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Abstract: A color image encryption algorithm based on double fractional order chaotic neural network
(CNN), interlaced dynamic deoxyribonucleic acid (DNA) encoding and decoding, zigzag confusion,
bidirectional bit-level diffusion and convolution operation is proposed. Firstly, two fractional order
chaotic neural networks (CNNs) are proposed to explore the application of fractional order CNN in
image encryption. Meanwhile, spectral entropy (SE) algorithm shows that the sequence generated
by the proposed fractional order CNNs has better randomness. Secondly, a DNA encoding and
decoding encryption scheme with evolutionary characteristics is adopted. In addition, convolution
operation is utilized to improve the key sensitivity. Finally, simulation results and security analysis
illustrate that the proposed algorithm has high security performance and can withstand classical
cryptanalysis attacks.

Keywords: fractional order chaotic system; neural network; convolution operation; DNA encoding;
image encryption

1. Introduction

The rapid development of information technology has greatly facilitated people’s daily
life, but the information security issues caused by this method cannot be ignored. Digital
image, which is one of the information carriers, is extensively used in medical, education,
military and other fields. However, the security of image information is hard to guarantee
due to the openness of the internet platform. If the problem of image information security
cannot be solved, it will cause irreparable loss to military, education, medical, and other
fields. Therefore, it is of great significance to design a safe and effective image encryption
algorithm. A puzzling phenomenon is that image information has the characteristics of
high data redundancy, strong pixel correlation, and large data capacity, which makes
the traditional encryption algorithms unsuitable for image encryption [1,2]. In view of
the above information characteristics of image, image encryption algorithms based on
different technologies have been extensively researched, including chaos theory [3–6],
deoxyribonucleic acid (DNA) encoding and calculation [7,8], cellular automata [9,10], etc.

Chaotic system applies to image encryption because of its similar characteristics
with cryptography, such as ergodicity, initial value sensitivity, and aperiodicity [11,12].
Common chaotic systems include Logistic mapping, Henon mapping, Lorenz chaotic
system, Hopfield neural network (HNN) chaotic system, etc. Among them, the HNN
model was proposed by the American physicist Hopfield in 1982 [13]. This model can
generate very complex behaviors, such as hyper-chaos, and chaos, etc. Moreover, due to the
nonlinear activation function of neurons, this model has a strong nonlinear characteristic.
Therefore, HNN has been extensively researched and applied in image encryption [14–16].
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In addition, fractional calculus has more than 300 years of theoretical research history, but
it was not applied in engineering, physics or applied mathematics until recent decades [17].
Some studies show that, when introducing a fractional differential operator into chaotic
system, the system will produce more accurate and complex dynamic behavior, and have
stronger randomness and unpredictability [17]. Meanwhile, in contrast to an integer order
chaotic system, the order of a fractional order chaotic system can also be used as the key of
the encryption algorithm.

DNA operation is extensively used in image encryption because of its high paral-
lelism [18], which can improve the efficiency of encryption and decryption. However, DNA
operation is, in essence, a von Neumann operation principle [19]; its operation rules are
well-known. Chen et al. [20] investigated the properties of DNA encoding and found that
some encryption schemes based on DNA encoding have different degrees of insecurity.
The image encryption algorithms proposed in [21,22] adopt fixed DNA encoding rules, that
is, the encoding rules are not related to plain image, which will reduce the security of the
encryption algorithm. Therefore, we need to do something else to make DNA operation
more unpredictable to ensure the security of encryption algorithm. In addition, bit-level
diffusion can better hide the information from each bit plane of image than pixel-level diffu-
sion. Lately, some bit-level image encryption algorithms were proposed [21,23,24]. In [21],
a color image encryption algorithm based on DNA operation and chaos was proposed,
which adopts the fixed DNA encoding rule. In [23], a color image encryption algorithm
based on DNA encoding and double chaos system was proposed, which adopts dynamic
DNA encoding. In [24], two unidirectional diffusion algorithms are mentioned. However,
the unidirectional diffusion algorithm cannot propagate the subtle change of plain image
to every pixel of encrypted image by a round diffusion operation.

On the basis of the previous analysis, we propose a color image encryption algorithm
based on the double fractional order chaotic neural network (CNN), interlaced dynamic
DNA encoding and decoding, zigzag confusion, bidirectional bit-level diffusion, and
convolution operation. This paper contributes the following aspects:

(1) Two fractional order CNNs are proposed. The chaotic performance analysis shows
that a fractional order CNN has more complex chaotic behavior in comparison to the
integer order CNN.

(2) A new bidirectional bit-level diffusion algorithm is applied. The new bidirectional
bit-level diffusion algorithm can hide the bit-plane information of plain image better.

(3) An interlaced dynamic DNA encoding and decoding encryption scheme is adopted.
This scheme has the evolution characteristic, which makes the encryption algorithm
have higher security.

(4) In the permutation algorithm, a convolution operation is used to associate the permu-
tation process with plaintext information, which greatly enhances the key sensitivity
and plaintext sensitivity of the algorithm.

The rest of the paper is organized as follows. In Section 2, the CNN is introduced and
its dynamic characteristics are analyzed. In Section 3, some fundamental knowledge is
given. Section 4 describes the proposed algorithm. Section 5 presents the simulation results.
Security analyses are placed in Section 6. The conclusion is provided in Section 7.

2. CNN
2.1. Integer Order CNN

Based on the HNN model, [25] proposed a chaotic neuron model, whose definition is

ci ẋi =
n
∑

j=1
sijxj +

n
∑

j=1
wijvj + di, i = 1, · · · , n. (1)
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In this paper, we let ci = 1 and n = 3, so the integral order CNN is

ẋi =
3
∑

j=1
sijxj +

3
∑

j=1
wijvj + di, i = 1, 2, 3. (2)

where vj = tanh(xj). Figure 1 shows the connections between neurons in Equation (2). The
connection weights wij, the conductance of membrane resistance sij and input current di in
Equation (2) are determined as

sij =

 0 2 0
0 0 1
0 −3 −5

; wij =

 2 1 −9
−9 2 4
1 −9 2

; di =

 0
c sin(x1)

0

. (3)

So Equation (2) can be defined as
ẋ1 = 2x2 + 2 tanh(x1) + tanh(x2)− 9 tanh(x3);
ẋ2 = x3 − 9 tanh(x1) + 2 tanh(x2) + 4 tanh(x3) + c sin(x1);
ẋ3 = −3x2 − 5x3 + tanh(x1)− 9 tanh(x2) + 2 tanh(x3).

(4)

Figure 1. The connections between neurons in (2).

To confirm the chaotic characteristics of the system (4), we analyze its dynamic behav-
ior. Figure 2 shows the relationship between the Lyapunov exponent (LE) of the system (4)
and parameter c, where the LE is obtained by Euler method and Qatari Rial (QR) decompo-
sition method. Figure 3 is the x2-axis bifurcation diagram of the system (4). Figure 3 shows
that the system (4) enters into chaos by period doubling bifurcation. Figure 4 shows the
phase portraits of system (4) when c = 20.

In addition, we use the 0–1 test [26] to further verify if the system (4) is chaotic. The
trajectory of the (p, s) plane corresponds to Brownian motion when the parameter c of
system (4) is 20, as shown in Figure 5. The trajectory of (p, s) plane of 0–1 test indicates that
when parameter c is 20, the system (4) is chaotic.
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Figure 2. LE spectrum of the system (4).

Figure 3. The x2-axis bifurcation diagram of c.

(a) (b)

(c) (d)

Figure 4. The phase portraits of system (4). (a) x2-x3 plane; (b) x1-x3 plane; (c) x1-x2 plane; (d) per-
spective view.
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Figure 5. (p, s) plane of x3 sequence with c = 20.

2.2. Fractional Order CNN

Fractional calculus has a number of definitions, among which Caputo, Riemann-
Liouville and Grunwald-Letnikov definitions are the most commonly used. Since the
fractional order differential equation defined by Caputo definition has the same initial
condition form as an integer order differential equation [17], Caputo definition is adopted
in this paper. The definition of Caputo fractional calculus is

Dq
t f (t) =

 1
Γ(m−q)

∫ t
0

f (m)(τ)

(t−τ)q+1−m dτ if m− 1 < q < m;
dm

dtm f (t) if q = m,
(5)

where Γ(x) is Gamma function, which is

Γ(x) =
∫ ∞

0
e−t · tx−1dt. (6)

To improve the randomness of sequences generated by chaotic system, we generalize
the system (4) to fractional order case and propose the fractional order CNN, which is
defined as 

Dq
t x(t) = 2y + 2 tanh(x) + tanh(y)− 9 tanh(z);

Dq
t y(t) = z− 9 tanh(x) + 2 tanh(y) + 4 tanh(z) + c sin(x);

Dq
t z(t) = −3y− 5z + tanh(x)− 9 tanh(y) + 2 tanh(z).

(7)

The complexity of chaotic systems refers to employing related algorithms to mea-
sure the possibility that the sequences generated by chaotic system approach random
sequences [27]. The greater the complexity of chaotic system, the more random the se-
quences generated by chaotic systems are. Since spectral entropy (SE) algorithm [28] has the
advantages of fewer parameters and higher accuracy, we use the SE algorithm to measure
the complexity of the system (7) with parameter c = 20. Figure 6 shows the result, which
illustrates that the complexity of system (7) with q = 0.998 and q = 1 (the system (4)) is 0.623
and 0.610, respectively. Obviously, the system (7) with q = 0.998 has higher complexity than
the system (4).
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Figure 6. The complexity of system (7).

Since the high complexity of the system does not mean that the system is chaotic, we
perform dynamic analysis on the system (7) with q = 0.998 and c = 20 to determine whether
it is chaotic or not. The phase portraits of system (7) with q = 0.998 and c = 20 are shown
in Figure 7, in which the system (7) is solved by the predictor-corrector method. Figure 8
presents the LE of the system (7) calculated by Wolf’s method, where the order q is 0.998.
According to the phase portraits and the LE, it can be judged that when the parameter c is
20 and the order q is 0.998, the system (7) is chaotic. Based on the above results, it can be
seen that the system (7) with q = 0.998 and c = 20 is chaotic and has a higher complexity
than the system (4).

(a) (b)

(c) (d)

Figure 7. The phase portraits of system (7). (a) y-z plane; (b) x-z plane; (c) x-y plane; (d) perspective view.



Entropy 2022, 24, 933 7 of 26

Figure 8. LE spectrum of the system (7).

In [25], an integer order CNN is proposed. We also generalize it to the fractional order
case, which can be described as

Dq
t x(t) = 2y + 5 tanh(x)− tanh(z);

Dq
t y(t) = z− 6 tanh(x) + 2 tanh(y) + 4 tanh(z);

Dq
t z(t) = −3y− 5z− tanh(x)− 3 tanh(y) + 10 tanh(z) + 20 sin(x).

(8)

According to the previous method, we conducted dynamic analysis on system (8).
Figure 9 gives the SE of system (8) and illustrates that the complexity of the system (8)
with q = 0.99 is the highest. Therefore, the order q of the system (8) is determined to be
0.99. Figure 10 gives the phase portraits of the system (8) with q = 0.99. In addition, the
maximum LE of the system (8) with q = 0.99 solved by Wolf’s method is greater than 0.
Therefore, system (8) with q = 0.99 is chaotic and has high complexity.

Figure 9. The complexity of system (8).
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(a) (b)

(c) (d)

Figure 10. The phase portraits of system (8). (a) y-z plane; (b) x-z plane; (c) x-y plane;
(d) perspective view.

3. Fundamental Knowledge
3.1. Bit Plane Decomposition

An n-bit binary sequence can be used to represent any decimal value b that is not less
than 0 [29], so an 8-bit binary sequence can be used to represent each pixel value of the
image. In this paper, the three components of color image are decomposed into 8 bit planes
respectively. The decomposition process is

b =
8

∑
j=1

cj2j−1 = c8 · 27 + c7 · 26 + c6 · 25 + c5 · 24 + c4 · 23 + c3 · 22 + c2 · 21 + c1 · 20. (9)

3.2. DNA Sequence Operations
3.2.1. DNA Encoding and Decoding Rules

A(adenine), G (guanine), C (cytosine), and T (thymine) are the four basic nucleic
acids that make up each DNA sequence, where G and C, T and A are complementary
respectively [30]. 0 and 1 are complementary in binary computation, so the binary array
11 and 00, 10 and 01 are complementary. Because binary arrays and DNA have similar
complementary properties, the binary arrays 00, 11, 01, and 10 can be encoded as C, A, G
and T. Watson and Crick found that among the 24 coding rules, only 8 coding rules meet
the complement requirements, which are listed in Table 1.

Different from other encryption algorithms, this paper dynamically selects two en-
coding rules for the encryption algorithm. Assume that the pixel value is 39, which can
be expressed as [00100111], and the selected coding rules are rule 1 and rule 6. In encryp-
tion, [00100111] is encoded as [ACGT] according to rule 1. Then, [ACGT] is decoded as
[01110010] according to rule 6. In decryption, [01110010] is encoded as [ACGT] according
to rule 6, then [ACGT] is decoded as [00100111] according to rule 1. Thus, the interlaced
dynamic DNA encoding and decoding encryption scheme has the characteristic of evolu-
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tion, which can make DNA operation more unpredictable and reduce the insecurity caused
by the fixed encoding rule.

Table 1. DNA encoding rule.

Rule 1 2 3 4 5 6 7 8

A 00 00 11 11 01 01 10 10
G 01 10 01 10 11 00 11 00
C 10 01 10 01 00 11 00 11
T 11 11 00 00 10 10 01 01

3.2.2. DNA Operation

The DNA XOR operation is the XOR operation of binary number, so there are eight
DNA XOR operations that correspond to DNA encoding rules. The DNA XOR operation
that corresponds to encoding rule 2 is shown in Table 2.

Table 2. DNA XOR operation.

XOR A T C G

A A T C G
G G C T A
C C G A T
T T A G C

3.3. Zigzag Confusion

The path of the zigzag confusion is shown in Figure 11, which is different from the
path of the general zigzag confusion. In this paper, zigzag confusion scans the elements in
the matrix in Z order starting with the first element in the upper-left corner of the matrix,
and rearranges the elements in columns into a matrix of the same size. In Figure 12, we
give an example to help understand how the zigzag confusion works.

Figure 11. The path of the zigzag confusion.

3.4. Convolution Operation

Convolution operation is widely used in the convolutional neural network, which is
among the representative algorithms of deep learning and has excellent performance in
computer vision, atmospheric science, natural language processing, and other fields. The
definition of the convolution operation is

h(x, y) = f (x, y) ∗ g(x, y) =
∞

∑
i=−∞

∞

∑
j=−∞

f (i, j) · g(x− i, y− j), (10)

where h represents the output, f represents the input, g represents the convolution kernel.
Figure 13 shows how the convolution works. In this paper, the convolution operation is
used to calculate plaintext index, in which the chaotic sequence is the input and the hash
value of plain image is the convolution kernel.
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Figure 12. The example of zigzag confusion.

Figure 13. Convolution operation.

4. The Proposed Image Encryption and Decryption Algorithm
4.1. Generating the Chaotic Matrices

The proposed fractional-order CNNs are used to generate chaotic matrices, and the
following is the specific generating procedure for chaotic matrices.

Step 1: From the input color plain image P of size M× N, a 256-bit hash value K is
generated by using the secure hash algorithm (SHA-256), and K is converted to 32 numbers
k1,k2, · · · ,k32 with every 8 bits as a group.

Step 2: Calculate the initial values of systems (7) and (8), as illustrated in Algorithm 1.
Step 3: Firstly, perform 2000 pre-iterations for the systems (7) and (8) to avoid transient

effects. Then, the systems (7) and (8) are iterated dM× N ÷ 3e times respectively, where
dbe represents the nearest integer greater than or equal to b. The X, Y and Z sequences
generated by the system (7) and the system (8) are spliced into D1 and D2 respectively
(X followed by Y, and Y followed by Z). Finally, Z1 and Z2 are the first M× N data of D1
and D2 respectively.
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Algorithm 1 Generating initial values of fractional order CNNs.

Input: k1,k2, · · · ,k32

1: x0 = mod(k1 ⊕ k17 +
11
∑

i=1
k3i−1, 256)

/
28;

2: y0 = mod(k2 ⊕ k18 +
10
∑

i=1
k3i, 256)

/
28;

3: z0 = mod(k3 ⊕ k19 +
10
∑

i=0
k3i+1, 256)

/
28;

where ⊕ represents XOR operation.
Output: x0, y0, z0.

Step 4: Chaotic matrices X1, Y1, X2, Y2, X3, Y3, X4 and Y4 of size M × N are
generated by 

X1(i, j) = mod(floor(Z1((i− 1) · N + j) · 1014), 256);
Y1(i, j) = mod(floor(Z2((i− 1) · N + j) · 1014), 256);
X2(i, j) = mod(floor(Z1((i− 1) · N + j) · 1013), 256);
Y2(i, j) = mod(floor(Z2((i− 1) · N + j) · 1013), 256);
X3(i, j) = mod(floor(Z1((i− 1) · N + j) · 1012), 256);
Y3(i, j) = mod(floor(Z2((i− 1) · N + j) · 1012), 256);
X4(i, j) = floor(Z1((i− 1) · N + j) · 1011);
Y4(i, j) = floor(Z2((i− 1) · N + j) · 1011).

(11)

4.2. Forward/Backward Bit-Level Diffusion

In the process of forward bit-level diffusion, we first XOR the lowest bit plane of image
with the lowest bit plane of chaotic matrix, and then diffuse one by one from the lowest
bit plane to the highest bit plane. In the process of backward bit-level diffusion, we first
XOR the highest bit plane of image with the highest bit plane of chaotic matrix, and then
diffuse them one by one from the highest bit plane to the lowest bit plane. Suppose Q is any
component of color image and R is chaotic matrix. The following is the specific forward
bit-level diffusion process.

Step 1: The Q and R are decomposed into 8 bit planes: Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8,
R1, R2, R3, R4, R5, R6, R7 and R8.

Step 2: The 8 bit planes of Q and R are turned into DNA matrices according to DNA
encoding rule q1: Q12_DNA, Q34_DNA, Q56_DNA, Q78_DNA, R12_DNA, R34_DNA, R56_DNA
and R78_DNA.

Step 3: The DNA matrices of Q are diffused through
Q
′
12_DNA = Q12_DNA ⊕ R12_DNA;

Q
′
34_DNA = (Q34_DNA ⊕ R34_DNA)⊕Q

′
12_DNA;

Q
′
56_DNA = (Q56_DNA ⊕ R56_DNA)⊕Q

′
34_DNA;

Q
′
78_DNA = (Q78_DNA ⊕ R78_DNA)⊕Q

′
56_DNA,

(12)

where ⊕ represents DNA XOR operation corresponding to encoding rule q1.
Step 4: DNA matrix Q′ is decoded according to DNA decoding rule q2.
The backward bit-level diffusion can be obtained by replacing Equation (12) in forward

bit-level diffusion with
Q
′
78_DNA = Q78_DNA ⊕ R78_DNA;

Q
′
56_DNA = (Q56_DNA ⊕ R56_DNA)⊕Q

′
78_DNA;

Q
′
34_DNA = (Q34_DNA ⊕ R34_DNA)⊕Q

′
56_DNA;

Q
′
12_DNA = (Q12_DNA ⊕ R12_DNA)⊕Q

′
34_DNA,

(13)
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where ⊕ represents DNA XOR operation corresponding to encoding rule q1.

4.3. Plaintext Associative Permutation

The process of plaintext associative permutation is as follows.
Step 1: The K is reshaped by column into a 16× 16 matrix, and the matrix is used as

the convolution kernel to convolute with the chaotic matrix Y4.
Step 2: Perform modular M × N operation on the output of convolution opera-

tion to obtain matrix S, where M and N denote the size of the image I after forward
bit-level diffusion.

Step 3: Arrange the elements that do not appear in S in the order of large to small to
get sequence T.

Step 4: Scramble T with X4 as the index.
Step 5: Replace the repeated elements in S with the elements in T, and then rearrange

the image I with S as the index.
The operation details are given in Algorithm 2.

Algorithm 2 The plaintext associative permutation.

Input: The image I, 256-bit hash value K, chaotic matrices X4 and Y4.
1: K is reshaped into a matrix.
2: Get the number of rows M and columns N of the image I.
3: Convolute Y4 with K, and store the convolution result in S.
4: S = mod(S,M× N) + 1;
5: T = sort(setdiff(1 :M× N,S),′ descend′);
6: X4= mod(X4(1 : length(T)), length(T)) + 1;
7: for i = 1 to length(T) do
8: e = T(i);
9: T(i) = T(X4(i));

10: T(X4(i)) = e
11: end for
12: Get A and B. A is the same data as in S, but with no repetitions. B is the index vectors

of A in S.
13: E= setdiff(1 :M× N,B);
14: for i = 1 to length(E) do
15: S(E(i)) = T(i);
16: end for
17: for i = 1 to M× N do
18: I′(S(i)) = I(i);
19: end for

where setdiff(1:M× N,S) returns the data in 1:M× N that is not in S.
Output: I′.

4.4. The Complete Encryption Process

Figure 14 illustrates the encryption flow chart of the proposed algorithm. The follow-
ing is the specific steps.

Step 1: Input a color plain image and generate the key K and the chaotic matrices, as
described in Section 4.1.

Step 2: Calculate q1 and q2 by
q1 = mod(

128
∑

i=1
K(i), 8) + 1;

q2 = mod(
256
∑

i=129
K(i), 8) + 1.

(14)
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Step 3: The R, G, B components of the color image are decomposed into 8 bit
planes, respectively.

Step 4: Chaotic matrices X1, X2 and X3 are used to perform forward bit-level diffusion
on each component of the image, as described in Section 4.2.

Step 5: The bit planes of each component are merged, and then the three components
of the image are merged.

Step 6: Perform zigzag confusion on the image as shown in Section 3.3, and then
plaintext associative permutation is performed on the image as illustrated in Section 4.3.

Step 7: Repeat step 3, and then chaotic matrices Y1, Y2 and Y3 are used to perform
backward bit-level diffusion on each component of the image, as described in Section 4.2.

Step 8: Obtain the cipher image by repeating step 5.
The decryption algorithm can be obtained by reverse operation of the encryption

algorithm. Figure 15 shows the decryption algorithm flow chart.

Figure 14. The encryption flow chart.

Figure 15. The decryption flow chart.
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5. Simulation Results

Figure 16 illustrates the simulation results. Obviously, the cipher images are like noise
and cannot be recognizable. This means that, even if cipher images are intercepted in transit,
valid information about plain images will not be leaked. In addition, the images decrypted
by the correct key are visually identical to corresponding plain images. To quantitatively
evaluate the quality of the decrypted images of the proposed algorithm, we introduce the
Peak Signal-to-Noise Ratio (PSNR), which is defined as

PSNR = 20 · log10

 255√
1

M·N ·
M
∑

i=1

N
∑

j=1
(D(i, j)− P(i, j))2

, (15)

where D and P represent the decrypted image and the plain image respectively, (i, j) are
the position of pixel, M and N are the size of the images. The larger the PSNR value
between the plain image and the decrypted image, the smaller the difference between them.
When the decrypted image is completely the same as the plain image, the denominator
in Equation (15) is 0, and the value of PSNR is infinity (Inf). The test results are shown in
Table 3. It can be seen that the PSNR values between the decrypted image and the plain
image are infinity. This indicates that the decrypted images are completely the same as the
corresponding plain images. Therefore, the proposed algorithm performs well in terms of
encryption and decryption.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16. Encrypted and decrypted images. (a) Lena; (b) encrypted image of Lena; (c) decrypted
image of Lena; (d) Baboon; (e) encrypted image of Baboon; (f) decrypted image of Baboon; (g) Pepper;
(h) encrypted image of Pepper; (i) decrypted image of Pepper.
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Table 3. The PSNR value between decrypted image and plain image.

Images
PSNR

R G B

Lena Inf Inf Inf
Baboon Inf Inf Inf
Pepper Inf Inf Inf

6. Security Analyses

This section analyzes the following indicators to demonstrate the proposed algorithm’s
security performance: key space, histogram, correlation of adjacent pixels, key sensitivity,
differential attack, chosen/known-plaintext attack, information entropy, occlusion attack,
and noise attack.

6.1. Key Space Analysis

Image encryption algorithms with key space smaller than 2100 are considered inse-
cure [31]. The proposed algorithm’s key is composed of 256-bit binary hash values, and its
key space size is 2256, which is greater than 2100. Consequently, the proposed algorithm can
defend violent attacks.

6.2. Histogram Analysis

A histogram can provide an intuitive insight into the distribution characteristics of
image pixel values, so we give the histograms of images, as shown in Figure 17. In contrast
to the plain images, the pixel values of cipher images are distributed uniformly. This
means that the attacker will not be able to obtain the information from the plain image via
statistical analysis attack. In addition, to further examine the uniformity of histograms,
chi-square test is introduced. It is defined as

χ2 =
255

∑
i=0

( fi − g)2

g
, (16)

where g = M× N/256, and fi is the occurrence frequency of the pixel with the value of i.
When the chi-square value is smaller than 293.2478, it means that the image histogram is
approximately evenly distributed at the confidence level of 0.05 [32]. Table 4 shows that
the cipher images’ chi-square values are all smaller than 293.2478, so the cipher images’
histograms are approximately evenly distributed. As a result, the proposed algorithm is
capable of invalidating statistical attacks.

Table 4. Chi-square for plain image and its corresponding cipher image.

Image
Plain Image Cipher Image

R G B R G B

Lena 5.93 × 104 3.13 × 104 8.09 × 104 215.2266 224.8203 245.3828
Baboon 2.60 × 104 4.28 × 104 2.84 × 104 282.2500 244.5000 278.4063
Pepper 5.08 × 104 3.29 × 104 8.68 × 104 248.8594 207.5859 278.6061

6.3. Correlation Analysis of Adjacent Pixels

The correlation between adjacent pixels is closely related to whether the cipher image
will be broken by statistical attack. The correlation between adjacent elements of cipher
image should be as low as possible to prevent the cipher image from statistical attacks. In
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order to make the analysis result more reliable, 20,000 pairs of pixels are chosen at random
and correlation coefficients are calculated through

rxy = cov(x,y)√
D(x)·
√

D(y)
;

D(x) = 1
N ·

N
∑

i=1
(xi − E(x))2;

cov(x, y) = 1
N ·

N
∑

i=1
(xi − E(x)) · (yi − E(y));

E(x) = 1
N ·

N
∑

i=1
xi,

(17)

where xi and yi are the gray values of the pixels and N is the number of pixel pairings that
have been chosen.

(a) (b)

(c) (d)

(e) (f)

Figure 17. Histogram results. (a) Lena; (b) cipher image of Lena; (c) Baboon; (d) cipher image of
Baboon; (e) Pepper; (f) cipher image of Pepper.

Before and after encryption, the correlation coefficient between adjacent pixels clearly
changes, and the cipher image’s correlation coefficients of adjacent pixels are near to 0, as
seen in Table 5. Figure 18 displays the correlation scatterplots of the Lena image with and
without encryption, where the left column is the correlation scatterplots of plain image, and
the right column is the correlation scatterplots of cipher image. The adjacent pixel pairs
in cipher images are evenly distributed in different components and directions, unlike in
plain images.

The comparisons between the proposed algorithm and other image encryption algo-
rithms are placed in Table 6. By analyzing Table 6, it can be obtained that, as a whole, the
proposed algorithm has smaller correlation coefficients compared with Refs. [33–37].
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Table 5. The coefficients of correlation between adjacent pixels of the plain image and its correspond-
ing cipher image.

Image Direction
Plain Image Cipher Image

R G B R G B

Lena
Horizontal 0.9706 0.9733 0.9452 0.0009 −0.0012 0.0007

Vertical 0.9450 0.9450 0.8941 −0.0005 −0.0016 −0.0010
Diagonal 0.9187 0.9228 0.8578 −0.0004 −0.0009 0.0001

Baboon
Horizontal 0.9407 0.9094 0.9496 0.0010 −0.0003 0.0022

Vertical 0.9505 0.9194 0.9536 0.0023 0.0033 0.0023
Diagonal 0.9060 0.8539 0.9145 0.0029 −0.0030 0.0001

Pepper
Horizontal 0.9242 0.9659 0.9275 0.0043 0.0019 0.0024

Vertical 0.9290 0.9646 0.9269 −0.0006 −0.0009 −0.0001
Diagonal 0.8766 0.9403 0.8783 −0.0013 0.0026 0.0017

(a)

(b)

(c)

Figure 18. Correlation scatterplots of Lena image with and without encryption. (a) R component;
(b) G component; (c) B component.

6.4. Key Sensitivity Analysis

The key sensitivity of encryption algorithm is a vital metric to evaluate its security.
Sensitivity of the key will be examined from two perspectives: the encryption and decryp-
tion process. The key K is obtained by performing SHA-256 on plain image, and the new
key K1 is obtained by randomly changing one bit of K using

K(i) = mod(K(i) + 1, 2). (18)

In encryption process, encrypting the identical image with K and K1 obtains two
cipher images. Figure 19 shows the experimental results. Obviously, the subtraction images
are noise-like images. Therefore, the cipher images encrypted with K1 are not the same as
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the cipher images encrypted with K. Moreover, we introduce the number of pixels change
rate (NPCR) and uniform average change intensity (UACI) to quantitatively analyze the
differences between the two cipher images. The NPCR and UACI are defined as

NPCR =
M
∑

i=1

N
∑

j=1

D(i,j)
M·N · 100%;

UACI =
M
∑

i=1

N
∑

j=1

|C1(i,j)−C2(i,j)|
255·M·N · 100%.

(19)

According to Ref. [32], the ideal values of UACI and NPCR for two random 8-bit images
are 33.4635% and 99.6094%, respectively. Clearly, the NPCR and UACI values are both near
to the ideal values, as shown in Table 7.

Table 6. Comparison on coefficients of correlation for Lena image.

Algorithm Direction R G B

Proposed
Horizontal 0.0009 −0.0012 0.0007

Vertical −0.0005 −0.0016 −0.0010
Diagonal −0.0004 −0.0009 0.0001

Ref. [33]
Horizontal 0.0091 −0.0012 −0.0223

Vertical −0.0123 0.0047 −0.0057
Diagonal 0.0258 0.0188 −0.0142

Ref. [34]
Horizontal 0.0014 0.0033 0.0021

Vertical 0.0048 −0.0006 0.0002
Diagonal 0.0002 0.0048 −0.0040

Ref. [35]
Horizontal −0.0002 −0.0015 −0.0034

Vertical −0.0001 0.0041 −0.0056
Diagonal −0.0031 −0.0004 −0.0003

Ref. [36]
Horizontal 0.0083 −0.0054 −0.0010

Vertical −0.0049 0.0100 0.0124
Diagonal −0.0095 −0.0017 −0.0042

Ref. [37]
Horizontal 0.0021 0.0053 0.0011

Vertical 0.0030 −0.0002 −0.0023
Diagonal 0.0060 0.0034 −0.0005

In decryption process, we decrypt the cipher image C with K1 to obtain the image P1,
where the cipher image C is obtained by encrypting the plain image P with K. Figure 20
shows the results. As can be seen from Figure 20, the image decrypted with the wrong
key cannot get any effective information through vision. Meanwhile, NPCR and UACI
are again employed to quantify the differences between P and P1. It is worth noting that
the NPCR ideal value between deterministic and random images is fixed with a value of
99.6094%, while the UACI ideal value is dynamic [32]. When the Lena image (Figure 16a)
is the deterministic image, 32.6967%, 30.5401% and 27.7562% are UACI ideal values of three
components. When the Baboon image (Figure 16d) is the deterministic image, 29.4993%,
27.8160%, and 30.4805% are UACI ideal values of three components. When the Pepper
image (Figure 16g) is the deterministic image, 28.7532%, 33.4662%, and 34.0153% are UACI
ideal values of three components. Table 8 shows the NPCR and UACI between P and P1.
Table 8 indicates that the values of NPCR and UACI are relatively near to the corresponding
ideal values, so the proposed algorithm has strong sensitivity to the key.
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(a) (b) (c)

(d) (e) (f)

Figure 19. Key sensitivity test results during encryption. (a) Lena’s cipher image encrypted by K1;
(b) Baboon’s cipher image encrypted by K1; (c) Pepper’s cipher image encrypted by K1; (d) absolute
value of (a) minus Figure 16b; (e) absolute value of (b) minus Figure 16e; (f) absolute value of
(c) minus Figure 16h.

Table 7. NPCR and UACI between the cipher image encrypted by K and the cipher image encrypted
by K1.

Image
NPCR (%) UACI (%)

R G B R G B

Lena 99.6277 99.6140 99.5636 33.4383 33.4221 33.4527
Baboon 99.6338 99.5865 99.5636 33.3224 33.6109 33.4995
Pepper 99.5636 99.6185 99.5972 33.5139 33.5660 33.5406

(a) (b) (c)

Figure 20. Experimental results of key sensitivity test during decryption. (a) result of decrypting
Lena cipher image (Figure 16b) using K1; (b) result of decrypting Baboon cipher image (Figure 16e)
using K1; (c) result of decrypting Pepper cipher image (Figure 16h) using K1.
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Table 8. NPCR and UACI between the image decrypted by the wrong key and the plain image.

Index Type Component
Image

Lena Baboon Pepper

NPCR (%)

Calculated value
R 99.6262 99.6155 99.6140
G 99.5697 99.5804 99.6490
B 99.6780 99.5621 99.5651

Ideal value
R

99.6094G
B

UACI (%)

Calculated value
R 32.7627 29.5176 28.7423
G 30.4562 27.8932 33.4938
B 27.8725 30.4958 34.0249

Ideal value
R 32.6967 29.4993 28.7532
G 30.5401 27.8160 33.4662
B 27.7562 30.4805 34.0153

6.5. Information Entropy Analysis

The randomness of image information can be reflected through information entropy.
The greater the information entropy, the less visual information the image contains, and
the better the randomness of the image. The information entropy of information source s is
defined as

H(s) =
2m−1

∑
i=0

p(si) log
1

p(si)
, (20)

where m = 8, si is the grayscale value, and p(si) represents the occurrence probability of si.
The theoretical value of information entropy of an 8-bit truly random image is 8.

Table 9 illustrates the information entropy of the image before and after encryption. Clearly,
the information entropy of the cipher images all distinctly approximate the theoretical value.
Meanwhile, Table 10 gives the comparison results between the proposed algorithm and
other algorithms on Lena image. As we can see, the information entropy of the proposed
algorithm are higher than that of Refs. [34,35], and the proposed algorithm has some merits
compared with Refs. [33,36,37].

Table 9. Information entropy for plain images and cipher images.

Image
Plain Image Cipher Image

R G B R G B

Lena 7.2920 7.5658 7.0531 7.9976 7.9975 7.9973
Baboon 7.6634 7.3871 7,6646 7.9969 7.9973 7.9969
Pepper 7.3920 7.6150 7.1738 7.9973 7.9977 7.9969

Table 10. Information entropy comparison of Lena’s cipher image.

Algorithm R G B

Proposed 7.9976 7.9975 7.9973
Ref. [33] 7.9975 7.9972 7.9977
Ref. [34] 7.9917 7.9912 7.9918
Ref. [35] 7.9975 7.9972 7.9969
Ref. [36] 7.9972 7.9972 7.9975
Ref. [37] 7.9972 7.9976 7.9975

6.6. Differential Attack Analysis

A secure image encryption algorithm can make the cipher image change dramatically
when the plain image changes slightly. To verify the resistance of differential attacks of
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the proposed algorithm, we first select a pixel from the plain image P1 at random and
modify its value by Equation (21) to obtain the image P2. Then, the cipher images C1 and
C2 are obtained by encrypting images P1 and P2 using the proposed algorithm. Finally, the
difference between C1 and C2 is quantified by NPCR and UACI. Table 11 gives the results
of differential attack. The results noted that NPCR and UACI are close to ideal values, so
the proposed algorithm can effectively spread the small differences of the color plain image
to the cipher image.

value = mod(value + 1, 256). (21)

Table 12 presents the comparison between the proposed algorithm and other algo-
rithms on the Lena image. By analyzing the data in Table 12, it can be obtained that the
NPCR and UACI of the proposed algorithm are closer to the ideal value compared with
Refs. [33,35,36]. Compared with Ref. [34], the NPCR of R and B components of the pro-
posed algorithm are closer to the ideal value, and the UACI of R and G components of the
proposed algorithm are closer to the ideal value. Therefore, the proposed algorithm has
some advantages compared with Refs. [33–36].

Table 11. Differential attack results of color images.

Image
NPCR (%) UACI (%)

R G B R G B

Lena 99.6002 99.6506 99.6201 33.4866 33.4885 33.4942
Baboon 99.6170 99.5972 99.5956 33.4185 33.3454 33.4454
Pepper 99.6597 99.6323 99.6582 33.6292 33.4612 33.5380

Table 12. Comparison of differential attack results of Lena color image.

Algorithm
NPCR (%) UACI (%)

R G B R G B

Proposed 99.6002 99.6506 99.6201 33.4866 33.4885 33.4942
Ref. [33] 99.5590 99.5895 99.6063 33.5696 33.4967 33.5644
Ref. [34] 99.6243 99.6185 99.6280 33.4224 33.4361 33.4603
Ref. [35] 99.6124 99.6140 99.6201 33.4235 33.4838 33.5983
Ref. [36] 99.6078 99.6678 99.6078 33.5644 33.4458 33.5055
Ref. [37] - - - - - -

6.7. Chosen/Known-Plaintext Attack Analysis

The common methods for breaking image encryption algorithms include the chosen-
plaintext attack and the known-plaintext attack. Moreover, the image encryption algorithm
which can withstand the chosen-plaintext attack can also withstand the known-plaintext
attack [38]. Therefore, we only test the performance of the proposed algorithm against the
chosen-plaintext attack.

Because all-white and all-black images can make the permutation process invalid,
attackers often use them to break encryption algorithms. Here, we encrypt the all-white
image and all-black image, respectively, and perform a series of analyses on the encrypted
images. Figure 21 and Table 13 show the experimental results. Clearly, the cipher images of
all-white and all-black are unrecognizable noise images and their pixel values are evenly
distributed, as shown in Figure 21. Table 13 illustrates that the cipher images of all-white
and all-black have good performance. Therefore, the proposed algorithm can effectively
withstand both chosen-plaintext and known-plaintext attacks.
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(a) (b)

(c) (d)

(e) (f)

Figure 21. Experimental results of all-white image and all-black image. (a) all-white image;
(b) all-black image; (c) cipher image of all-white image; (d) cipher image of all-black image;
(e) histogram of (c); (f) histogram of (d).

Table 13. The security analysis results of all-white cipher image and all-black cipher image.

Image Component
Correlation Coefficients

Chi-Square Information Entropy
Horizontal Vertical Diagonal

all-white
R 0.0038 0.0013 0.0032 212.8594 7.9977
G −0.0021 0.0016 −0.0004 255.8438 7.9972
B 0.0035 −0.0029 0.0015 258.0000 7.9972

all-black
R 0.0032 −0.0024 0.0017 274.5547 7.9970
G −0.0004 −0.0005 −0.0017 269.8046 7.9970
B 0.0007 0.0025 −0.0027 269.1016 7.9970

6.8. Occlusion Attack Analysis

An effective image encryption algorithm should be robust to occlusion attack. Here,
the color image Pepper (Figure 16g) is used as the test image. Furthermore, the content of
the cipher image (Figure 16h) is occluded by 1/16, 1/4 and 1/2 respectively. Figure 22 gives
the decryption results of the occluded images. clearly, the decrypted images can still be
visually recognized even though the occlusion attack results in content loss and makes the
decrypted image blurred. Therefore, the proposed algorithm is robust to occlusion attack.
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(a) (b) (c)

(d) (e) (f)

Figure 22. Occlusion attack results. (a) Figure 16h with 6.25% content occluding; (b) Figure 16h
with 25% content occluding; (c) Figure 16h with 50% content occluding; (d) decrypted image of (a);
(e) decrypted image of (b); (f) decrypted image of (c).

6.9. Noise Attack Analysis

Image is often disrupted by noise during transmission. To ensure the effective restora-
tion of the cipher image, the proposed algorithm should have good anti-noise interference
ability. Salt & pepper noise (SPN) and Gaussian noise (GN) with different intensity are
utilized to test the anti-noise performance of the proposed algorithm. Figure 23 gives
the test results. The cipher images disturbed by noise are still visually identifiable after
decryption, as shown in Figure 23. As a result, the proposed algorithm has strong ability to
resist the attack from noise.

(a) (b) (c)

(d) (e) (f)

Figure 23. Decryption images under different noise and different intensity. (a) SPN of 0.1 intensity;
(b) SPN of 0.3 intensity; (c) SPN of 0.5 intensity; (d) GN of variance 0.0001 and mean 0.01; (e) GN of
variance 0.0005 and mean 0.01; (f) GN of variance 0.001 and mean 0.01.
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7. Conclusions

In this paper, two fractional order CNNs have been proposed by using Caputo def-
inition. According to the results of dynamic analysis, the proposed two fractional order
CNNs had better chaotic characteristics. Meanwhile, a color image encryption algorithm
based on double fractional order CNN, interlaced dynamic DNA encoding and decoding,
zigzag confusion, bidirectional bit-level diffusion and convolution operation was proposed.
Firstly, the proposed algorithm adopted the encryption structure of forward diffusion,
permutation and backward diffusion. The encryption structure can prevent the chosen-
plaintext attack from breaking the permutation process. Secondly, the diffusion process of
the proposed algorithm was carried out on the bit plane, which can better hide the bit plane
information of plain image. Moreover, the proposed algorithm adopted the interlaced
dynamic DNA encoding and decoding rule (the selection of rule was related to plaintext),
which can make the diffusion process have dynamic evolution characteristics. Finally, the
permutation process of the proposed algorithm included two parts: zigzag confusion and
plaintext association permutation. In the process of zigzag confusion, the scanning path
was different from other algorithms. In process of plaintext associative permutation, the
convolution operation was used to make the proposed algorithm more sensitive to the key.
In addition, the hash value of the plain image was the key, so the proposed algorithm was
highly correlated with the plain image. Simulation results and security analysis indicated
that the proposed algorithm was secure and effective.

However, since the proposed algorithm adopted the fractional order chaotic system,
it had the disadvantage of long encryption and decryption time. In future research, we
will apply the idea of block processing to optimize the proposed algorithm. Meanwhile,
considering that the hyper-chaotic system has the same excellent chaotic characteristics as a
fractional order chaotic system, we will try to design an image encryption algorithm based
on a hyper-chaotic neural network. In recent years, machine learning and deep learning
have performed well in the field of image processing. Thus, we will try to introduce these
techniques to design a secure and efficient color image encryption algorithm.
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The following abbreviations are used in this manuscript:
CNN Chaotic neural network
DNA Deoxyribonucleic acid
HNN Hopfield neural network
QR Qatari Rial
LE Lyapunov exponent
SE spectral entropy
A Adenine
G Guanine
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C Cytosine
T Thymine
SHA-256 Secure hash algorithm-256
PSNR Peak signal-to-noise ratio
NPCR Number of pixels change rate
UACI Unified average changing intensity
SPN Salt & pepper noise
GN Gaussian noise
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