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Background: Non-invasive brain stimulation methods have been widely utilized in

research settings to manipulate and understand the functioning of the human brain. In

the last two decades, transcranial electrical stimulation (tES) has opened new doors for

treating impairments caused by various neurological disorders. However, tES studies

have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no

consensus on the effectiveness of tES devices in improving cognitive skills after the onset

of stroke.

Objectives: We aim to systematically investigate the efficacy of tES in improving post-

stroke global cognition, attention, working memory, executive functions, visual neglect,

and verbal fluency. Furthermore, we aim to provide a pathway to an effective use of

stimulation paradigms in future studies.

Methods: Preferred reporting items for systematic reviews and meta-analysis (PRISMA)

guidelines were followed. Randomized controlled trials (RCTs) were systematically

searched in four different databases, including Medline, Embase, Pubmed, and

PsychInfo. Studies utilizing any tES methods published in English were considered for

inclusion. Standardized mean difference (SMD) for each cognitive domain was used as

the primary outcome measure.

Results: The meta-analysis includes 19 studies assessing at least one of

the six cognitive domains. Five RCTs studying global cognition, three assessing

visual neglect, five evaluating working memory, three assessing attention, and

nine studies focusing on aphasia were included for meta-analysis. As informed

by the quantitative analysis of the included studies, the results favor the efficacy

of tES in acute improvement in aphasic deficits (SMD = 0.34, CI = 0.02–

0.67, p = 0.04) and attention deficits (SMD = 0.59, CI = −0.05–1.22, p =

0.07), however, no improvement was observed in any other cognitive domains.
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Conclusion: The results favor the efficacy of tES in an improvement in aphasia and

attentive deficits in stroke patients in acute, subacute, and chronic stages. However,

the outcome of tES cannot be generalized across cognitive domains. The difference

in the stimulation montages and parameters, diverse cognitive batteries, and variable

number of training sessions may have contributed to the inconsistency in the outcome.

We suggest that in future studies, experimental designs should be further refined, and

standardized stimulation protocols should be utilized to better understand the therapeutic

effect of stimulation.

Keywords: cognitive rehabilitation, stroke, transcranial electric stimulation, transcranial direct current simulation,

cognitive defcits

INTRODUCTION

Two-thirds of stroke survivors experience a cognitive deficit
or decline after the onset of stroke, which hampers functional
performance in activities of daily living and results in poor quality
of life (1, 2). With an increasing prevalence of stroke in the last
two decades, rehabilitation of stroke survivors has been a prime
research topic for researchers and healthcare authorities.

Neuroanatomical lesions caused by the stroke on strategically
important cognitive areas (such as the hippocampus, medial
prefrontal cortex, and cingulate cortex), lesions in the white
matter, and cerebral microbleeds mainly contribute to the
pathogenesis of post-stroke cognitive impairment (3). Cognition
is not a unitary concept; different domains cooperate as a
system (4), including attention, executive function, visuospatial
ability, memory, and language. Likewise, post-stroke cognitive
impairments occur inmultiple cognitive domains (5, 6). Different
techniques including, cognitive training, brain stimulation, and
pharmacological agents, have been applied to promote neural
plasticity and improve the cognitive function of stroke survivors
(4, 7).

Non-invasive brain stimulation (NIBS) has emerged as
a potential rehabilitation tool for brain disorders (8–13)
with transcranial magnetic stimulation (TMS) and transcranial
electrical stimulation (tES) being the most widely utilized non-
invasive methods. The efficacy of TMS in treating depressive
disorders paved its approval from the US Food and Drug
Administration (FDA) for the treatment of depression (14) and
it works on the principle of electromagnetic induction in which
magnetic fields are passed into the brain, and they induce electric
fields at the targeted regions (15). On the other hand, tES devices
have gained particular interest in the last couple of decades
due to their non-invasiveness, affordability, safety, and easier
accessibility (16, 17), which is the main focus of the current
study. The working principle of tES is rather straightforward
in which electrical currents are passed in the brain to influence
the activity of underlying neurons. TES has been classified into
three different types of stimulation methods based on the type
of electrical current, i.e., transcranial direct current stimulation
(tDCS), transcranial alternating current stimulation (tACS), and
transcranial random noise stimulation (tRNS). In tDCS, direct
electrical currents are passed in the brain, which either excites

or inhibit the neuronal excitability depending on the polarity
of the stimulation (18). tACS influences cortical excitability in a
frequency-dependent manner (19), while tRNS is a special case
of tACS which delivers weak alternating currents at random
frequencies (20).

The literature on tES studies is filled with inconsistencies, and
there is no definite conclusion on the efficacy of tES interventions
in improving cognition (21). From the physiological point
of view, the application of tDCS to the brain shifts the
resting membrane potential of superficial horizontal intracortical
interneurons, which induce changes to spontaneous neuronal
excitability (22). The initial membrane potential shifts result in
long-termmodification of synaptic plasticity by processes similar
to long-term potentiation (LTP) and long-term depression (LTD)
through the modulation of NMDA receptors (23). There is a
general agreement that anodal stimulation increases excitation
in the brain while cathodal results in inhibition (18). However,
even this generalization could not be replicated in various
studies (24–26). The working principle of tACS is fundamentally
different from tDCS in a way that it does not influence average
membrane potential. In one cycle, one electrode acts as an
anode and the other one as a cathode, while in the other cycle,
the pattern is reversed, and the average membrane potential
is unchanged. The online effects of tACS are induced as a
result of entrainment of applied frequencies to the underlying
endogenous brain activity (19). Thus, non-invasive electrical
brain stimulation tools such as tDCS and tACS can induce
alterations in cortical excitability, oscillatory, and non-oscillatory
activities, which are the physiological derivates of cognitive
processes, such as perception working memory, learning, and
long-term memory formation (27–29).

There are several other factors that determine the impact
of stimulation on the brain. For example, tES devices have
been further classified into conventional and high-definition tES
(30). Conventional tES (C-tES) uses a pair of large electrode
patches, while High-definition tES (HD-tES) uses a series of ring
electrodes. HD-tES has been introduced as an advanced version
of C-tES, targeting specific brain regions with higher focality
(31). In addition, in the case of tDCS, the return electrode is
ideally placed at a location where it does not influence the cortical
excitability (32). However, for tACS, there is no distinction
between anode and cathode, as electrodes switch their roles in
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every cycle. Furthermore, the stimulationmontage, intensity, and
duration play a critical role in determining its impact on the
brain (33).

Studies on healthy human participants have repeatedly
demonstrated that the stimulation of cognitive brain regions with
tDCS or tACS results in the modulation of the brain activity
and it often results in modulation of behavior (34–38). However,
the effect of these stimulation methods on stroke with cognitive
deficits has not been thoroughly investigated. Most of the
previous meta-analyses on post-stroke cognitive rehabilitation
utilized TMS, and they often focused on aphasic patients only
(13, 39–41). In this study, we aim to investigate the efficacy of
tES on post-stroke cognitive rehabilitation. We systematically
evaluated six cognitive domains, including attention, working
memory, executive control, aphasia, and visual neglect following
Preferred reporting items for systematic reviews and meta-
analysis (PRISMA) guidelines. We further highlight ways to
standardize and refine stimulation protocols to improve the
effectiveness of tES devices in rehabilitation.

MATERIALS AND METHODS

Protocol Registration
Following PRISMA guidelines, the protocol was registered at
Prospective Register of Systematic Review (PROSPERO), under
the identification number CRD42021237806.

Literature Search
Four different databases, including PubMed (Medline),
EMBASE, Web of Science, and PsycINFO were searched
independently for the studies meeting inclusion criteria. The
detailed search criteria, which was a modified version of search
criteria for another meta-analysis on cognitive impairment after
stroke (42), are provided in Supplementary Materials.

Inclusion Criteria
Studies with the following criteria were included in the analysis:
(1) Randomized controlled trials applying tES for a single session
or multiple sessions; (2) Longitudinal or a crossover study design;
(3) Ischemic or hemorrhagic stroke; (4) Single/double/triple
blinded studies comparing the tES stimulation to a control group
receiving sham stimulation or no stimulation. If the intervention
was performed with another component, for example cognitive
training then intervention plus cognitive training was compared
with sham plus cognitive training; (5) Studies reporting sufficient
information to compute effect size statistics [i.e., mean and
standard deviations or standard errors, exact F, p, t, or z-values];
(6) Published in an international peer-reviewed journal until 31st
December 2020; (7) Published in English language.

Main Outcomes
The systematic review focussed on six cognitive domains
including, global cognition, visual neglect, attention, working
memory, executive functions, and verbal fluency. If multiple
cognitive tests were used for each cognitive domain, then the
test listed as the primary measure was included. If there was
no explicit distinction mentioned between the primary and

secondary measures, then the test most relevant to the cognitive
domain was included. If follow-up measurements are performed
after training, then scores immediately after the training were
considered for evaluation of the outcome.

Measurement of Effect Size
The mean difference (MD) or standardized mean difference
(SMD) with a confidence interval (CI) of 95% was used to
measure the effect size depending on the cognitive batteries used
in different studies. If in case standard deviation between pre- and
post-training cannot be estimated using the available data then
sensitivity analysis was performed on studies by testing the effect
of each study at different correlation values. If any of the studies
potentially influence the results then it was removed. Two-sided
p < 0.05 was considered statistically significant.

Data Extraction
After the identification of studies through the search strategy,
duplicate studies were removed using EndNote 20. Following
the removal of duplicate studies, titles of the remaining studies
were evaluated by Reviewer 1 and Reviewer 2, and studies not
meeting the inclusion criteria were eliminated. The second round
of evaluation was performed on the abstracts by the same two
reviewers. After screening of the titles and abstracts, full articles
were assessed by the Reviewer 1 and Reviewer 2. Some articles
which did not provide enough information to estimate the effect
size or used same population in multiple studies were excluded
after qualitative analysis. After the selection of studies, the data,
including study design, sample size, participants characteristics,
type of intervention, duration, and intensity of tES, and outcomes
was extracted by Reviewer 5 and Reviewer 6. Following data
extraction, Reviewer 1 performed statistical analysis on the data
and was cross-checked by Reviewer 2. Reviewers 3 and 4 assessed
methodological quality and the risk of bias in each of the included
studies. Reviewer 7 supervised the whole study and was consulted
in case of a disagreement about any study.

Risk of Bias Assessment
To assess the methodological quality and risk of bias, the
modified Jadad scale with eight items was utilized (43).
Generation of random sequence, description of blinding
procedures, description of withdrawals and dropouts, description
of inclusion/exclusion criteria, description of adverse effects, and
statistical analysis were evaluated against a scale of 8 (range:−2–
8), higher scores indicate better research quality.

Data Analysis
Review Manager 5.4.1 was used for performing a meta-analysis.
Hedge’s g was utilized to quantify the effect size with a g <

0.2 reflecting a small effect size, 0.5 reflecting a medium effect
size, and >0.8 reflecting a large effect size. Higgins I² statistic
was employed to measure the degree of heterogeneity between
the studies. I²-values of 25, 50, and 75% were considered as
low, moderate, and high heterogeneity, respectively. Sensitivity
analysis was performed to identify the source/sources of
heterogeneity (44).
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FIGURE 1 | Flow chart of selection of studies.
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RESULTS

Search Results
After the removal of duplicates, titles of the remaining 797 studies
were screened and 109 studies were identified with 20 systematic
reviews. Systematic reviews were separately assessed for studies
meeting inclusion criteria in case they were not identified in
the initial search. Abstracts were further screened for inclusion
and 56 studies were identified. These studies were evaluated
and 19 studies were included for quantitative analysis. Out of
these 19 studies, 5 studies evaluated global cognition, 3 studied
attention, 5 assesed working memory, 9 studies focused on
aphasia, and 3 studies evaluated visual neglect. It should be noted
that a few studies evaluated multiple cognitive domains and they
have been analyzed separately in each of the domains. Among
the 19 studies included in the quantitative analysis, 13 studies
provided information regarding the type of stroke (ischemic or
hemorrhagic), and 75.7% of the subjects suffered from ischemic
stroke; 12 studies reported the lesion location (subcortical,
cortical or mixed) and 35.0% of the subjects had pure subcortical
lesions; 18 studies reported the gender information and 62.3% of
the subjects were male; 17 studies offered information regarding
the time after stroke onset, with 9 studies on chronic stroke
subjects, 3 studies recruited subacute subjects, 4 studies recruited
both subacute and chronic subjects, and 1 study recruited acute
and subacute subjects; 16 out of 19 studies were conducted in Asia
(n = 8) and Europe (n = 8), 2 studies were conducted in North
America and 1 study was conducted in Africa. Flow chart of the
selection process is shown in Figure 1. All the included studies
are listed in Table 1.

Global Cognitive Functions
Global cognitive deficits are common after stroke which
significantly affect the activities of daily living. One of the
pioneering studies by Park et al. (51) combined computer-
assisted cognitive rehabilitation (CACR) and tDCS five times
a week for 30min a session in a bid to improve global
cognitive functions. Patients were evaluated using Korean Mini-
Mental State Examination (K-MMSE) and Seoul Computerized
Neuropsychological Test (SCNT). However, no significant
difference was observed between the experimental and sham
groups in K-MMSE scores. The SCNT item on the auditory
continuous performance test (CPT) was significantly higher in
the tDCS group as compared with the control group. Another
noteworthy study by Yun et al. (40) explored the impact of
anodal tDCS on left and right fronto-temporal brain regions.
Participants were divided into 3 groups with 15 patients in each
group i.e., left fronto-temporal anodal stimulation (FTAS), right
FTAS, and sham. Fifteen sessions of 2mA tDCS was delivered
for 30min, However, no significant difference was observed in
any of the treatment groups. Andre et al. (55) explored the effect
of stimulation of the left dorsolateral prefrontal cortex (DLPFC)
by applying four 20min sessions of 2mA anodal or sham at-
home tDCS, however, no stimulation-induced beneficial effect
was observed. Another study conducted by Shaker et al. (60)
provided RehaCom training to stroke subjects along with anodal
or sham stimulation targeted at left DLPFC. The treatment lasted

for a month with three sessions on alternating days in each week.
Participants received 30min of stimulation followed by 30min
of RehaCom training in the stimulation group, while the sham
group only received 5 s of stimulation. A significant improvement
in global cognitive functions was observed in the experimental
group. Meta-analysis of all the mentioned studies did not
show any beneficial effect of stimulation on global cognitive
functioning (SMD = 0.31, CI = −0.27–0.89, p = 0.30) with
high heterogeneity (I2 = 61%; Supplementary Figure 1). After
sensitivity analysis, one study by Shaker et al. (60) was removed
from the quantitative analysis which reduced the heterogeneity to
0, however, the overall effect of stimulation was non-significant
(SMD= 0.02, CI=−0.39–0.43, p= 0.93; Figure 2).

Attention
Attention decline after stroke is one of the most common
cognitive deficits which hampers the rehabilitation process,
reduces physical function recovery, and increases dependence on
others during the activities of daily life. A study by Kang et al.
(45) administered single session anodal stimulations on the left
DLPFC for 20min with a current intensity of 2mA. tDCS led to a
significant improvement in a computerized Go/No-Go response
accuracy at 1 h post-stimulation relative to baseline, and this
improvement was maintained until 3 h post-stimulation. Andre
et al. (55) studied multiple session anodal stimulation effect on
left DLPFC using a Go/No-Go task. After four 20min sessions
of 2mA current intensity, an improvement in the reaction time
in the active tDCS group was observed. Shaker et al. (60) in
their study involving Rehacom training reported a significant
improvement in attentive abilities for the experimental group.

Meta-analysis of the included studies showed a significant
impact of stimulation on attentive abilities (SMD = 1.26, CI
= −0.07–2.60, p = 0.06) with high heterogeneity (I2 = 78%)
(Supplementary Figure 2). One study by Shaker et al. (60) was
removedwhich reduced the heterogeneity to 0%, and a significant
overall effect (SMD= 0.59, CI=−0.05–1.22, p= 0.07; Figure 3).

Working Memory
Working memory impairments are very common after stroke. Jo
et al. (46) examined whether one session of anodal tDCS on left
DLPFC can influence the working memory of stroke patients.
A current of 2mA was administered for 30min on 10 stroke
subjects in a crossover study design. Results suggested that anodal
tDCS can enhance working Memory performance by improving
accuracy, however, no change in reaction time was observed.
Leśniak et al. (61) also explored the impact of anodal tDCS
on verbal learning and memory performance by utilizing Rey
Auditory Verbal Learning Test (RAVLT), however, no significant
improvement was observed after 15 sessions of training. Andre
et al. (55) investigated the effects of anodal tDCS on the visual
short-term memory of patients using the picture-naming task
(PNT) and a slight improvement was observed after 4 sessions
tDCS. In 2017 Kazuta et al. (58) studied the effect of anodal-
tDCS on the audio verbal memory performance of 12 stroke
patients using the RAVLT test. Shaker et al. (60) in their study
involving RehaCom training reported a significant improvement
in the figural working memory performance.
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TABLE 1 | Characteristics of the included studies.

References Design Participants Stroke type Stimulation

parameters

Stimulation type Target electrode

location

Reference

electrode

location

Cognitive

domains

Kang et al. (45) Cross-Over Nexp = 10

Nsham = 10

Ageexp = 69.9 ± 3

Agesham = 69.9 ± 3

Subacute and

chronic

Intensity: 2mA

Duration: 20min

Conventional

tDCS

Left DLPFC Contralateral

supraorbital region

Attention

Jo et al. (46) Cross-Over Nexp = 10

Nsham = 10

Ageexp = 47.9 ± 8.9

Agesham = 47.9 ± 8.9

Subacute and

chronic

Intensity: 2mA

Duration: 30min

Conventional

tDCS

Left DLPFC Right supraorbital

area

Working memory

Fiori et al. (47) Cross-Over Nexp = 3

Nsham = 3

Ageexp = 65, 74, 45

Agesham = 65, 74, 45

Chronic Intensity: 1mA

Duration: 20min

Conventional

tDCS

Left Wernicke’s

area

Contralateral

fronto-polar cortex

Aphasia

Kang et al. (48) Cross-Over Nexp = 10

Nsham = 10

Ageexp = 61.9 ± 2.7

Agesham = 61.9 ± 2.7

Chronic Intensity: 2mA

Duration: 20min

Conventional

tDCS

Right Broca’s

homolog area

Left supraorbital

area

Aphasia

Sunwoo et al. (49) Cross-Over Nexp = 10

Nsham = 10

Ageexp = 62.6 ± 13.3

Agesham = 62.6 ± 13.3

Subacte and

chronic

Intensitydual: 2mA

Intensitysingle: 1mA

Duration: 20min

Conventional

tDCS

Right PPC, right

supraorbital area

Left supraorbital

area, Left PPC

Visual neglect

Marangolo et al.

(50)

Cross-Over Nexp = 7

Nsham = 7

Ageexp = 46–77

Agesham = 46–77

Chronic Intensity: 1mA

Duration: 20min

Conventional

tDCS

Wernicke’s area,

Broca’s area

Contralateral

fronto-polar cortex

Aphasia

Volpato et al. (39) Cross-Over Nexp = 8

Nsham = 8

Ageexp = 42–70

Agesham = 42-70

Chronic Intensity: 2mA

Duration: 20min

Conventional

tDCS

Broca’s area Contralateral

supraorbital area

Aphasia

Park et al. (51) Parallel Nexp = 6

Nsham = 5

Ageexp = 65.3 ± 14.3

Agesham = 66.0 ± 10.8

Subacute Intensity: 2mA

Duration: 30min

Conventional

tDCS

Bilateral prefrontal

cortex

Non-dominant arm Global cognition

Cotelli et al. (52) Parallel Nexp = 8

Nsham = 8

Ageexp = 63.4 ± 6.8

Agesham = 70.4 ± 6.8

NS Intensity:2mA

Duration: 25min

Conventional

tDCS

left DLPFC Right arm Aphasia

Yun et al. (40) Parallel NLFTAS = 15

NRFTAS = 15

Nsham = 15

AgeLFTAS = 60.9 ± 12.9

AgeRFTAS = 58.9 ± 15

Agesham = 68.5 ± 14.6

Acute and

subacute

Intensity: 2mA

Duration: 30min

Conventional

tDCS

Left FTAS, Left

anterior temporal

lobe; Right FTAS,

right anterior

temporal lobe

Not mentioned Global cognition

(Continued)

F
ro
n
tie
rs

in
R
e
h
a
b
ilita

tio
n
S
c
ie
n
c
e
s
|
w
w
w
.fro

n
tie
rsin

.o
rg

6
F
e
b
ru
a
ry

2
0
2
2
|
V
o
lu
m
e
3
|A

rtic
le
7
9
5
7
3
7

https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/rehabilitation-sciences#articles


K
h
a
n
e
t
a
l.

Tra
n
sc

ra
n
ia
lE

le
c
tric

a
lS

tim
u
la
tio

n
in
C
o
g
n
itive

R
e
h
a
b
ilita

tio
n

TABLE 1 | Continued

References Design Participants Stroke type Stimulation

parameters

Stimulation type Target electrode

location

Reference

electrode

location

Cognitive

domains

Ladavas et al. (53) Parallel Nanodal = 11

Ncathodal =8

Nsham = 11

Ageanodal = 46-78

Agecathodal = 59–78

Agesham = 49–78

Subacute and

Chronic

Intensity: 2mA

Duration: 20min

Conventional

tDCS

PPC Anodel: left

supraorbital region

Cathodal: right

supraorbital region

Visual neglect

Bang and Bong

(54)

Parallel Nexp = 6

Nsham = 6

Ageexp = 66.0 ± 4.2

Agesham = 65.6 ±4.7

Subacute Intensity: 1mA

Duration: 20min

Conventional

tDCS

Right PPC Left supraorbital

area

Visual neglect

Andre et al. (55) Parallel Nexp = 13

Nsham = 8

Ageexp = 63–94

Agesham = 63–94

NS Intensity: 2mA

Duration: 20min

Conventional

tDCS

Left DLPFC contralateral

supraorbital area

Working memory,

global cognition,

attention,

Meinzer et al. (56) Parallel Nexp = 13

Nsham = 13

Ageexp = 38-77

Agesham = 41-78

Chronic Intensity: 1mA

Duration: 20min

Conventional

tDCS

Left M1 Right supraorbital

region

Aphasia

Darkow et al. (57) Cross-over Nexp = 16

Nsham = 16

Ageexp = 56.7 ± 10.1

Agesham = 56.7 ± 10.1

Chronic Intensity: 1mA

Duration: 20min

Conventional

tDCS

Left M1 Right supraorbital

area

Aphasia

Kazuta et al. (58) Cross-over Nexp = 12

Nsham = 12

Ageexp = 71.5 ± 7.4

Agesham = 71.5 ± 7.4

Chronic Intensity: 2mA

Duration: 9.5min

Conventional

tDCS

Left

temporoparietal

area

Right supraorbital

region

Working memory

Norise et al. (59) Partial Crossover Nexp = 9

Nsham = 9

Ageexp = 57.3 ± 4.6

Agesham = 57.3 ± 4.6

Chronic Intensity: 2mA

Duration: 20min

Conventional

tDCS

Left frontal lobe,

right frontal lobe

Contralateral

mastoid

Aphasia

Shaker et al. (60) Parallel Nexp = 20

Nsham = 20

Ageexp = 54.45 ± 4.68

Agesham = 53.05 ± 6.32

Chronic Intensity: 2mA

Duration: 30min

Conventional

tDCS

Right and Left

DLPFC

Contralateral

supraorbital area

Global cognition,

attention, working

memory

Zumbansen et al.

(41)

Parallel Nexp = 24

Nsham = 19

Ageexp = 65.3 ± 13.2

Agesham = 67.4 ± 11.7

Subacute Intensity: 2mA

Duration: 45min

Conventional

tDCS

Right pars

triangularis

Forehead over the

right eye

Aphasia

NS, not specified; DLPFC, dorsolateral prefrontal cortex; PPC, posterior parietal cortex; M1, primary motor cortex; FTAS, fronto-temporal anodal stimulation.
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FIGURE 2 | Comparison of the effects of active transcranial stimulation and sham stimulation interventions on global cognition. The results did not provide evidence

for tDCS efficacy in promoting global cognition (SMD = 0.05; 95% CI = −0.37–0.46; p = 0.83).

FIGURE 3 | Comparison of the effects of active transcranial stimulation and sham stimulation interventions on attention. One study was excluded after sensitivity

analysis. The results favored the efficacy of stimulation in facilitating attentive abilities (SMD = 0.59, CI = −0.05–1.22, p = 0.07).

Meta-analysis showed a significant stimulation impact on
attentive abilities (SMD= 0.72, CI=−0.14–1.57, p= 0.10) with
high heterogeneity (I2 = 80%) (Supplementary Figure 3). One
study by Shaker et al. (60) was removed after sensitivity analysis
which reduced the heterogeneity to 41%, and the overall effect
(SMD= 0.35, CI=−0.22–0.91, p= 0.23; Figure 4).

Executive Functions
Executive functions are defined as a set of cognitive skills that
work altogether to exhibit a goal directed behavior. The literature
on direct evidence of stimulation’s impact on executive functions
is very limited. We could not identify any study specifically
focusing on executive functions in stroke patients.

Aphasia
Aphasia is a language disorder that affects the production or
comprehension of speech that often occurs after a stroke. Fiori
et al. (62) studied the impact of anodal stimulation in aphasic
subjects by targeting left Wernicke’s Area which is involved in
language production and comprehension. In each stimulation
condition, the treatment was carried out for five consecutive
days in 1 week and a significant improvement was observed
in the stimulation group. Kang et.al (48) reported a significant
improvement in a picture naming task followed by stimulation
of Broca’s homolog area. In another study (39), chronic aphasics
underwent 2 weeks of offline anodal tDCS on Broca’s area and 2
weeks of sham stimulation as a control condition. However, no
significant interaction was observed. A 2013 study by Marangolo
et al. (50) studied the impact of anodal stimulation over Broca’s
area and Wernicke’s area in aphasic patients. Results indicated a

significant improvement in the stimulation group as compared
to the sham group. Broca’s area results have been included in
the meta-analysis as its more relevant to language disorders. In
another study (52), DLPFC was stimulated in 16 aphasics during
speech therapy with either anodal or sham stimulation. Aachener
Aphasic Test accuracy showed a significant improvement in
the anodal group as compared to the sham group. Marcus
Meinzer (63) stimulated left primary motor cortex with anodal
or sham tDCS twice daily before each training session of
intensive naming therapy for 8 days in 2 weeks. A significant
enhancement in both trained and untrained words was observed
in the anodal group as compared to the sham group. Another
study by Darkow et al. (57) explored the impact of anodal
stimulation on the left primary motor cortex, however, no
significant improvement was observed in accuracy or latency
in the naming task. One potential strength of the study was
the use of functional magnetic resonance imaging (fMRI) to
understand stimulation-induced neural markers. They observed
an enhanced brain activation within a larger naming network
accompanied by reduced activity in brain regions associated
with higher order cognitive control. A 2017 study (59) utilized
individualized montages to study stimulaton-induced changes. A
more prominent improvement was observed in the number of
nouns generated in the stimulation group as compared to the
sham. Another study (41) utilizing TMS and tDCS stimulation
did not report any significant improvement in tDCS stimulation
group as compared to sham stimulation.

A significant impact of stimulation was observed in improving
aphasic deficits (SMD = 0.84, CI = 0.22–1.47, p = 0.008)
with high heterogeneity (I2 = 70%; Supplementary Figure 4).
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FIGURE 4 | Comparison of the effects of active transcranial stimulation and sham stimulation interventions on working memory. One study was excluded after

sensitivity analysis. No stimulation related improvement was observed in the working memory (SMD = 0.35; 95% CI = −0.22–0.91; p = 0.23).

Two studies (50, 52) were removed after sensitivity analysis
which reduced the heterogeneity to 0%, and the overall effect of
stimulation was still significant (SMD = 0.34, CI = 0.02–0.67, p
= 0.04; Figure 5).

Visual Neglect
Sunwoo et al. (49) studied the effects of single-mode and dual-
mode anodal stimulation on post-stroke unilateral visuospatial
neglect. A significant improvement was observed both in single
and dual-mode with the latter showing amore prominent impact.
For consistency with other studies, we only used single-mode
results in the meta-analysis. Bang and Bong (54) investigated
the effect of tDCS and feedback training on visuospatial neglect.
A significant improvement was observed in the experimental
group as compared to the control group. Another study
(53) administered stimulation on visual neglect patients along
with prism adaptation training. A significant improvement
was observed in the anodal group but no improvement was
observed in the cathodal group as compared to the sham. Only
anodal stimulation data were pooled in the meta-analysis to be
consistent with other studies.

No significant impact of stimulation was observed (SMD =

1.16, CI = −0.09–2.41, p = 0.07) with high heterogeneity (I2

= 73%) (Supplementary Figure 5). One study (54) was removed
after sensitivity analysis which reduced the heterogeneity to 59%,
and the overall effect of stimulation was still non-significant
(SMD= 0.64, CI=−0.036–1.63, p= 0.21; Figure 6).

Risk of Bias Assessment
The risk of bias assessment for the included studies using the
Jadad scale is provided in Supplementary Materials.

DISCUSSION

Transcranical Electrical Stimulation (TES) has emerged as a
potential tool to alter brain activity and possibly induce changes
in behavior. In case of tDCS the stimulation of any specific
brain region results in an enhancement or inhibition of the
neuronal activity i.e., anodal stimulation depolarizes the resting
state potential, while cathodal stimulation hyperpolarizes it
(30). TACS offers another approach to target brain regions in
a frequency dependent manner. The idea of stimulating the

brain at certain frequencies stems from the fact that different
frequencies in the brain represent different neural mechanisms
(64) and stimulation of the brain with those frequencies can
result in a phenomenon called entrainment in a way that the
endogenous brain activity aligns with the applied electric current
frequency (19). The current meta-analysis investigated the effects
of tES on various cognitive domains including global cognition,
attention, working memory, executive functions, aphasia, and
visual neglect. Nineteen studies met the criteria for inclusion in
this meta-analysis. All the included studies utilized tDCS, and we
cannot identify any study using tACS or tRNS.

The meta-analysis showed an acute facilitation effect of tDCS
in aphasia and attention, but no improvement was observed
in global cognition, working memory, and visual neglect. All
the studies on attention, stimulated the DLPFC. The DLPFC is
a key node of the dorsal cognitive circuit and is involved in
executive functioning and control of cognitive processes (65).
Although temporary enhancement of attention was observed, the
long-term effects of tES in attention enhancement still need to
be investigated with follow-up studies. Most studies on aphasia
targeted Broca’s area, a key node for speech production (66) or
Wernicke’s area, which is responsible for speech perception or
for word comprehension (67). Stimulation at these regions has
shown a reliable effect in promoting the performance of the
stroke subjects in verbal learning tasks.

However, there are major limitations in the current meta-
analysis. First of all, most of the included studies only
evaluated immediate post-stimulation effects without performing
any follow-up evaluation. The short-term effect provides us
a notion that repetitive stimulation training in longitudinal
paradigms may induce plasticity in the brain in the long term,
however, this hypothesis can only be verified with further
studies evaluating long-term modulatory effects of stimulation.
Furthermore, the studies utilized varying number of training
sessions. Just like learning any new task requires multiple
exposures, tDCSmay impact cognition via repeated exposure and
overnight consolidation (68). Thus, longitudinal studies must be
conducted with follow-up analysis to determine if stimulation
can actually improve functional ability in stroke patients with
cognitive deficits.

In addition, we observed a high heterogeneity in the results
among studies across all cognitive domains. The reason of the
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FIGURE 5 | Comparison of the effects of active transcranial stimulation and sham stimulation interventions on aphasia. Two studies were excluded after sensitivity

analysis. The results indicated that real stimulation is significantly better than sham stimulation in facilitating the verbal learning (SMD = 0.34; 95% CI = 0.02–0.67; p =

0.04).

FIGURE 6 | Comparison of the effects of active transcranial stimulation and sham stimulation interventions on visual neglect. One study was excluded after sensitivity

analysis. No stimulation related significant effect was observed (SMD = 0.83; 95% CI = −0.49–2.15; p = 0.22).

heterogeneity could be attributed to several factors, including but
not limited to the difference in pathophysiology of the disorder
in participants, varying cognitive tests, the number of cognitive
training sessions, and most importantly limited number of
studies. Furthermore, technical factors linked to tDCS may have
played a major role in the variation. Studies have demonstrated
that stimulation montage, stimulation duration and intensity,
and stimulation type play a critical role in determining the
impact of stimulation (33, 69, 70). Some of the studies were
removed after sensitivity analysis to reduce the heterogeneity
in several cognitive domains, such as one prominent study
by Shaker et al. (60) which strongly favored the efficacy of
stimulation combined with cognitive training. This particular
study focused on immediate offline effects of stimulation during
which RehaCom training was provided. The timing and duration
of the stimulation are crucial factors determining the impact
of stimulation, and it has been reported that offline effects
of tDCS might be more pronounced than online effects (71).
Furthermore, RehaCom is an intensive rehabilitation training
paradigm that has proven effective in improving cognitive
functions after stroke (72, 73). The combination of stimulation
with an intensive training paradigm like RehaCom might be
the best way forward for cognitive rehabilitation. However,
further studies need to be conducted to investigate the efficacy
of concurrent stimulation with intensive cognitive training
paradigms like RehaCom. Furthermore, most studies in the

meta-analysis had a very small sample size which can possibly
bias the results. Another factor that should be taken into
consideration is that the improvement in behavioral performance
in laboratory tasks may not directly reflect improvement in
functional ability and daily life of the participants (74). Future
studies should include assessments to understand if improvement
in a specific cognitive domain in a laboratory task is reflected in
the daily life of the participants.

All the included studies in the current meta-analysis utilized
conventional tDCS, which uses two electrodes, with one acting
as a target electrode and the other as a reference electrode,
and both of them modulate brain activity in opposite ways.
Therefore, it is recommended to put the reference electrode
at a location where it can influence brain activity as little as
possible (75, 76). However, in some of the included studies,
this was not taken into consideration. Furthermore, HD-tES
has emerged as a more focal variant that can target cortical
brain regions with more accuracy (77). No study in the current
meta-analysis utilized HD-tES, which may be utilized in future
studies. Furthermore, when it comes to targeting deeper brain
structures such as the hippocampus, which is the main hub
in memory-related tasks (78) or even anterior cingulate cortex
(79) which is responsible for interference control, the existing
stimulation devices do not have enough penetration power and
even focality to reach these with precision without influences the
overlying cortex. Temporal interference stimulation (TIS) is a
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recently introduced non-invasive methodology to target deeper
brain regions with precision without influencing superficial brain
structures (80). In TIS, two alternating currents are passed
in the brain at a very high frequency in a way that they
interact at the target brain region and produce an envelope of
difference frequency which modulates the underlying neurons at
the envelope frequency. The studies on rodents and simulation
models have provided convincing evidence that TIS has the
potential to target deeper structures with precision (80, 81). The
use of TIS in stroke patients could possibly provide an interesting
avenue for cognitive rehabilitation.

MOVING TOWARD THE
STANDARDIZATION OF PROTOCOLS

The meta-analysis provided some evidence for the efficacy
of stimulation methods in improving cognitive deficits in
stroke patients. However, all the included studies used apriori
determined stimulation location and parameters such as
electrode size, stimulation duration, and intensity to stimulate
specific brain regions. The lack of mechanistic rationale for
determining stimulation location and parameters for each
individual makes it impossible to determine if the target
brain region was stimulated. Furthermore, using exactly similar
parameters may have a different physiological impact on each
individual’s brain due to differences in individual morphology
which further exacerbates reproducibility issues in behavioral
results. Thus, the heterogeneous effect of tES in cognitive
rehabilitation may be attributed to this mechanistic drawback.
Balderston et al. proposed a general workflow of fMRI-
guided TMS stimulation (82), describing procedures to apply
personalized neuromodulation based on individualized finite
element models and fMRI-guided functional localization. We
propose that adopting similar protocols on tES would further
enhance the efficacy of tES in post-stroke cognitive rehabilitation.

Specifically, the first step involves modeling tES-induced
electric field distribution from the individualized volume
conductor model (VCM). The VCM is usually generated from
high resolution (<1-mm isotropic) structural T1- and T2-
weighted MRI. This step does not require expert knowledge
thanks to free pipelines available such as SIMNIBS (83) and
ROAST (84) in which the electric field simulations on healthy
subjects have been well-validated (85). It is important to note
that the presence of stroke lesion would affect simulation results’
accuracy due to the potential shunting effect at the lesion location
(86). Adjusting this effect requires manual labeling of stroke
lesions and correction of segmentation results. Lesion masks
could be generated by manual delineation from MRI images
or automated lesion segmentation pipelines such as LINDA
(87). The volumetric segmentation of stroke lesions could be
directly incorporated in the VCM for electric field simulation.
Electric field simulation would be obtained by solving the Laplace
Equation by finite element solver, after the definition of tissue
electrical conductivity properties (88). In chronic stroke, stroke
lesions could be modeled as cerebrospinal fluid, as suggested in
several modeling studies (89). Diffusion weighted images could

also be used to model the white matter anisotropy for more
accurate simulation results.

The second step is the definition of stimulation target for
optimization. Balderston et al. (82) suggest the use of a task-based
BOLD activity to localize specific brain functions. Task-based
fMRI is widely used to localize the activation foci of cognitive
activities. Targeting different cognitive domains requires different
tasks. For instance, attention is usually assessed in the classic
Flanker Task and Go/No-Go tasks, which mainly involve the
activation of the frontal lobe (90, 91). Other tasks like color-
word stroop tasks, and n-back working memory tasks could be
utilized to localize regions related to executive functions and
working memory (92, 93). The fMRI activation map could be
projected to the volume conductor model for the subsequent
optimization procedure. Identifying individual activation foci is
essential because of significant inter-individual state-dependent
brain activity (94, 95).

After the definition of stimulation target, the last step
is to optimize electrode placement. In the ideal scenario,
only the target would be stimulated, while other regions
remain unaffected. Therefore, the goal of optimization is
maximizing the electric field on the target while minimizing
off-target stimulations. With the provided electrode’ size and
geometry, optimization could be performed by identifying the
electrode’s location based on the international 10/20 system
and their corresponding intensities by genetic algorithm. It is
important to note that tDCS is orientation-dependent (96). The
direction in which the electric field is optimized requires more
investigations. For instance, normal electric field component
was found to influence corticospinal excitability (97), whereas
electric field magnitude could also be used to predict actual
neurophysiological measures (98). Although the best way to
define the objective functions for optimization to provide
maximal stimulation to the defined target and generate a
significant neuromodulation effect needs further exploration.

Existing literature on brain stimulation is primarily based on
the hit and trial approach, which does not guarantee stimulation
of the target brain region. Here we briefly outlined the procedure
that could be adopted in future studies to make stimulation
studies more consistent, comparable, and reproducible and
ultimately make tES acceptable in the scientific community as a
reliable therapeutic tool.

CONCLUSION

The meta-analysis favors the efficacy of tDCS in an acute
improvement in aphasia and attention. However, the results
should be interpreted with caution due to methodological and
technical limitations in the included studies. We conclude that
stimulation paradigms have a beneficial effect in improving
some aspects of cognition, but they cannot be generalized
across different cognitive domains. Furthermore, the evidence
of their efficacy is weak and standardized stimulation protocols
with improved experimental design and follow-up analysis may
provide us a better understanding of the clinical effectiveness of
stimulation methods in cognitive rehabilitation.
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