank correlation.

Data on the phylogenetic relationship between the host species

of interest was extracted from the TimeTree database [70,71]

using the R package ape v. 3.4 [72] and visualised using the

iTOL website [73].
3. Results
(a) Data
The initial bibliographic search returned 923 results. After

assessment of titles this list was narrowed to 176 papers, of

which 21 were duplicates. Assessment of abstracts and full

texts led to a final inclusion of 22 papers. No further papers

were identified from the Onderstepoort Journal of Veterinary
Research, but contacting authors led to the identification of

one additional reference with data from horses, zebras and

donkeys [45]. Data were available for 16 host species (table 1)

infected with 124 species of parasite. The data were from a

range of locations across South Africa and Namibia (figure 1).

(b) Model selection
The results of alternative model runs are shown in tables 3

and 4. Model c, which predicts parasite abundance based

on both the host and parasite, provides the best fit of the

random effects models. This indicates that the mean abun-

dance for each parasite is different within each host species,



Figure 1. Map of data source locations. Dots represent locations of data sources; black polygon shows the location of MPNP.

Table 3. Model selection results ( phase 1). Individual effects (fixed effect, standard error of the mean (s.e.m.)) were chosen for retention in the model
selection process based on minimizing non-convergence (non-conv) as well as DIC and deviance; standard deviation of the deviance (s.d.) and effective number
of parameters (PD) are also presented.

model deviance s.d. PD DIC non-conv fixed effect (s.e.m.)

null 83 128 22 250 83 378 0.51

a 83 113 22 245 83 359 0.06

b 83 100 21 222 83 322 0.07

c 81 973 27 377 82 351 0.03

d 81 973 27 371 82 344 0.35

e 84 168 18 160 84 328 0.52

f 85 430 16 127 85 557 0.54

g 83 101 21 219 83 320 0.52

h 83 124 22 247 83 371 0.04

i 83 111 21 224 83 335 0.44 a2 ¼29.030(3.325)a

j 83 106 21 221 83 326 0.24 a2 ¼210.200(2.940)a

k 83 124 22 243 83 368 0.05 a2 ¼28.430(2.177), a3 ¼22.418(1.654)

l 83 126 22 244 83 371 0.51 b2 ¼ 0.068(0.046)

m 83 120 23 263 83 383 0.51 b2 ¼20.114(0.050)

n 82 960 23 253 83 214 0.5 b2 ¼21.552(0.102)

o 82 989 30 461 83 450 0.51 b2 ¼20.949(0.107)

p 82 893 45 995 83 888 0.51 b2 ¼ 1.180(0.133)
aIndicates fixed-effect parameter did not converge.
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and a constant variance on the mean abundances (model c)

led to a better fit than if variance was allowed to differ by

host species (model d).

Several fixed effects also improve the model fit and/or

convergence. Ruminants are predicted to have lower mean

probabilities of occurrence of parasites compared to equids

(model i); wild species are predicted to have lower mean prob-

abilities of occurrence of parasites compared with domestic

(model j); and browsers are predicted to have lower mean

probabilities of occurrence of parasites than grazers, with no
significant effect (95% credible interval not including zero) for

mixed feeders compared to grazers (model k). Whether an indi-

vidual animal was treated with anthelmintics is a significant

factor predicted to reduce parasite abundance (model n). Rain-

fall has a small and non-significant positive effect (model l) and

temperature has a small negative effect (model m) on abun-

dance. Juvenile hosts are predicted to have a lower abundance

of parasites than adults (model o), while females are predicted

to have a higher abundance than males (model p). However,

many data for age class and sex were missing, and DIC was



Table 4. Model selection results ( phase 2). Model selection was based on minimizing non-convergence (non-conv) as well as DIC and deviance; fixed effect
estimates with standard error of the mean (s.e.m.), standard deviation of the deviance (s.d.) and effective number of parameters (PD) are also presented. The
final selected model (c þ n þ j) is shown in bold.

model deviance s.d. PD DIC non-conv fixed effect (s.e.m.)

c þ i 81 959 27 373 82 332 0.17 a2 ¼214.566 (3.994)a

c þ j 81 952 27 343 82 295 0.05 a2 ¼212.044 (2.696)

c þ k 81 969 28 380 82 349 0.15 a2 ¼28.100 (2.518)a, a3 ¼22.449 (1.701)a

c þ l 81 957 29 410 82 368 0.36 b2 ¼ 0171 (0.059)

c þ m 81 904 30 440 82 344 0.35 b2 ¼20.307 (0.045)

c þ n 81 755 27 371 82 126 0.36 b2 ¼21.725 (0.116)

c þ o 81 858 35 617 82 475 0.35 b2 ¼20.868 (0.113)

c þ p 81 168 40 807 81 974 0.35 b2 ¼ 2.449 (0.116)

c þ i þ j 81 949 26 337 82 287 0.05 ai
2 ¼�8:065 (2:249)a, aj

2 ¼�6:551 ð1:917Þa

c þ n þ i 81 740 27 366 82 106 0.07 b2 ¼21.728 (0.114), a2 ¼214.201 (3.021)a

c 1 n 1 j 81 734 26 349 82 083 0.04 b2 521.733 (0.116), a2 529.399 (1.817) a

c þ n þ k 81 751 28 383 82 134 0.11 b2 ¼21.728 (0.114), a2 ¼28.315 (2.617)a,

a3 ¼22.647 (1.792)a

aIndicates fixed-effect parameter did not converge.
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not improved by their inclusion. Parameters that did not con-

verge were generally subsets of uij, aij, and the grand mean

and standard deviation of aij.

When the fixed-effects models were combined with

model c, the best fit and best converged model combines

a negative effect of treatment on parasite abundance and a

negative effect of wild (versus domestic) status on overall prob-

ability of occurrence (table 4). Diagnostic trace and density

plots for key parameters from the final model are shown in

electronic supplementary material, figures S1 and S2. The trun-

cation of the grand mean and standard deviation of aij

improved the model convergence, such that after the model

was run for 300 000 steps, all parameters converged except

for approximately 1.5% of uij parameters which were in the

range 1:1 , R̂ � 1:29. The final estimated values for the fixed

effects were b2 ¼ 21.733(0.114) and a2 ¼ 24.049(2.054).

The fitted values match well with observed values. The

model-predicted probability of occurrence is correlated with the

observed prevalence of a parasite in a host (correlation ¼ 0.767;

electronic supplementary material, figure S3), and the model-

predicted mean abundance ebij is correlated with the mean

observed counts, when count ¼ 0 are excluded (correlation¼

0.997; electronic supplementary material, figure S4).
(c) Host – parasite associations
The predicted abundances (bij) of each host–parasite

combination for which uij is� 0.05 are shown in figure 2.

Probstmayria vivipara shows highest abundance across the

board, while Burchell’s zebra is the host with the highest aver-

age parasite abundance. In most cases, the estimated abundance

of a particular parasite species is similar for all host species, due

to random effect shrinkage. The host species for which the most

data were available (e.g. sheep, donkey, horse) therefore stand

out by having abundances that are different from the mean.

The mean predicted probability of occurrence (uij) is

shown in figure 3, with intermediate probabilities of
occurrence found for those species for which less information

was available.

The model predicts that the parasite diversity within cer-

tain hosts is much higher than the observed diversity.

However, it offers little in the way of prediction of which

parasite species are more likely to have been missed in

under-sampled hosts, as the 95% credible interval of the pos-

terior of host breadth varies by only one or two hosts for all

parasite species (figures 4 and 5).

Hosts with only two or three observations led to particu-

lar uncertainty in the predicted occurrence (figures 3 and 5,

table 1); these species are red hartebeest, giraffe and steenbok.

Blue wildebeest (n ¼ 5) also had high uncertainty for the

occurrence parameter. However, it is unclear how many

samples are required to achieve a high degree of certainty.

Sheep, the most sampled species, had a very narrow credible

interval, while cattle, the second most sampled species, had a

wider range than springbok and impala.

The probability of occurrence parameter estimates are

highly bimodal (electronic supplementary material, figure S3),

and links with zero observed prevalence in the data all have

predicted values for the mean probability of occurrence less

than 0.2. Therefore, the median predicted host–parasite net-

work matches the observed data. However, the upper bound

of the 95% credible interval (97.5th percentile) network does

have approximately 25% more links than the observed network,

and this translates to greater connectance, links per species,

cluster coefficients and a greater nestedness index (decreased

nestedness; table 5).
(d) Host – host networks
The predicted unipartite host networks indicate that the

number of links in the observed network is underestimated

(figure 6). For comparison, we present the observed network

and the median predicted network, as well as the 95%

credible interval networks.



Crossocephalus viviparus
Parabronema skrjabini
Monodentella giraffae

Cylicocyclus triramosus
Cylicostephanus bidentatus
Skrjabinodentus longiconus

Triodontophorus hartmannae
Cooperioides antidorca
Cooperioides hamiltoni

Ostertagia harrisi
Trichostrongylus minor
Cooperia connochaeti

Triodontophorus burchelli
Teladorsagia circumcincta

Habronema zebrae
Paracooperia devossi

Trichostrongylus pietersei
Petrovinema poculatum

Cooperia curticei
Trichostrongylus vitrinus

Cylicocyclus gyalocephaloides
Oesophagostomum radiatum

Strongyloides papillosus
Longistrongylus curvispiculum

Cylicodontophorus reineckei
Longistrongylus albifrontis

Cooperioides hepaticae
Oesophagostomum africanum
Oesophagostomum venulosum

Nematodirus helvetianus
Cooperia spatulata

Longistrongylus namaquensis
Agriostomum gorgonis

Cooperia acutispiculum
Nematodirus filicollis

Dictyocaulus filaria
Chabertia ovina

Trichuris skrjabini
Bunostomum trigonocephalum

Cylicocyclus leptostomum
Teladorsagia hamata
Parascaris equorum

Setaria hornbyi
Setaria africana

Dictyocaulus arnfieldi
Parafilaria bovicola

Cylicodontophorus bicoronatus
Trichuris parvispiculum

Pneumostrongylus calcaratus
Gongylonema pulchrum

Bunostomum phlebotomum
Oesophagodontus robustus

Trichuris ovis
Probstmayria vivipara

Cyathostomum montgomeryi
Draschia megastoma

Cylicocyclus nassatus
Longistrongylus meyeri

Haemonchus placei
Coronocyclus coronatus

Cylicostephanus asymetricus
Strongylus vulgaris

Cooperia fuelleborni
Agriostomum equidentatum

Coronocyclus labratus
Cylicostephanus longibursatus

Cyathostomum catinatum
Cylicocyclus elongatus
Cylicostephanus goldi

Triodontophorus serratus
Parapoteriostomum euproctus

Bronchonema magna
Coronocyclus labiatus

Parapoteriostomum schuermanni
Cylicocyclus radiatus

Setaria equina
Elaeophora sagitta

Trichostrongylus thomasi
Strongylus equinus

Triodontophorus tenuicollis
Strongylus edentatus

Gyalocephalus capitatus
Cylicocyclus brevicapsulatus

Poteriostomum ratzii
Poteriostomum imparidentatum

Thelazia rhodesi
Parapoteriostomum mettami

Trichuris globulosa
Habronema microstoma

Triodontophorus brevicauda
Paracooperia serrata

Impalaia nudicollis
Cylicostephanus minutus
Cylicocyclus auriculatus

Cylicostephanus calicatus
Cyathostomum pateratum

Cyathostomum tetracanthum
Cooperia punctata

Trichostrongylus rugatus
Haemonchus krugeri

Craterostomum acuticaudatum
Cylicocyclus adersi

Cooperia neitzi
Cyathostomum alveatum

Trichostrongylus deflexus
Haemonchus vegliai
Habronema muscae

Oxyuris equi
Cylicocyclus insigne
Ostertagia trifurcata

Triodontophorus minor
Oesophagostomum columbianum

Haemonchus bedfordi
Impalaia tuberculata

Longistrongylus sabie
Cylicocyclus ultrajectinus

Cooperia pectinata
Ostertagia ostertagi

Nematodirus spathiger
Cooperia hungi

Haemonchus contortus
Trichostrongylus colubriformis

Trichostrongylus axei
Trichostrongylus falculatus

donkey

horse

sheep

B
urchell's zebr a

springbok

cattle

im
pala

gem
sbok

steenbok

com
m

on duiker

red hartebeest

bushbuck

greater kudu

giraffe

blue w
ildebeest

cape buffalo

0

5

10

b

Figure 2. Heat map of the log predicted abundance parameter (bij) for each host – parasite combination, from yellow (low abundance) to red (high abundance).
Abundance is estimated using random effects, so host – parasite combinations for which there is little information tend to have intermediate abundance estimates.
Predicted abundance is not shown for host – parasite combinations where mean uij , 0.05; species are ordered by summed occurrence (figure 3).
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The observed/lower bound network clusters into eight

groups by edge betweenness community with modularity scores

of 0.046. These host clusters are: (1) blue wildebeest, red hartebe-

est, sheep; (2) bushbuck, greater kudu; (3) Cape buffalo; (4) cattle,

common duiker, impala, springbok, steenbok; (5) donkey; (6)

gemsbok; (7) giraffe; (8) horse, Burchell’s zebra. The median
network clusters into five groups with a modularity score of

0.029. The clusters are: (1) blue wildebeest, gemsbok, greater

kudu, horse, sheep; (2) bushbuck; (3) Cape buffalo; (4) cattle,

common duiker, impala, springbok, steenbok; (5) donkey, gir-

affe, red hartebeest, Burchell’s zebra. The upper bound

network has modularity 0 and all species are in one cluster.
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Figure 3. Heat map of the mean predicted occurrence (uij) for each host – parasite combination, ranging from 0 shown in white to 1 shown in black. Intermediate
values ( pale shading) indicate host – parasite combinations for which there is uncertainty in the model regarding whether the parasite occurs in that host. Species
are ordered by summed occurrence. Predicted occurrence equals 1 for all observed interactions (see electronic supplementary material, figure S3).
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The fast greedy algorithm detects three groups in the

observed and lower bound predicted networks, with modular-

ity score 0.32: (1) blue wildebeest, bushbuck, Cape buffalo,

cattle, common duiker, gemsbok, greater kudu, impala, red

hartebeest, sheep, springbok and steenbok; (2) donkey, horse,

Burchell’s zebra; (3) giraffe. The median and upper bound
predicted networks both cluster into two groups, with giraffe

now included in cluster (2) with the equids, but the modularity

is different: 0.26 for the median network and 0.13 for the upper

bound network.

The phylogeny of the ungulate species is shown in elec-

tronic supplementary material, figure S5. The number of
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Figure 4. Host breadth of each parasite species predicted by the model. Circle (median), thick line (quartile range), thin line (95% credible interval). X shows
observed host breadth. (Online version in colour.)
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parasite species shared between pairs of host species is

strongly negatively correlated with their phylogenetic dis-

tance: for the lower bound predicted network and observed

counts (identical networks), Spearman’s r ¼ 20.59, and for

the median predicted network r ¼ 20.42, with p , 0.0001

for both. The parasites shared in the upper bound network

are less correlated with phylogenetic distance, with

r ¼ 20.29, p ¼ 0.001.
4. Discussion
To understand transmission of a parasite in a multi-host

system, we must be able to identify which hosts can be

infected, as well as the contribution of each host to trans-

mission [11]. In some cases, a single reservoir host species

may not exist, but a community of hosts can maintain trans-

mission of a parasite when the target host on its own would
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Table 5. Network-level indices for the observed network and upper bound
of 95% credible interval predicted host – parasite network; lower bound and
median networks are identical to the observed network.

index observed upper bound

connectance 0.128 0.378

links per species 1.814 5.350

cluster coefficient (total) 0.125 0.375

cluster coefficient ( parasite) 0.180 0.401

cluster coefficient (host) 0.211 0.681

nestedness 18.90 28.47
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not [5]. In addition, each host is likely to be infected by mul-

tiple parasites, some of which are shared with other hosts. As

recent studies have shown, the structures of host–parasite

bipartite networks and projected host–host networks based

on shared parasites may affect patterns of transmission

within an ecological community [14,74]. In this study, we esti-

mated a host–parasite network of nematodes infecting

herbivores in the MPNP, while incorporating uncertainty due

to undersampling. Such a model-based approach contrasts

with calculating network indices directly from field obser-

vations, which, with small sample sizes, are unlikely to be

representative samples of the true distribution, for example

due to a high proportion of false negatives. This method pre-

dicted that the number of parasite species infecting most of

the host species is underestimated by current data (figure 5),

and found that network indices from an observed host–

parasite network are likely to be biased towards unde-

restimating connectance, links per species and the cluster

coefficients, while overestimating the nestedness of host–host

networks of shared parasites. In particular, those host species

with five or fewer individuals (table 1) showed the largest

difference in predicted versus observed parasite numbers.
By using a hierarchical model structure, we were able to

incorporate assumptions about parasite distribution patterns

to predict whether unobserved host–parasite relationships

are likely to occur. We aimed to build on known information

(recorded host–parasite interactions) in a formal way to make

predictions about the lesser-known parts of the system and

develop quantitative evidence regarding whether absences

are true absences. This method is not a magic bullet and for

many of the potential links there was very little information

to build on, which contributed to the difficulty in convergence

of parameters related to occurrence. In particular, the model in

its current form does not clearly predict which parasite species

are more or less likely to occur in a given host. The mean pre-

dicted probability of occurrence for each host-parasite

combination with zero observed prevalence is low (less than

0.2) and the predicted host breadth of each parasite differs

from the observed host breadth by no more than two host

species (figure 3; electronic supplementary material, figure

S3). In those cases where the observed abundance is low, the

expected distribution of a parasite within individual hosts

will include many zeroes, which makes it difficult to differen-

tiate true non-occurrence. However, the model does clearly

identify those hosts about which there is the most uncertainty

in their parasite fauna, and this information could be used to

target additional research.

The hierarchical model structure also allows for the

inclusion of covariates at different scales of the system (incor-

porating environmental, individual, parasite species or host

species-level traits as covariates), and inferences can therefore

be made from the results to influence risk assessments or

management decisions at each of these ecological scales

which affect parasite transmission [8]. Many of the covariates

we explored in the model selection process were correlated

with host–parasite associations and/or improved the fit of

the model. In particular, if the individual had been treated

with anthelmintics in the past year, parasite abundance

tended to be lower, and wild hosts tended to have lower

mean probabilities of occurrence of the parasites than domestic

hosts. Incorporating additional assumptions, such as if all

species in a given parasite genus were expected to have

similar host occurrence, or if hosts have certain traits that are

known to affect parasite fauna, would allow the model to

more precisely identify expected host–parasite associations.

For example, there is a large degree of uncertainty in the

number of parasites expected to infect giraffe, but as they

browse very high up on trees they are unlikely to be exposed

to as many larvae of trophically transmitted parasites as are

other host species. This expectation could be built into the

model through an informative prior distribution or foraging

mode effect for the probability of occurrence for giraffes, and

ecological or trait-based assumptions could be incorporated

for the other species with high uncertainty (red hartebeest

and steenbok).

Realistic clustering of species was found in the unipartite

host–host network, with equids tightly linked to each other

and separate from ruminants. No predictive taxonomic infor-

mation for hosts or parasites was included in the final model,

but the taxonomy of the hosts was apparent in the host net-

works. The fast greedy algorithm does not identify the small

clusters, but clearly groups equids separately from ruminants.

The number of parasites shared by pairs of hosts was nega-

tively correlated with phylogenetic distance, which is

congruous with previous research [75–77]. This correlation



observed

blue wildebeest

bushbuck

cape buffalo

cattle
common duiker

donkey

gemsbok

giraffe

greater kudu

horse

impala

red hartebeest
sheep

springbok

steenbok

Burchell's zebra

lower bound

blue wildebeest

bushbuck

cape buffalo

cattle
common duiker

donkey

gemsbok

giraffe

greater kudu

horse

impala

red hartebeest
sheep

springbok

steenbok

Burchell's zebra

median

blue wildebeest

bushbuck

cape buffalo

cattle
common duiker

donkey

gemsbok

giraffe

greater kudu

horse

impala

red hartebeest
sheep

springbok

steenbok

Burchell's zebra

upper bound

blue wildebeest

bushbuck

cape buffalo

cattle
common duiker

donkey

gemsbok

giraffe

greater kudu

horse

impala

red hartebeest
sheep

springbok

steenbok

Burchell's zebra

Figure 6. Networks weighted by the number of shared parasites for observed network, and predicted lower bound, median and upper bound networks. Nodes are
coloured by edge betweenness community; edge width represents the weight of connection.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160095

11
was strongest in the observed data and was lower in predicted

models as no assumptions were included in the model that

would predict host–parasite information based on phylogeny.

Similarly, uncertainty in which particular host–parasite associ-

ations were missing from the data led to a decrease in

modularity of the projected network at the upper bound of

the credible interval.

Although there are some parasites shared among the

domestic species (figure 6), no parasite species are shared

between Burchell’s zebra and blue wildebeest, the two most

abundant wild herbivores in the study area [51]. Both of

these species migrate and share the same grazing land [78],

potentially mitigating transmission of each other’s parasites.

On the other hand, the strong links between Burchell’s

zebra and domestic horses and donkeys, and between certain

species of wild and domestic ruminant, indicate that there is

potential for a high degree of transmission of parasites

between wild and domestic species.
The data used in this study were drawn from an extensive

history of research into parasites in southern Africa [25].

Another recent study used data on tick identifications

from a similar long-term dataset to examine host-generalism

in ticks of mammals [79]. A primary limitation of the data is

that we have assumed that the host–parasite associations of

southern Africa as a whole are the same as in the region of

Botswana from which the set of relevant hosts was selected.

Therefore, the data do not differentiate between the potential

and realized niche of a parasite, as the barrier preventing

infection of a particular host species may be geographical

rather than biological. Despite the limitations of using data

gathered for a different purpose, historical datasets provide

a valuable resource, particularly where postmortem sampling

is necessary for data acquisition. Currently, postmortem

sampling of wildlife, and particularly of rare or endangered

species, is necessarily opportunistic [28]. As a result, it may

not be possible for sampling efforts for nematodes to focus
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on the most under-sampled species identified in this study

(red hartebeest, giraffe and steenbok), or even on those

species for which no data were available (with the exception

of missing domestic species such as goats). A non-invasive

genetic method for identifying nematode communities from

faecal samples has recently been demonstrated in African

buffalo [80]. Genetic barcoding of parasites would provide

an additional benefit in the form of evidence as to whether

a parasite species identified in different host species is the

same strain, as has been assessed for Haemonchus contortus
in ungulates in Europe [81], and would remove the biases

probably introduced by morphological identification of

parasites, such as the presence of cryptic species. Genetic

barcoding of hosts may also reveal cryptic species; the phylo-

geny of African ungulates is still an active area of research,

for example, bushbuck have recently been proposed to be

two species [82–84]. The Bayesian hierarchical modelling

method used here could be applied to genetic groups from

sequenced data rather than morphological identification, for

parasites and/or hosts.

Building a network that identifies areas of uncertainty in

host–parasite associations, as we have done here, is an

important first step towards understanding transmission in

a multi-host, multi-parasite system. By examining a commu-

nity of generalist parasites and their hosts rather than single-

host, single-parasite systems, we are better prepared to
untangle the impact that alternative hosts may have on trans-

mission [8]. The hierarchical modelling method used in this

study to predict unobserved links in host–parasite networks,

in combination with more details on the abundance of hosts

and the degree of overlap in grazing, could be used to predict

the extent of mitigation or amplification of transmission by

co-grazing species.

Data accessibility. The code supporting this article has been uploaded
as part of the electronic supplementary material. All data included
are from previously published work, and the combined dataset
used here has been uploaded as part of the electronic supplementary
material.

Authors’ contributions. All authors contributed to study conception and
design and interpretation of the data, revised the article critically
and approved the final version for publication. J.G.W., M.P. and
P.A.V. developed the model. J.G.W. collected and analysed the data
and drafted the article.

Competing interests. We have no competing interests.

Funding. J.G.W. was funded by a University of Bristol Postgraduate
Research Scholarship and the Australian Research Council Centre
of Excellence for Environmental Decisions Early Career Researcher
Visiting Fellowship Scheme. M.P. was funded by an Australian Post-
graduate Award. M.P. and P.A.V. were funded through Australian
Research Council Centre of Excellence for Environmental Decisions.

Acknowledgements. The authors thank R.C. Krecek, S. Matthee,
J. Boomker and J.A. van Wyk for assistance in finding data, and
the government of Botswana and Elephants for Africa for supporting
this research.
References
1. Morgan ER, Milner-Gulland EJ, Torgerson PR,
Medley GF. 2004 Ruminating on complexity:
macroparasites of wildlife and livestock. Trends Ecol.
Evol. 19, 181 – 188. (doi:10.1016/j.tree.2004.01.011)

2. Cleaveland S, Laurenson MK, Taylor LH. 2001
Diseases of humans and their domestic mammals:
pathogen characteristics, host range and the risk of
emergence. Phil. Trans. R. Soc. B 356, 991 – 999.
(doi:10.1098/rstb.2001.0889)

3. Woolhouse MEJ, Taylor LH, Haydon DT. 2001
Population biology of multihost pathogens. Science
292, 1109 – 1112. (doi:10.1126/science.1059026)

4. Lloyd-Smith JO, George D, Pepin KM, Pitzer VE,
Pulliam JRC, Dobson AAP, Hudson PJ, Grenfell BT.
2009 Epidemic dynamics at the human – animal
interface. Science 326, 1362 – 1367. (doi:10.1126/
science.1177345)

5. Viana M, Mancy R, Biek R, Cleaveland S, Cross PC,
Lloyd-Smith JO, Haydon DT. 2014 Assembling
evidence for identifying reservoirs of infection.
Trends Ecol. Evol. 29, 270 – 279. (doi:10.1016/j.tree.
2014.03.002)

6. Webster JP, Borlase A, Rudge JW. 2017 Who acquires
infection from whom and how? Disentangling multi-
host and multi-mode transmission dynamics in the
‘elimination’ era. Phil. Trans. R. Soc. B 372,
20160091. (doi:10.1098/rstb.2016.0091)

7. Buhnerkempe MG, Roberts MG, Dobson AP,
Heesterbeek H, Hudson PJ, Lloyd-Smith JO. 2015
Eight challenges in modelling disease ecology in
multi-host, multi-agent systems. Epidemics 10,
26 – 30. (doi:10.1016/j.epidem.2014.10.001)
8. Johnson PTJ, de Roode JC, Fenton A. 2015 Why
infectious disease research needs community
ecology. Science 349, 1259504. (doi:10.1126/
science.1259504)

9. Poulin R. 2010 Network analysis shining light on
parasite ecology and diversity. Trends Parasitol. 26,
492 – 498. (doi:10.1016/j.pt.2010.05.008)

10. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM.
2005 Superspreading and the effect of individual
variation on disease emergence. Nature 438,
355 – 359. (doi:10.1038/nature04153)

11. Streicker DG, Fenton A, Pedersen AB. 2013
Differential sources of host species heterogeneity
influence the transmission and control of multihost
parasites. Ecol. Lett. 16, 975 – 984. (doi:10.1111/
ele.12122)

12. Shaw DJ, Dobson A. 1995 Patterns of macroparasite
abundance and aggregation in wildlife populations:
a quantitative review. Parasitology 111,
S111 – S133. (doi:10.1017/S0031182000075855)

13. Walker JG, Morgan ER. 2014 Generalists at the
interface: nematode transmission between wild and
domestic ungulates. Int. J. Parasitol. Parasites Wildl.
3, 242 – 250. (doi:10.1016/j.ijppaw.2014.08.001)

14. Pilosof S, Morand S, Krasnov BR, Nunn CL. 2015
Potential parasite transmission in multi-host
networks based on parasite sharing. PLoS ONE 10,
1 – 19. (doi:10.1371/journal.pone.0117909)

15. Tompkins DM, Draycott RAH, Hudson PJ. 2000 Field
evidence for apparent competition mediated via the
shared parasites of two gamebird species. Ecol. Lett.
3, 10 – 14. (doi:10.1046/j.1461-0248.2000.00117.x)
16. Chintoan-Uta C, Morgan ER, Skuce PJ, Coles GC.
2014 Wild deer as potential vectors of anthelmintic-
resistant abomasal nematodes between cattle and
sheep farms. Proc. R. Soc. B 281, 20132985. (doi:10.
1098/rspb.2013.2985)

17. Poulin R, Besson AA, Morin MB, Randhawa HS.
2016 Missing links: testing the completeness of
host – parasite checklists. Parasitology 143, 114 –
122. (doi:10.1017/S0031182015001559)

18. Matthee S, Krecek RC, McGeoch MA. 2004 A
comparison of the intestinal helminth communities
of Equidae in Southern Africa. J. Parasitol. 90,
1263 – 1273. (doi:10.1645/GE-3353)

19. Pinheiro RBP, Félix GMF, Chaves AV, Lacorte GA,
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