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Simple Summary: Microscopy is central to many areas of biomedical science research, including
cancer research, and is critical for understanding basic pathophysiology, mechanisms of action,
and treatment response. However, analysis of the numerous images generated from microscopy
readouts is usually performed manually, a process that is tedious and time-consuming. Moreover,
manual analysis of microscopy images may limit both accuracy and reproducibility. Here, we used
an artificial intelligence approach to analyze tunnelling nanotubes (TNTs), a feature of cancer cells
that may contribute to their aggressiveness, but which are hard to identify and count. Our approach
labeled and detected TNTs and cancer cells from microscopy images and generated TNT-to-cell ratios
comparable to those of human experts. Continued refinement of this process will provide a new
approach to the analysis of TNTs. Additionally, this approach has the potential to enhance drug
screens intended to assess therapeutic efficacy of experimental agents and to reproducibly assess
TNTs as a potential biomarker of response to cancer therapy.

Abstract: Background: Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes
and mediating intercellular communication. TNTs are manually identified and counted by a trained
investigator; however, this process is time-intensive. We therefore sought to develop an automated
approach for quantitative analysis of TNTs. Methods: We used a convolutional neural network
(U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-
cancer cells. Our method was composed of preprocessing and model development. We developed
a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were
employed to detect TNTs. First, we identified the regions of images with TNTs by implementing
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a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a
modified U-Net model to estimate TNTs on a pixel-wise basis. Results: The algorithm detected 49.9%
of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or
TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model
had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were
not significantly different across the training and test datasets (p = 0.78). Conclusions: Our automated
approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to
those determined by human experts. Future studies will aim to improve on the accuracy, precision,
and recall of the algorithm.

Keywords: artificial intelligence; automated cell counting; biomarker; cancer; cells; deep learning;
machine learning; microscopy; TNT; tunneling nanotubes

1. Introduction

Microscopy is central to many areas of biomedical science research, including cancer.
Microscopy allows researchers to understand basic pathophysiology, mechanisms of ac-
tion, and also treatment response. However, analysis of the numerous images generated
from microscopy readouts is usually performed manually, a process that is tedious and
time-consuming. Manual analysis is also a process that may limit both accuracy and repro-
ducibility. Machine learning (ML) and artificial intelligence (AI) approaches are emerging as
a means to efficiently analyze large imaging datasets and thereby accelerate the capacity for
data interpretation [1–8]. With the advent of ML/AI approaches, novel morphological fea-
tures of cells that were previously not detectable, analyzable, or quantifiable in microscopy
images can now be assessed for utility as emerging imaging-based biomarkers [9–18].

The field of intercellular communication has gained significant traction and interest
over the past decade, catalyzed by characterization and improvement in methods of
identification of extracellular vesicles and other modes of cell–cell signaling [19–25]. The
niche of contact-dependent cell signaling mechanisms represents an emerging aspect of this
field, led by (a) advances in understanding the role of tunneling nanotubes (TNTs) and their
role in normal and pathologic physiology across health and disease and (b) discoveries
related to tumor microtubes in glioblastoma and other cancer types as well [26–43]. The
current study focuses on TNTs, which are long membranous F-actin based cell protrusions
that connect cells at short and long distances and which are capable of acting as conduits
for direct (often bi-directional) signaling between connected cells [44–47]. TNTs were first
identified in the PC12 cell line (rat pheochromocytoma) and the term coined in 2004 by
Rustom et al. [44]. Since then, this unique form of cellular protrusion has been identified
in many cell types, including but not limited to immune cells, cancer cells, and neuronal
cells [35,45,46,48–53]. While TNTs are ubiquitous across many cell types, we and others
have shown that they are upregulated in invasive forms of cancer [45,53,54]. There is
no current validated method to differentiate between TNTs from cancer as compared to
non-cancer derived cells; however, the description of a longer and wider form of cell
protrusion shown in an orthotopic model of malignant gliomas termed ‘tumor microtubes’
has shed light on the possible differences of this class of protrusions amongst malignant
cell populations [30,36,43,55].

The function, ultrastructural characteristics, and mechanisms of TNTs are all under
active investigation by many investigators [22,43,56–61]. Nonetheless, a distinct, specific,
and reproducibly testable structural biomarker of TNTs has yet to be identified. This lack
of a distinct biomarker has presented a challenge to this emerging field of cell biology.
Thus, identification of TNTs has relied on visual identification of structural characteristics,
including connections between two or more cells and the non-adherent nature of their
protrusion ‘bridges’ when cells are cultured in vitro [29,54,59,60,62–67]; this latter feature
helps to distinguish TNTs from other actin-based protrusions that adhere to the substratum
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in in vitro tissue culture and are more often associated with cell motility rather than cell–cell
communication [67–69]. Manual visual identification of TNTs is a tedious and arduous
process that also introduces the potential for lack of reproducibility. A more optimal
approach to maximize reproducibility across the field would be validation and application
of artificial intelligence-based approaches that could identify TNTs with high specificity and
sensitivity, with excellent ability to also distinguish TNTs accurately from other forms of
membrane-based extracellular extensions. A precise quantitative analysis of TNTs will help
to gain statistical information to monitor the progression of various diseases. In this study
we sought to construct an algorithm that accomplishes this by adopting the well-known
U-Net deep learning model to segment images and detect TNTs [6].

2. Materials and Methods
2.1. Cell Lines

We used the human MSTO-211H (malignant pleural mesothelioma of biphasic his-
tology) cell line, which was purchased from American Type Culture Collection in 2019
(ATCC, Rockville, MD, USA). Hereafter, “MSTO” will be used to refer to this cell line.
The cells were grown in RPMI-1640. The culture media was supplemented with 10% fe-
tal bovine serum (FBS), 1% penicillin-streptomycin, 1× GlutaMAX (all from Gibco Life
Technologies, Gaithersburg, MD, USA), and 0.1% NormocinTM anti-mycoplasma reagent
(Invivogen, San Diego, CA, USA). Cells were maintained in a humidified incubator at
37 ◦C, with 5% carbon dioxide. We chose to plate the cells on regular tissue culture-treated
plastic so that the AI training would have to overcome the inherent scratches present on
plastic dishes.

2.2. Microscopy Imaging

Images were taken when the cells were 30–40% confluent, and individual TNTs
and cells could easily be distinguished. Phase contrast images were acquired on a Zeiss
AxioObserver M1 Microscope using a 20× PlanApo-Chromat objective with a numerical
aperture of 0.8. A 5 × 5 set of tiled images were taken using a Zeiss Axio Cam MR camera
with a pixel size of 6.7 × 6.7 µm resulting in a spatial resolution (dx = dy) at 20× of
0.335 µm/pixel. Tiled images were stitched into one image with Zen2 Blue software (Carl
Zeiss Microscopy, White Plains, NY, USA).

2.3. Manual Identification of TNTs

TNTs were identified as previously described by our group and others [29,44,54,70].
Identification is based on three parameters: (i) lack of adherence to the substratum of
tissue culture plates, including visualization of TNTs passing over adherent cells; (ii) TNTs
connecting two cells or extending from one cell if the width of the extension is estimated to
be <1000 nm; and (iii) a narrow base at the site of extrusion from the plasma membrane.
Fiji [71] was used for creating the training images. TNTs were traced manually using the
line tool and the set of annotations converted to a mask.

2.4. Initial Verification of TNTs Using Current Standard Methodology: Visual Identification

TNTs seen in phase contrast images appear to be elongated structures no thicker than
1 µm and ranging in length from 10 µm to over 100 µm. TNTs connect at least two cells as a
straight line, occasionally making angles but not usually sinusoidal or wave-like when cells
are cultured in vitro. TNTs can be comparably thinner than the cell walls in the images
and occasionally become invisible in the image background. They tend to have a fairly
uniform thickness from end-end, although portions along the tubes may bulge due to size
of larger cargo trafficking internally; the term ‘gondola’ has been applied to describe this
phenomenon in some previously published studies in the field [46,72]. TNTs often protrude
from the membrane interface with a characteristically narrow or minimally cone-shaped
base, in contrast to other thicker forms of cell-based podia protrusions [67]. In comparison
to other cellular protrusions, TNTs uniquely have a 3-dimensional suspended nature in the
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substratum in vitro; these suspended TNTs can cross over other adherent cells. Although
the basic TNT characteristics are familiar to researchers focused in the field of TNT cell
biology, these features are not readily identifiable in previously utilized general machine
learning algorithms.

2.5. Human Expert Review of Stitched MSTO Images and Identification of TNTs

Four human experts independently reviewed the images to detect structures meeting
criteria as TNTs. The role of the human experts was to identify the presence (i.e., yes or
no) of TNTs that connected two cells, rather than trying to label the TNTs on a pixel-by-
pixel basis (this was left to the machine learning algorithm). After independent review,
structures identified by three or four of the experts were classified by consensus as actual
TNTs for analysis purposes; structures identified by two of the four experts were reviewed
together by all experts and a consensus decision was made whether to classify them as
actual TNTs or not; structures identified by one of the experts were not classified as actual
TNTs. Next, we combined the knowledge from the human experts (the structures classified
by consensus as actual TNTs) with the computational abilities of the deep learning model.
We used an automated method to label TNTs on a pixel-by-pixel basis. This method was
guided by the initial human-based labeling of the TNTs. Further details are provided in the
Supplementary Materials.

3. Results

Supplementary Table S1 summarizes the results of inter-rater agreement for TNT
identification among the four human experts using the Cohen’s kappa statistic. This reflects
the pseudo-objective nature of TNT identification by human experts, and therefore the
need for a deep learning-based algorithm to perform and quantitate TNT detection in a
more reproducible manner.

3.1. General Approach to the Automated Detection of TNTs

We used the free version of Google Colab with hardware specifications of 12–14 GB of
RAM, a CPU of Intel® Xeon® at 2.20 GHz, 30–35 GB of available disk space and Nvidia
K80/T4 GPU with 12GB/16GB RAM (https://colab.research.google.com/drive/151805
XTDg--dgHb3-AXJCpnWaqRhop_2, last accessed: 5 July 2022). Figure 1 depicts the possi-
ble outcomes of ML algorithms, the detection of TNTs (Figure 1A,B), and the mislabeling
other cellular features as TNTs (Figure 1C). Due to the presence of noise, uneven illumina-
tion, irregular cellular shapes, and thinness of TNT lines with respect to cellular membranes,
the visibility of TNTs is significantly reduced. TNTs are surrounded by darker intercellular
regions, and occasionally the TNT lines become invisible, merging with the darker back-
ground. Our method is implemented on 2D phase-contrast images and consists of three
main components: a preprocessing step to prepare the dataset in terms of de-noising the
dataset and enhancing label quality; a sequence of two deep learning models to detect the
TNTs; and a final step to count the TNTs and cells to provide a measure of the TNT-to-cell
ratio (TCR) in the images. The TCR metric is essentially the same as our previous reports
using the term ‘TNT Index’ to indicate the average number of TNTs per cell across multiple
fields of view for a given set of cell culture conditions [45,53,54]. The TCR or TNT index
can be used to monitor changes in cell culture over time and/or following drug exposure
or other forms of treatment [45,53,54].

3.2. Pre-Processing
3.2.1. Removal of Tile Shadows

The original images were created by taking a grid of 5 × 5 tiled images, each measuring
1388 × 1040 pixels, and then stitching them together (Figure 2). This process resulted in
shadows along the stitched edges, which significantly degraded the model performance
at later stages. To remove those shadows, we used BaSiC, an image correction method

https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWaqRhop_2
https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWaqRhop_2
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for background and shading correction for image sequences, available as a Fiji/ImageJ
plugin [73].
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Figure 1. (A) Two TNTs that were successfully captured by the deep learning model (true positives).
(B) The image from (A) is enhanced for improved TNT visibility. (C) A TNT-appearing structure that
was mistakenly identified as a TNT by the model (false positive). Images (B,C) were generated with
Fiji software and were adjusted for their brightness and contrast by setting minimum and maximum
displayed value to 20 and 100, respectively, for improved visibility of the structures (this image
modification is not necessary for the deep learning model to work).
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Figure 2. (A) Tiled image with shadows at edges of the tiles and (B) the same image with the shadows
removed to prevent a high false-positive detection rate.

3.2.2. Label Correction

To train an automated model, it is critical to obtain accurately labeled TNTs on the
images in the training set. Since TNTs will be automatically identified pixel wise in later
stages of the model, it is essential to label the TNTs in fine detail. However, when labeling
visible TNTs, the human-marked TNTs are not fully capturing the width of the TNTs pixel
wise. This, in turn, degrades model performance.

Figure 3 Step 1 shows the general outline of the preprocessing workflow, not including
the removal of stitching shadows that is shown in Figure 2. To improve the quality of the
labels on an image, two copies of that image are created. One of the copies is deblurred
using Richardson-Lucy deconvolution with a Gaussian kernel of 7 × 7 and a standard
deviation of 20 [74,75]. The deblurred copy is then subtracted from the original image.
The resulting image is turned into a black and white 8-bit binary format and is once again
duplicated. In one of these images, all visible TNTs, including their entire width, are
colored with black ink. An XOR (bitwise exclusive or) operation is performed between the
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TNT-marked image and the duplicate unmarked image. The resulting image yielded the
TNT masks [76].
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Figure 3. Flow diagram of AI-based TNT detection. Images were (Step 1) pre-processed for label
correction and (Step 2) subdivided into a matrix of smaller image regions (‘patches’) that were classi-
fied as either containing or not containing any TNT structures, and pixel-wise classified regarding
whether each pixel belonged to a TNT structure or not (see Supplementary Figures S1 and S2 and
Supplementary Table S2). In (Step 3), the numbers of TNTs and cells were counted, and the TNT-to-
cell ratio (TCR) was calculated (each colored object is an individual cell) and confusion matrix was
reported (see Table 2 and Supplementary Table S3). XOR = bitwise exclusive or operator.
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3.3. Detecting TNT Regions

This section introduces our deep learning pipeline approach to detect and count TNTs.

3.3.1. Classifying TNT-Inclusive Regions

With respect to the total area of an image, TNTs constitute a smaller percentage of the
pixels. We approached the TNT detection problem in two steps: First, we trained a deep
learning based classification model to rule out the large pockets of TNT-free spaces in the
images. Our aim was to reduce the computational burden of detecting and segmenting
TNTs in the next step, where we trained a second deep learning model to identify the TNT
pixels (Figure 3 Step 2). The first step in our method also helped us break a single large
image into smaller pieces and thus increased training data points for our models (Figure 4,
Supplementary Figures S1 and S2).
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Figure 4. (A) Original image containing large pockets of TNT-free spaces. (B) After correcting edge
artefacts as shown in Figure 2, the TNT-containing “patches” (yellow squares) showed where TNTs
were captured within the matrix of smaller image regions. See Supplementary Figures S1 and S2.

The original images in the training dataset were stitched together resulting in an image
size of 6283 × 4687 pixels. The images were then scanned with a sliding window of size
512 × 512 pixels with a stride of 10 pixels, extracting patches containing the TNT regions
using a bounding box. The enclosed image region is then extracted. The area covered by
the sliding window is labeled as “1” if there were a certain number of prelabeled TNT
pixels within that window and also if those pixels were located closer to the center of
the window. The reasoning behind checking whether the TNT pixels are closer to the
patch center is to avoid partitioning of TNTs across sequential windows and thus losing
the integrity of a TNT in a training data point. We repeat the same procedure with a
sliding window size of 256 × 256 for images that are labeled as “1”. That is, we first
identify the TNT including images with a bigger window, crop them from the original
image, and then scan for TNTs with a smaller window inside the cropped images. Thus,
we form two sets of images: a training set of 512 × 512 and another with 256 × 256. It is
important to note that our method generated thousands of sub-images and sub-subimages
from each of the four image sets studied here. For extensive details, please refer to the
Supplementary Materials, Supplementary Figures S1 and S2, and Supplementary Table S2.

To train a classification algorithm to detect TNT-including images, we employed
the VGGNet (16 layers) architecture, pre-trained on the ImageNet dataset [77]. Since the
earlier layers of a pre-trained model are kept for learning the low-level image features, we
replaced the VGGNet’s output layer with three hidden layers with 512, 170, and 70 nodes,
respectively, and a binary output layer. We incrementally added these dense layers as we
observed improvement in the performance of the classifier. To reduce overfitting, we also
introduced a dropout layer of 60% dropout rate in between each pair of new fully connected
layers. We trained two instances of this model, one for the images of size 512 × 512 pixels
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and another for those of size 256 × 256 pixels. We used the two models sequentially to
identify image patches with TNTs. Only the images of size 256 × 256 pixels that included
TNTs were fed into the U-Net model described below.

3.3.2. U-Net with Attention Architecture for Segmentation

Since manual labeling of medical images is a labor-intensive and cumbersome task,
automated medical image segmentation has been an active research area in the image-
processing domain. After the advent of convolutional neural networks (CNN), many
variants of CNN-based models have been proposed, which have advanced the state-of-the-
art in image classification and semantic segmentation [78,79]. U-Net [6,80] is one of the
commonly used architectures for medical image segmentation tasks due to its efficient use
of graphics processing unit memory and superior performance [81]. In this study, we used
a variant of U-Net, AURA-net [82], which uses U-Net with transfer learning to accelerate
training and attention mechanisms to help the network focus on relevant image features.

U-Net is an encoder-decoder CNN-based architecture, which is composed of down-
sampling (encoder network) and upsampling (decoder network) paths. The encoder
network, which is a contracting path, consists of the repeated application of two 3 × 3 con-
volutions, each followed by a rectified linear unit (ReLU) [83] and a 2 × 2 max pooling
operation [84] with stride 2. At each step in the downsampling path, the number of feature
channels is doubled. When running the encoder part, the model reduces the spatial dimen-
sions of the image at every layer while capturing the features contained in the image with
the help of filters.

The decoder network consists of layers, with each having (i) an upsampling of the
feature map followed by a 2 × 2 up-convolution that halves the number of feature channels,
(ii) a concatenation with the correspondingly cropped feature map from the encoder
network side of the model, and (iii) two 3 × 3 convolutions, each followed by a ReLU.
When training the decoder part of the model, the spatial aspect of the images are restored
to make a prediction for each pixel in the image.

Although U-Nets are efficient in terms of training on a small number of data points,
they can also benefit from transfer learning [82]. The usual transfer learning approach is to
copy a certain number of layers from a pre-trained network to a target network to reduce
the training time and increase model efficiency [85]. Next, we replaced the encoder network
with the layers from a pre-trained ResNET model [86]. ResNET is trained on ImageNet [77],
a set of natural images very different from the microscopic images in our study; however,
the first layers of the ResNET model detects the features of images at a higher abstraction
level, and thus, the transferred layers can be used to generalize these features for images
from other contexts.

Attention-based models [87] are used to suppress less relevant regions in an input im-
age and focus on more salient features relevant for the task. Attention U-Nets are shown to
consistently improve the prediction performance of U-Net networks for various biomedical
image segmentation tasks while preserving the model’s computational efficiency [81].

We trained the U-Net model using the patches identified by the classification models
described above. In training the models, we employed three loss functions, namely, binary
cross-entropy (BCE) [88], Dice [89], and active contour (AC) loss [90]. Although Dice and
BCE losses enforce the accuracy of predictions at the pixel level, the addition of AC loss
allows consideration of area information. We adapted the use of these loss functions in
our models from those used by Cohen and Uhlmann [82]. TNTs were segmented in the
256 × 256 pixel images by the U-Net model as shown in Figure 5. The AI-based model was
able to recapitulate the human expert-based TNT identification.
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3.4. Cell and TNT Counting

We used Cellpose, an anatomical segmentation algorithm [91], to count the number of
cells in the images (Figure 3 Step 3). Cellpose utilizes a deep neural network with a U-Net
style architecture and residual blocks, similar to the model used in this study for detecting
TNTs. Moreover, Cellpose is trained on a dataset of various tissue types collected using
fluorescence and phase contrast microscopy on different platforms, which made it an ideal
candidate for this study.

To count TNTs, we first created an elliptical shaped kernel of size 5 × 5 pixels. We next
performed a morphological transformation of the images, namely morphological gradient,
which is the difference between the dilation and erosion of the structures in the images.
Given the outline of the objects as an outcome of the transformation, we found the contours
in the images, which are the curves joining contiguous points along a boundary between
regions of different intensities. If the area of a contour was between 400 and 2500 pixels
(44.89–280.56 µm2), it was counted as a TNT. We used OpenCV, an open-source library for
computer vision, to process and analyze the images [92].

To evaluate the model performance, we used a separate test dataset that was not
part of the training and tuning of the model. The “true” TNTs were those determined by
consensus of the four human experts as described earlier.

The test image was partitioned into patches and then was fed sequentially into clas-
sification and U-Net models. Within each patch, a heatmap was generated. Next, the
heatmaps of each patch were stitched together to form the overall heat map of the larger
image. Following the counting rules described above, we counted and compared the
number of TNTs predicted by the model vs. those identified manually by human experts
(Table 1 and Supplementary Table S1). A pixel intensity threshold of 235 (range 0–255 in
an 8-bit gray scale image) was chosen in the U-Net model because it maximized the sum
of precision and recall (see Supplementary Figure S3). Our model was able to correctly
identify 26.2% of the manually identified TNTs in the test dataset, whereas the identification
rate was 49.9% for the test and training datasets combined. The precision for the test dataset
was 41%. Our model generated more false-negative TNTs than false positive ones, hence
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a lower recall (sensitivity) compared to precision (positive predictive value). A few of
the false positive TNTs were found to be true positives after double-checking the original
images (see Supplementary Figure S4). Note that we report our performance evaluations
without incorporating any adjustment for true positive numbers after double-checking.
Next, we assessed the model’s ability to count predicted TNTs. For each image set, a
human expert classified and counted the ML TNT predictions as FPs or TPs, and absence of
ML TNT predictions as FNs, with respect to the human expert consensus “ground truth”.
Supplementary Table S3 summarizes the human expert-based and ML-based counts. A
fixed two-way ANOVA was performed (with factor 1 being the source of the count [i.e.,
human expert vs. ML model] and factor 2 being the image set evaluated [MSTO2-5]),
using the F distribution (right-tailed). The results demonstrated no significant difference in
human vs. ML counts of TNTs across the four image sets. For a detailed explanation of the
three main reasons contributing to the generation of FPs and FNs by the model, see the end
of the Supplementary Materials.

Table 1. Results of TNT detection for three training sets and one test set. FP = false positive,
PPV = positive predictive value. * True, identified by human experts. f-1 score = 2 × [PPV × sensitivity]/
[PPV + sensitivity].

Image Set No. of TNTs
(True *) PPV (Precision) Sensitivity (Recall) No. of FPs No. of Human

Expert-Corrected FPs f-1 Score

Training 1 (stitched
image MSTO2) 43 0.67 0.70 14 0 0.68

Training 2 (stitched
image MSTO3) 18 0.38 0.61 17 1 0.47

Training 3 (stitched
image MSTO4) 33 0.52 0.42 13 1 0.47

Test 1 (stitched image
MSTO5) 42 0.41 0.26 16 2 0.32

We next developed a new metric to measure the TNT-to-cell ratio (TCR) in the images
(Table 2). We counted TNTs and cells and computed the number of TNTs per 100 cells
(TCR × 100). A two-tailed t-test analysis determined there was no significant difference
(p = 0.78) between the means of true and predicted TCRs.

Table 2. Results reporting the tunneling nanotube (TNT)-to-cell ratio (TCR, or TNT index). * True,
identified by human experts. ** Predicted, detected by the model.

Image Set No. of TNTs (True *) No. of TNTs
(Predicted **)

No. of Cells
(from Cellpose) TCR × 100 (True *) TCR × 100

(Predicted **)

Training 1 (stitched
image MSTO2) 43 45 897 4.79 5.02

Training 2 (stitched
image MSTO3) 18 29 777 2.32 3.73

Training 3 (stitched
image MSTO4) 33 27 754 4.38 3.58

Test 1 (stitched image
MSTO5) 42 27 897 4.68 3.01

4. Discussion

The detection and classification of cells have been active research areas for more than
a decade [93]. There are various open-source and commercial software packages for cell
counting and characterization for clinical and research purposes [94]; however, there is a
dearth of specialized models for detecting TNTs. Here, we applied a precise quantitative
analysis to construct an algorithm that uses the well-known U-Net deep learning model [6]
to segment images and detect TNTs in vitro.
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The main goal of this study was to present the fully automated end-to-end segmen-
tation, detection, and counting process of TNTs. Even to a trained eye, it may be hard to
decide whether a structure is a TNT or not. Therefore, it is a challenging task to develop
an automated method to detect TNTs. As a result, automatic detection of TNTs has not
been studied extensively. Hodneland et al. presented an automated method to detect
nanotubes with a rule-based algorithm [76]. In their study, TNTs were identified by a series
of transformations including watershed segmentation, edge detection, and mathematical
morphology. Their method for cell segmentation was 3D, and they used two channels
of cell images stained with two dyes. On the other hand, phase contrast microscopy is
a label-free technique, making it well-suited for live-cell imaging without the need for a
fluorescence microscope, which in turn makes the deep learning model presented here
amenable to general use.

During the past decade, the field has evolved from reporting descriptions of TNTs and
their cell morphology and function, to identifying changes in the numbers of TNTs over
time. TNTs are dynamic structures that exist for minutes to hours [37,44,46,62]. We and
others have previously demonstrated that they represent a form of cellular stress response
to outside stimuli, including drug treatment and viral infection [38,49,52,53,95]. The identi-
fication of TNTs currently still rests on identification of morphologic characteristics that
distinguish them from other cell protrusions, including invadopodia, filopodia, and lamel-
lopodia [68,96–98]. However, quantitation is limited as the process is laborious without
validated TNT-specific markers and relies currently on manual identification. AI-based
approaches that could reliably identify TNTs with high specificity and sensitivity would
move the field of TNT biology forward significantly by providing a new tool for rapid iden-
tification of TNTs and their fluctuation over time. We report the results using MSTO-211H
cells in this manuscript at this early stage of our investigation into AI-based approaches for
TNT detection, because this cell line has served as one of our optimal models for in vitro
investigation of TNTs for over a decade. As we continue to build on this foundation of
work, our next set of studies will utilize other cell lines, cancer and non-cancer, to further
confirm and validate the model across diverse cell types.

Software programs have been developed previously to classify and quantify cellular
features and colonies for the purpose of reliable automated forms of detection. Specific
examples of this approach include evaluation of embryonic stem cell differentiation and
pluripotency analysis [99]. Perestrelo et al. utilized mouse embryonic stem cells as a model
for their software, Pluri-IQ [99]. Their software was able to quantify the percentage of
pluripotent, mixed, or differentiated cells; it was also able to analyze different magnification
image sizes and measure pluripotency by the markers that were used for evaluation. This
group also showed the pipeline used for segmentation, machine training, validation, and
finally automatic data comparison. Pluri-IQ can learn, based on colony morphology, how
to evaluate according to the classifier pool where the colony’s best features fit when a new
colony is put through the software [99].

Another software program, FiloDetect, is the first automated tool for detecting filopo-
dia in cancer cell images [100]. Filopodia are long F-actin-based cellular protrusions whose
primary purpose is to mediate cell motility. The FiloDetect approach has been evalu-
ated in Rat2 fibroblasts and B16F1 mouse melanoma cell images and has been applied
to measure the effects of PI4KIIIβ’s expression on filopodia production in BT549 breast
cancer cells [100]. FiloDetect uses intensity-based thresholding with a combination of
morphological operations [100]. It also uses additional processing to detect combined
filopodia-filopodia that are fixed at the base or cross over at the length [100]. A similar
filopodia-focused software program to highlight is FiloQuant [101]. This software is an
Image J-based tool used to extract quantifiable data on filopodia dynamics, density, and
length from both fixed and live-cell microscopy images [101]. It is able to be used in
different cell types, microenvironments, and image acquisition techniques. It uses edge
detection, intensity detection, and skeletonization via the AnalyzeSkeleton algorithm [101].
FiloQuant has a step-by-step user validation method to achieve optimal settings when



Cancers 2022, 14, 4958 12 of 18

identifying filopodia. By using this tool, filopodia formation and invasive capacity have
been linked in 3D tumor spheroids [101]. This method was developed after researching the
unique attributes and shortcomings of other filopodia identification techniques, such as
FiloDetect, CellGeo [102], and ADAPT [103]. Each of these techniques lacks requirements
for proprietary software, lacks customizable options for improvement, is able to analyze
only single cells, does not have a density quantification tool, and is not easy to navigate for
non-experts. FiloQuant overcomes these limitations [101].

The method we describe here in its current form has potential limitations. Some of
the predicted TNT structures looked broken into pieces and this resulted in counting the
same TNT multiple times. Our model consisted of two sequential classification models
and needed careful calibration to identify TNTs. Reducing and simplifying our model to a
single step is left for future studies. Importantly, TNTs are 3-dimensional protrusions that
extend from one cell to another, or to other groups of cells. A well-established morphologic
characteristic is their ability to ‘hover’ in the 3-dimensional plane when cultured in vitro
under 2-dimensional cell culture conditions. Thus the most ideal conditions to characterize
TNTs consist of high resolution imaging that permit 3D renderings by stacking images
taken in the z-plane. However, for more routine assessment in 2D cell culture conditions,
and considering the lack of a testable validated structural or compositional marker specific
to TNTs, identification remains reliant on visual identification. TNTs comprise a heteroge-
neous group of cellular channels, displaying a relatively wide range of widths and lengths
that may vary based on cell type of origin, underlying molecular machinery, and other
yet unknown factors that remain to be elucidated. Challenges of automated identification
include differentiation of some TNTs from more adherent forms of long protrusions, iden-
tification of established TNTs vs. those that are forming but not yet attached to recipient
cells, separation from dense clusters amidst confluent or semi-confluent groups of cells,
and other factors. Among other questions to be determined in future studies is whether
AI-based forms of evaluation would work more optimally in cells imaged live, as compared
to cells imaged following chemical or other fixation, which may introduce artefactual or
other changes that have potential to disrupt the natural state of TNTs in vitro. The model
presented here will evolve over time and is adaptable to address these and future needs.

Our AI-based TNT detection method, TNTdetect.AI, provides three principal con-
tributions to the field. First, we propose a novel way to improve the manual labeling of
TNTs, which would help pixel-wise detection of TNTs. Second, we can sequentially train
two classification models to detect TNTs, including regions and image pixels representing
the TNTs, and third, we propose a new metric to quantify TNT intensity in an image,
namely, the TNT-to-cell ratio (TCR). This metric can be used in evaluating, for example, the
impact of treatments on cancer cells by capturing TCRs at different stages of therapy. Our
automated TNT detection approach is different from Hodneland et al.’s method in two
ways. First, we created a deep learning-based model that does not require the definition of
if-then rule statements. Second, we trained our model with a single information channel,
2D phase contrast microscopy images.

5. Conclusions

In summary, we report the application of TNTdetect.AI, an automated model gener-
ated by deep learning and trained to label and detect TNTs and cells imaged in culture.
The continued application and refinement of this process will provide a new approach
to the analysis of TNTs, which form to connect cancer and other cells. This approach
has the potential to enhance the drug screens intended to assess therapeutic efficacy of
experimental agents, and to reproducibly assess TNTs as a potential biomarker of response
to therapy in cancer.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14194958/s1, Figure S1: Each stitched image of MSTO-211H
cells was subdivided into subimages (dark blue colored squares of size 512 × 512 pixels) or sub-
subimages (cyan colored squares of size 256 × 256 pixels) via a sliding window. This allowed for
one stitched image to generate thousands of subimages upon which the machine learning model
could be trained.; Figure S2: the size of the patches (number of rows × number of columns within
each patch) within the MSTO-211H cell stitched and padded images of size 6795 × 5199 pixels;
Figure S3: the values of precision and recall as a function of varying the pixel intensity threshold
(range 0–255) in Model 2 (U-Net). It shows that the pixel intensity threshold of 235 maximized the
sum of precision and recall; Figure S4: illustrates circumstances in which there was agreement or
disagreement between the identification of structures as TNTs, between the human expert consensus
and the ML model.; Table S1: Results of inter-rater agreement for TNT identification in stitched
MSTO-211H images among the four human experts, using the Cohen’s kappa statistic.; Table S2:
Number of training subimages generated from each stitched image (image set) of MSTO-211H cells,
used for Model 1; Table S3: Tabulated summary of the human expert-based and ML-based TNT
counts. For each image set, a human expert classified and counted the ML TNT predictions as FPs
or TPs, and absence of ML TNT predictions as FNs, with respect to the human expert consensus
“ground truth”. Ref. [104] is cited in the Supplementary Materials.
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Abbreviations

AC active contour
AI artificial intelligence

AURA-net
modified U-Net architecture designed to answer the problem of segmentation
for small datasets of phase contrast microscopy images

BCE binary cross-entropy
CNN convolutional neural network
FP false positive
ML machine learning
OpenCV open-source computer vision library
PPV positive predictive value
ReLU rectified linear unit
ResNET residual neural network
TCR TNT-to-cell ratio
TNT tunnelling nanotube
U-Net a convolutional network architecture for fast and precise image segmentation
VGGNet a convolutional neural network architecture to increase ML model performance
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