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Abstract

Background: In this paper we apply the principal-component analysis filter (Hotelling filter) to reduce noise from
dynamic positron-emission tomography (PET) patient data, for a number of different radio-tracer molecules. We
furthermore show how preprocessing images with this filter improves parametric images created from such
dynamic sequence.

We use zero-mean unit variance normalization, prior to performing a Hotelling filter on the slices of a dynamic
time-series. The Scree-plot technique was used to determine which principal components to be rejected in the
filter process. This filter was applied to [''Cl-acetate on heart and head-neck tumors, ['®F]-FDG on liver tumors and
brain, and [''C]-Raclopride on brain. Simulations of blood and tissue regions with noise properties matched to real
PET data, was used to analyze how quantitation and resolution is affected by the Hotelling filter. Summing varying
parts of a 90-frame ['®F]-FDG brain scan, we created 9-frame dynamic scans with image statistics comparable to 20
MBg, 60 MBqg and 200 MBq injected activity. Hotelling filter performed on slices (2D) and on volumes (3D) were
compared.

Results: The 2D Hotelling filter reduces noise in the tissue uptake drastically, so that it becomes simple to manually
pick out regions-of-interest from noisy data. 2D Hotelling filter introduces less bias than 3D Hotelling filter in focal
Raclopride uptake. Simulations show that the Hotelling filter is sensitive to typical blood peak in PET prior to tissue
uptake have commenced, introducing a negative bias in early tissue uptake. Quantitation on real dynamic data is
reliable. Two examples clearly show that pre-filtering the dynamic sequence with the Hotelling filter prior to
Patlak-slope calculations gives clearly improved parametric image quality. We also show that a dramatic dose
reduction can be achieved for Patlak slope images without changing image quality or quantitation.

Conclusions: The 2D Hotelling-filtering of dynamic PET data is a computer-efficient method that gives visually
improved differentiation of different tissues, which we have observed improve manual or automated region-
of-interest delineation of dynamic data. Parametric Patlak images on Hotelling-filtered data display improved clarity,
compared to non-filtered Patlak slope images without measurable loss of quantitation, and allow a dramatic
decrease in patient injected dose.
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Background

Positron emission tomography (PET) is a method to
sample the distribution of an injected substance in tracer
amounts and labeled with a positron-emitting isotope.
PET has been used for decades as a research tool for the
non-invasive assessment of biochemistry using a multi-
tude of different tracer molecules. Recent years has seen
an exponential growth of PET scanners in clinical use,
mainly leveraging the radiopharmaceutical ['*F]-Fluoro-
deoxyglucose (FDG) whereby a static image of a large
part of the body is obtained [1].

PET can also be used as a dynamic technique, which is
used to follow the distribution of a radioactive substance
as a function of time, often starting at the time of injec-
tion. In dynamic PET, multiple images are acquired at
different points in time, revealing information about the
kinetic behavior of a substance in the body. The time-
course probes the function and transport properties at
the molecular level, which can be used to model differ-
ent pharmacokinetic parameters, for instance using
compartmental models [2]. In some research settings,
continuous arterial blood sampling together with blood
samples analyzed for the amount of un-metabolized (still
functional) molecules are used to derive an input func-
tion to be used in the compartmental model. Simplified
data-driven models exist where blood sampling is re-
placed by a measured uptake in a reference region dir-
ectly from the images. Such models often give a good
insight into the gross behavior of a molecule, where a
popular method for molecules like FDG that bind irre-
versibly, is the reference Patlak plot [3]. The slope of the
Patlak plot gives an estimate of the rate constant for spe-
cific binding, for an interaction that can be viewed as
irreversible over the measurement time.

PET scanning using dynamic imaging and the various
kinetic approaches are time-consuming and, when pos-
sible, the least complex methodology is sought before
introduction of a new PET tracer into clinical practice.
Nonetheless, the advanced methods are needed for de-
tailed quantification of biological processes and are es-
sential during the validation phase of new PET tracers in
clinical research. For some clinical applications accurate
diagnostic data requires dynamic PET scanning and kin-
etic modeling, for example for the evaluation of regional
myocardial blood flow and oxygen consumption using
[1'C]-acetate as a tracer.

A common problem with dynamic PET techniques is
that images are burdened with a high noise level, due to
short measuring times of images near the injection time,
and due to the decay of the radioactive isotope at later
time points. When modeling is employed on each indi-
vidual pixel, the described activity curve might therefore
inaccurately represent the true curve. Some model pa-
rameters are highly sensitive to noise, meaning that an
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image with parameter values calculated for each pixel
may become useless due to the amplification of noise
through the model.

In principle, there are two ways to increase the signal
to noise ratio in PET. One is to increase the injected
dose of radioactivity to the subject. The other is to apply
a filtering process to the acquired data. Increasing the
radioactivity dose to a patient is always ethically dubious,
especially when there is no obvious benefit to the indi-
vidual as in clinical research. A standard upper limit for
dose exposure to volunteers in clinical research is 10
milliSievert for estimated effective whole-body dose.
With the commonly used isotope '*F the limit is reached
after 1-2 scans, inflicting on the possibility of using PET
for repeated measurements.

A number of methods have been suggested to filter
out noise [4-8]. We have chosen to focus on principal
component based methods, and compare our own slice-
based method to volume based approaches such as in
reference [8].

Principal component transforms (PCT) can be used to
condense the variance in an image sequence into princi-
pal component images (or eigenimages). For PET data,
principal component transforms has been shown to elu-
cidate regional tissue features [9-11], but at the same
time loosing any quantitative information.

In the imaging field, there is confusion in the use of
the term Principal Component Analysis (PCA). Some-
times it means data transformed from the original dy-
namic image domain to the Principal Component
domain (this we will call Principal Component Trans-
form, PCT). Sometimes PCA refers to the actual filtering
of data — that is, 1) applying a PCT, 2) setting some
principal components to zero, followed by 3) a reverse
PCT (this technique we will refer to as a Hotelling-filter).
This works presents results using the Hotelling-filter
as a temporal filter.

In medical imaging Hotelling-filters have been used in
computed tomography and magnetic resonance imaging
[12]. In dynamic PET, similar noise-reduction techniques
have been described working on raw data, not images,
prior to tomographic reconstruction [13]. The Hotelling-
filter has been employed in PET on whole 3D volumes
for the purpose of removing bias in parametric images
[4], and as a temporal filter. To the best of our know-
ledge, the technique presented here which we have opti-
mized for maximum noise reduction by using a single
image-slice (in contrast to the whole volume) has not
been applied to PET data by other groups. Parts of the
current work have been presented at a conference [14].

In this paper we describe a method filtering dynamic
PET data with a noise-reducing algorithm that uses the
removal of principal components that have no or little
discernable information. The principle of this filter is to
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first normalize the data to give all images equal weight,
and employ the principal-component transform [15,16]
on the dynamic PET image data. The second step is to
remove the principal components that consist of noise,
inverse the transform using the remaining components,
and to reverse the normalization. What is unique with
our approach is that we have chosen to perform the
Hotelling-filtering on the 2D slices.

The described technique makes image sequences more
visually appealing by reducing noise without degrading
image resolution; it preserves quantitative information,
and allows creation of certain parametric images that are
otherwise too noisy to be useful. The 2D Hotelling filter
is both faster and gives more accurate quantitation com-
pared to a principal component based filter acting on
the whole 3D volume.

Methods

Image acquisition and reconstruction

The time course of a radioactive concentration in a
volume was sampled at multiple time points, using a
Siemens ECAT HR+ (PET-only) scanner [17], a General
Electric (GE) Discovery ST (PET/CT) scanner [18], or a
GE Discovery 690 (PET/CT) scanner [19]. The described
methods have been employed in a total of about 100
scans, with a large number of different tracers and dis-
eases. A subset of these has been analyzed for this paper.
The acquisition data for the cases reported in this paper
will be described below.

Acquisition 1: Image data from one patient with a
known cancer in the head-neck area was used. This
study was part of a larger project in which we sought
to evaluate the effect of treatment on cancer
metabolism using serial [1C]-acetate PET scans. As
part of this project each PET study consisted of a short
dynamic scan over the heart region, immediately
followed by a longer dynamic scan over the area of
cancerous growth. The heart scan was used to establish
an image-derived input function for subsequent kinetic
modeling of acetate uptake in the tumors. Cardiac
images were acquired on the GE Discovery ST [18],
using 50 MBq [*'C]-Acetate, which is only 5% of the
standard dose for [*'C]-acetate cardiac scanning in our
institution. Acquisition comprised a 23 frame sequence
(12x5s, 6x10s, 4x30s, 1x60s) started at injection.
Images were reconstructed to a 30 cm display field of
view employing standard Filtered Back Projection
(FBP), with a 6.3 mm Hanning post filter.

Acquisition 2: Following the heart scan, head-and-neck
images were acquired on the GE Discovery ST [18],
using 1000 MBq [1C]-Acetate, with a 32 minute frame
sequence (12x5s, 6x10s, 4x30s, 4x60, 2x120, 4x300)
starting at injection. Images were reconstructed to 30
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cm display field of view, using the above FBP
algorithm. The same data was also reconstructed to 30
cm display field of view, using an ordered subsets-
expectation maximization (OSEM) algorithm

(21 subsets, 2 iterations, 3.91 mm FWHM loop filter,
and 5.45 mm post-filter).

Acquisition 3: The brain images (used as one of the
tracers comparing 2D and 3D Hotelling filter) were
acquired on healthy volunteers, on the GE Discovery
690. A total of 250 MBq [HC]—Raclopride [20] was
injected as bolus+infusion [21]. The 21 frame scan

(9 frames x 2 min, 3 frames x 3 min, 3 frames x 4.20
min, 3 frames x 5 min) was acquired from start of
injection, employing the GE Discovery 690. Images
were reconstructed to a 30 cm display field of view
employing the iterative VuePoint HD algorithm, with 2
iterations 24 subsets and 6.4 mm post-filter.
Acquisition 4: The brain images (used for Patlak
parametric images) were acquired on the Siemens
ECAT HR+ scanner [17], using 200 MBq FDG. A
90-frame scan (90 x 30s) was acquired starting at
injection. Images were reconstructed to a 30 cm display
field of view employing FBP, with a 4 mm Hanning
post filter. The 90 images were grouped sequentially in
9 groups each containing 10 images. New 9-frame
dynamic sequences were created from these groups by:
Selecting one image from each group, creating a
9-frame dynamic scan with statistics mimicking 10%
(20 MBq) of the injected activity.

Summing three images from each group, creating a
9-frame dynamic scan with statistics mimicking 30%
(60 MBq) of the normally injected activity

Summing all images in each group, creating a 9-frame
dynamic scan from the 90-frame scan with statistics equal
to 100% (200 MBq), that is, the complete injected activity.
The plasma input function was measured with arterial
blood sampling.

Acquisition 5: The liver images (used for Patlak
parametric images) were acquired on the GE Discovery
ST using 370 MBq ['*F]-FDG in a patient with
cholangiocarcinoma and liver metastases. The scan
included 16 frames (5% 60s, 5x180s, 6x300s ), acquired
during 50 minutes employing 2D mode on a General
Electric Discovery ST (PET/CT) scanner [18]. Images
were reconstructed to a 50 cm display field of view
employing FBP, with a 4 mm Hanning post filter. The
plasma input function was measured with arterial
blood sampling. Also an alternative image derived input
function was calculated using a manually delineated
region-of-interest in multiple slices of the ascending
aorta, which was visible in the first frames, and clearly
visible when applying the Hotelling filter.

Acquisition 6: Dynamic imaging of about 200 MBq
[**F]-fluorothymidine (FLT) was used for determination
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of typical image noise levels, employing a GE Discovery
690 [19] in time-of-flight mode.

The image material was obtained from patient studies
in research projects that were conducted in accordance
with the declaration of Helsinki and approved by the
local human ethics committee and the hospital radiation
ethics committe (Uppsala-Orebro EPN reference 2006/
1309-32, Uppsala University Hospital reference SEK
2005:03, and Umea University Hospital reference 2011-
263-31M). All subjects provided written consent prior to
the study.

Image processing

The new filter uses the PCA transform [16], also
known as the Hotelling transform. The Hotelling fil-
ter can be applied to either the data set containing
all time frames, or a subset where early frames are
excluded from the principal component transforms,
as described below. In the case when a subset is fil-
tered, the final resulting data set is assembled by con-
catenating the original excluded time-frames with the
Hotelling filtered time-frames. Thus, the resulting fil-
tered data set will also in this circumstance contain
the same number of frames as the original data set.
We will now give a detailed description of the Hotel-
ling filtering algorithm:

1) From image to principal component domain:

We organize the dynamic data for a single tomo-
graphic slice (2D Hotelling) or a volumetric matrix
(3D Hotelling) into a 2-dimensional matrix, with the
row vectors being pixel values for each of the N time-
frames. We exclude the pixels that have zeros in all
frames (columns with data points being all zero). In-
spired by [16], each row (image) in this matrix is stan-
dardized by subtracting its mean and dividing with its
sample standard deviation, giving the matrix X. A new
matrix A is formed by sorting the eigenvectors of the
covariance matrix of X, in descending order according
to the corresponding normalized eigenvalues 14 (one per
eigenvector). The PCA transform [16] gives weighted
sums Y of the original dynamic data, called “principal
components”:

Y =AX

As an option, at this point “principal component” im-
ages can be created. This is done by putting back the ex-
cluded columns (pixels that had zeros in all frames) in
their correct position in the Y matrix, and reorganizing
the rows to two-dimensional images.
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2) Remove noise:

The eigenvalues describe the variance of the data
which is explained by the principal-component images
(stored as rows in) Y. The eigenvectors with low eigen-
values are removed from A, setting the corresponding
vector values to zero, giving the matrix B.

Thus, the first principal components 1 to n are used,
and the components n+l to N are set to zero. The
Hotelling filter will be described as PC1-n (for instance
PC1-4 if the first n=4 components are used).

3) From principal component domain to image
domain:

The PCA transform is reversed to give an approxima-
tion X’ of the original images

X' =BTY

using that B'=B” because B is a matrix of orthonormal
eigenvectors [15].

The standardization of the pixel values are inversed,
by multiplying the rows in X’ by the previously calcu-
lated values of the sample standard deviation and adding
the sample mean. The pixels excluded from the data
vector in step 1 above (pixels that were zero in all
frames) are put back in their original position. Finally,
the pixels of each frame are reorganized to form a set of
filtered two-dimensional images (2D Hotelling) or three-
dimensional (3D Hotelling) images, where the number
of filtered images is the same as the number of original
time-frames.

The eigenvectors and eigenvalues were calculated
using the “eig” function in Matlab, and the vectors were
sorted according to their corresponding eigenvalues.

For a 27-frame, 128*128 matrix dynamic scan, produ-
cing a Hotelling filtered image takes 0.08 seconds, on a
2.6 GHz Pentium Dual-core E5300 processor.

An explanation factor e, that describes the percent of
the original variance, accounted for in the k:th principal
component, is calculated

Me
N

D M

q=1

ex = 100

%)

The “explained variance” is defined as the sum of the
explanation factors over the #n used principal compo-

nents.
n

explained variance= Z ex
k=1
The explained variance is thus a measure of how much
of the original variance in the dynamic image sequence
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remains after filtration. The suggested interpretation is
that filtering two image sequences using the same num-
ber of principal components, the explained variance will
be higher for the image sequence containing less noise.
For a dynamic image-sequence, the explained variance
increases when increasing the number of principal com-
ponents employed in the Hotelling filter. The explained
variance for the original image (employing all compo-
nents) is 100%.

The explanation factor and inspection of the principal
component images was used to select the correct num-
ber of principal components. The number of principal
components to include in the Hotelling filter was deter-
mined using a Scree plot [22], that is plotting the ex-
planation factor (or normalized eigenvalue) as a function
of highest principal component (PC) number employed
in the Hotelling filter. The explanation factor decreases
with increasing PC number, and abruptly converges to a
level close to zero. We have found that taking the PC
number where the explanation factor converges to zero,
and adding one gives good values for the Hotelling filter.

We have also created a second type of Scree plots, by
plotting a “ROI explanation factor”, using the pixel
values in the principal component images. Thus for each
principal component image and ROI, a ROI explanation
factor was formed as the average of the pixel values
within a ROL A Scree plot was formed by plotting these
ROI explanation factors as a function of component
number.

As a quality control, the residual image, defined as the
difference between original image and filtered image,
was inspected.

Region-of interests (ROI) were analyzed in the residual
images creating plots that describe the removed uptake in a
ROI as a function of time. The purpose of that kind of ana-
lysis is to find bias as a function of time. The number of
principal components employed in the comparison be-
tween the 2D and 3D Hotelling filters were PC1-4.

The filtering software and Patlak slopes software was
implemented as part of an in-house developed pixel-based
4-dimensional VOI tool, called imlook4d 2.00 [23], written
in MATLAB 7.0 (The Mathworks, Inc., 136Natick, MA).
The Hotelling filter is implemented as an integral part of
imlook4d, giving the operator interactive feedback to any
change in filtering parameters. Similarly, the principal com-
ponent images and the residual (that is, the removed noise)
can be viewed interactively. The parametric images were
created with imlook4d, also here recalculated “on-the-fly”,
to get an interactive feel when varying the 2D Hotelling fil-
ter. The 3D Hotelling filter was applied using a script to
calculate a new filtered matrix.

Patlak-slope images were calculated using data starting
at 20 minutes past injection. It was checked that data
past 20 minutes gave a linear Patlak plot.
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The displayed images and small image inserts are al-
ways displayed with equal color scales, if not explicitly
stated otherwise.

Simulations

A simulation study was performed to study dynamic
data that follows a relatively large number of rate con-
stants, a scenario we could not create with a simple
radioactive phantom. We have chosen to simulate the
uptake by describing typical blood and tissue uptake by
mathematical functions describing the blood peak shape,
and an uptake curve-shape similar to a capacitor char-
ging curve. The reason that we did not create these by
compartment modeling is that we did not have access to
a true blood input functions for different tracers with
varying uptake rates. Although this method can’t be
claimed to be an exact representation of a specific tracer,
we believe that the method allows us to freely vary time
constants and thus in a simple way present more com-
plex data than is typically present in a PET scan. Fur-
thermore, we chose not to mimic any realistic geometry,
since we did not want the reader to believe that the
simulation is specific to any particular tracer uptake.
Also, there is nothing in the mathematics behind the
Hotelling filter that correlates with the pixel location, so
we prefer to make square regions. Additional file 1 dis-
plays an example of the simulated data, and the gener-
ated activity curves.

The procedure to create this data with kinetic and
noise properties similar to a dynamic PET scan will now
be described. A dynamic image sequence was created
consisting of 20 noise-less images, each 90 by 90 pixels.
In these images, analogous to time-frames in a real PET
scan, nine square areas were created, each 30 times 30
pixels in size. Each area was assigned a kinetic behavior
similar to blood or tissue uptake. The tissue uptake was
simulated to give different kinetic rise-times and uptake
amplitudes, using the formula

g(A ki) =qA(1 - e’°'2k")

with permutations of the values A=1,2,3, and k=1,2,3,
where ¢ is a factor that was calculated as described
below. The image number i is an integer between 0 and
19, which represents time.

The blood uptake was calculated using the formula

f(A,k,i) = q(0.3+ BAe™)

The number of blood areas differed in different simu-
lations, since we wanted to study the impact of the
blood signal. We employed k=1 for the first blood area,
k=2 for a second blood area, and k=3 for a third blood
area, when applicable. The factor B was calculated as de-
scribed below. The number of blood areas was varied
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between zero and three, replacing tissue areas in the
image as necessary to get nine areas in the image.

Gaussian-distributed noise with a standard deviation
o= VX ij was added to the pixel values, with X;; being
the noise-less pixel values in image i and square area j.
The noise was created using the Matlab “randn”
function.

The factors g and B that gave the most PET-like im-
ages were determined as follows. Region-of-interests
(ROIs) were drawn over tissue, lung, and blood in two
FLT and two FDG dynamic scans. The mean pixel value
%;j and the standard deviation s;; was calculated for each
time-frame image i and ROI j. The relative standard de-
viation s;;/X;; was found to consistently be in the range
between (0.18+0.05) to (0.58+0.10) for all four scans, cal-
culated for each individual time-frame and ROI. The fac-
tors g and B were optimized in integer steps so that the
simulated dynamic sequence matched this range of rela-
tive standard deviations. The values g=10 and B=5 gave
relative standard deviations between 0.17 and 0.64 calcu-
lated for each individual test image area, and image.

Analyzing the consequences of Hotelling filtering on
simulated data was done by applying a circular ROI
consisting of 305 pixels within each simulated square
area. The reason for using circular ROIs was only prac-
tical, since that is the default ROI-shape in imlook4d. It
is plausible that filtering introduces a bias varying be-
tween early and late images, and between ROIs
representing different kinetic behavior. Therefore a
measure was introduced to describe the time-varying
difference between noisy data (filtered or not filtered)
with that of the noise-less data. This measure should
have the properties that a negative and a positive differ-
ence can not cancel, so we calculated the absolute value
of the noisy ROI value x;; and noise-less X;; ROI value
for each ROI j and frame i. In order to get one value that
summarized the bias for all different kinetics and
summed over all frames we introduced

5 s Xl
summed bias = 100. — (%)

> Ix]
7

with N=180 (20 images times 9 ROIs).

The amount of noise in Hotelling -filtered data was
quantified as the standard deviation s;; of pixel values
within ROI j from image i. The average standard devi-
ation for all images and ROIs was calculated as

s = Zsi,j/N
ij

The amount of noise in the orginal noisy data was cal-
culated using the same formula on the original data, but
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is referred to as S. The ratios of the average standard de-
viations of filtered and original noisy data describe the
amount of noise that remains following the filtering pro-
cedure:

rs = 100-5/S [%)]

The spatial resolution was quantified by measuring the
full-width half maximum (FWHM) under different con-
ditions. The simulated images (which have step function
interfaces between the square areas) were given a finite
resolution by convoluting the image with a Gaussian
shaped 2-dimensional kernel with FWHM of 4 pixels.
After applying the Gaussian filter, the step-like intensity
profile along a line crossing an interface thus becomes a
smoothed transition between the intensity levels of the
squares. Differentiating this profile gives a Gaussian-
shaped profile. The FWHM of the differentiated profile
was measured manually in a graph, and compared
for different combinations of Hotelling-filter settings.
Average values for the resolution were calculated, with
error estimates being the standard deviation of these
measures.

Results

In the results section, the Hotelling settings are fre-
quently described as for instance PC1-4. This notation
means that the principal components 1 to 4 are used in
the filter, whereas the values in the principal compo-
nents 5 and higher are set to zero.

Simulations

The first section of the simulation results considers the
conditions when a bias may be introduced by the 2D
Hotelling filtering. This is analyzed by comparing the
pixel average value in a region-of-interest (ROI) in the
Hotelling data with that of the noise-less original data.
We have used the “summed bias” (see Methods section),
a measure which basically summarizes the difference be-
tween filtered and noise-free data over all frames and
kinetic curves.

Figure 1A show the summed bias in noisy and noise-
less data, with varying blood pixel fractions. The bias is
constant for blood fractions between 0% and 33%.

Figure 1A also displays the bias introduced by applying
Hotelling filter to a dynamic image sequence, varying
the fraction of blood pixels. The bias increased with in-
creasing fractions of blood pixels (from 0% to 33% of the
pixels containing blood). Investigating individual ROls,
the absolute blood peak uptake was decreased while the
early tissue uptake became falsely negative (data not
shown).

Since this bias was prominent in frames where other
pixels than blood showed no uptake, we made a work-
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summed bias

remaining noise, rs

summed bias

25%

15%

PC1-4

10% PC1-4

(excluding frame 1)
5%

Noisy data (no filter)

0%

0% 5% 10% 15% 20% 25% 30% 35% 40%
blood fraction
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
0 5 10 15 20
n
10%
9%
8%
7%
6%
5%
4%
3%
2%
1% 5 —=
0%
0 5 10 15 20

Figure 1 Bias for varying percent blood pixels. A) 2D Hotelling
filtered data (PC1-4) gives increasing summed bias with increasing
blood fraction (top curve). The statistical fluctuations in the summed
bias, for non-filtered data, display no correlation with blood fraction
(horizontal lower line). Excluding the frame with only blood activity
prior to performing the Hotelling filter reduces the summed bias
close to that of 0% blood (see arrow at 33%). B) remaining noise in
ROIs of simulated data, rs, as a function of number n of employed
principal components in the 2D Hotelling filter. C) summed bias for
varying number of principal components (n=largest principal
component remaining in the Hotelling filter process).
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around by not filtering these frames. The result was that
the blood-dependent bias was removed by excluding
time frames that exhibit only blood activity (first frame),
before employing the Hotelling filter. Following the Ho-
telling filtering, the excluded image is introduced again
to the beginning of the dynamic sequence. When ex-
cluding the first image from the filtering process, the
resulting error was similar to that of 0% blood, and to
that for unfiltered data (Figure 1A).

In summary, we have not seen any substantial bias in-
troduced by the filtering process, when employing the
Hotelling filter on data containing both tissue and blood
uptake. We did however notice that a bias could be
introduced when images containing only blood uptake
were included.

The second section of the simulation considers the
analysis of the noise removal and introduced bias, as a
function of the number of principal components (PC)
employed in the 2D Hotelling filter. The degree of noise
removal is analyzed by comparing rs, a ratio of the aver-
age standard-deviations of Hotelling-filtered and original
noisy data (averages performed over all dynamic images
and ROIs; compare Methods section). The quantity rs is
referred to as the “remaining noise in ROIs of simulated
data”.

Figure 1B shows that only about 25% of the noise (rs)
is left when employing only principal component 1
(PC1-1). Increasing the number of principal components
employed in the Hotelling filter, rs increases slowly, to
reach 100% when all principal components (PC1-20) are
used. From the noise perspective, it seems beneficial to
use as few principal components as possible, but we
must also balance the selection of components and in-
vestigate biases in the ROI values as a function of num-
ber of employed PCs.

We now continue to study the results on the summed
bias as a function of employed PCs. Figure 1C, shows a
sudden drop in summed bias when varying the Hotelling
filter from employing one component (PCl-1) to
employing components 1 and 2 (PC1-2). Increasing the
number of PCs further does not affect the bias in ROI
values considerably. Note that the summed bias mea-
sures an average over all ROIs, and frames. This means
that much larger effects may occur, as exemplified in
Figure 1A. Note, that the summed bias is based on abso-
lute values of the errors, so that we cannot expect a zero
or negative value.

The third feature simulated relates to possible reso-
lution effects. Mathematically, there is nothing that
should affect spatial resolution. It is, however, possible
that the limited resolution of an imaging device would
smear data from different regions. It is hard to argue
that this different kinetics could not affect the filtering
when mixed, and therefore introduce an effective change
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in resolution. To simulate degraded resolution, the se-
quence was smeared by convolving the simulated images
with a two-dimensional Gaussian kernel (sigma=4 pixels).
Analyzing these smeared images according to the
Methods section in this paper, a FWHM of 4.01+0.12
pixels was determined. Analyzing Hotelling-filtered
(PC1-1, to PC1-4) smeared images; a FWHM of 3.87+0.09
pixels was calculated. No obvious correlation between
FWHM and number of components was found.

We wish to point out that the aim of these simulations
was to analyze gross effects. The exact numbers in the
figures should therefore not be over interpreted.

Comparing 2D and 3D Hotelling filter

The residual, that is the difference between filtered and
original data, was investigated for each ROI. For the
head-neck acetate data, 2D and 3D Hotelling filter
(PC1-4) gave almost identical residuals in 4 tumor ROIs
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and 3 non-tumor ROIs (Additional file 2). The FDG liver
data showed slightly lower residuals for 2D Hotelling fil-
ter (PC1-4) for a tumor ROI, and very similar residuals
for a non-tumor ROI (data not shown).

The Raclopride data displays a great difference be-
tween 2D and 3D methods, where the 2D Hotelling
(PC1-4) filter gives considerably less residual both in
striatum ROIs and in cerebellum ROIs (Figure 2). The
3D Hotelling filter (PC1-4) displays a clear time-
dependent bias for the striatum ROI (Figure 2).

Myocardial studies using [''C]-acetate

The circulation of the bolus can be followed in the first
few frames. Figure 3 depicts uptake in the left chamber
and later uptake in the left ventricular wall. The original
image is heterogeneous but becomes more homogeneous
in the filtered data (employing components 1-4, 48%
explained variance). The improved signal-to-noise ratio is

-
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Figure 2 Residuals in 2D and 3D Hotelling filter. The residual for Raclopride plotted as a function of time for striatum and cerebellum ROlIs.
The residual represents the difference between filtered and original data, and is thus a measure of the bias at each time frame. A) 3D Hotelling
filter (PC1-4), which displays a large time-varying error. B) 2D Hotelling filter (PC1-4), where the striatal uptake displays a considerably lower error.
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most easily seen in later frames, but is also present espe-
cially in the background of the earlier frames.

Analyzing the region of interest for the left heart blood
pool and the left ventricular wall the time-activity curves
of original and filtered data agrees well (data not shown).
The outlining of the region of interest could be done more
accurately in the filtered data, since the bordering between
regions with different uptake appeared to move around and
change shape in the original images (see Figure 3B and C
for comparison).

Head and neck tumor imaging using [''CJ-acetate

The image quality is dramatically improved for all
frames (Figure 4). In early frames the background noise
from filtered back projection is suppressed, and in later
frames the noise from statistical fluctuations due to lim-
ited radioactivity is reduced. In the filtered data, the
transit of activity from the blood path to the metastases
can be followed visually. Quantitation is very well pre-
served employing components 1-4 (89% explained vari-
ance, Figure 5), giving a time-activity curve that follows
that of the original data points, but with less noise.

For both a tumor ROI and a blood ROI, the noise de-
creased substantially (Additional file 3). For frame 10, the
blood ROI standard deviation went from original
0=1.85.10* to 0=0.89-10* Bgq/ml (PC1-4). Also for frame
10, for a small metastasis ROI, the standard deviation went
from original 0=1.59-10* to 6=0.55-10* Bq/ml (PC1-4).

The area under the curve is another measure that
makes sense if data is going to be used for modeling.
The area under the first 120 seconds of the blood curve
was 148-10° Bq/ml before filtering and 146-10° Bq/ml
following Hotelling filtering (PC1-4). The area under the
metastasis curve changed from 96.8-10° to 97.7-10° Bq/
ml for original and Hotelling filtered data, respectively.
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Parametric imaging of liver metastases using FDG

The extent of the metastases cannot easily be derived
from the CT or the original PET uptake images
(Additional file 4). Also, differences in Hounsfield values
in the CT images do not consistently match the uptake
of the PET images. For the PET images, the contrast is
low because of high background uptake in normal liver.

A Patlak slope image yields improved contrast between
metastases and liver, but the data is noisy and the metas-
tases are not easily delineated (Figure 6A, Additional
file 4C). Applying Hotelling filter (using components
1-6) prior to the Patlak slope calculation, yields both
improved contrast and reduction of noise compared to
the original uptake images and non-filtered Patlak
(Figure 6, Additional file 4). We speculate that the clear-
ing of the liver uptake (Figure 6C) in the Patlak slope
image may have large clinical benefit.

A histogram of the liver Patlak-slope pixel-values displays
a broad distribution (standard deviation, 6=84-10 min™)
centered close to zero (0.7-10° min™?) (Figure 6B), whereas
the distribution becomes considerably narrower (6=3.6-10"
min!) but remains close to zero (0.4-10° min') when
using the Hotelling filter (PC1-6) (Figure 6D). It may be
noted that negative Patlak slope values does not represent
irreversible binding (which is what is modeled with the
Patlak analysis). The visual appearance of a bias in the
Patlak-slope images that are not filtered is solely due to
removing negative values (Figure 6A).

The magnitude of the Patlak slope was about 0.05
min™ when applying an image derived input function
making a manual ROI at the ascending aorta. When
using the sampled blood plasma input function the
Patlak slope values were about 2 times higher. This
observation does not change anything in our analysis
of the Hotelling filter, but a less naive method than
presented here should of course be applied. Examples of

A

t=5s (frame length 5s)

t=120 s (frame length 10's)

Cc

t=4 min (frame length 1 min)

Figure 3 Improved image quality, very low injected activity. The improvement of image quality can be easily seen for a heart scan of a
patient injected with only 50 MBq [''Cl-Acetate. Large images display filtered data using principal components 1-4 (48% explained variance), and
inserts show original data. The transition of acetate uptake from blood to tissue can be followed in A) blood in left chamber, to B,C) uptake in
left chamber wall. Figure A) displays a 1% bias outside the circular field-of-view (corners).
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t=10 s (frame length 5 s)

t=35s (frame length 5 s)
Figure 4 Head neck tumour, normal injected activity. The improvement of image quality can be easily seen for a patient examined by

[11C]-Acetate. Large images display filtered data using principal components 1-4 (83% explained variance), and inserts show original data. The
transition of acetate uptake from blood to tissue can be followed in A), only blood, B) blood and metastases uptake, C) only metastases uptake.

t=27 min (frame length 5 min)

preferred approaches would for instance be references
[24-26].

Parametric FDG brain imaging varying injected activity

Patlak slope images for the 10% (20 MBq), 30% (60
MBq) and 100% (200 MBq) injected activity were calcu-
lated (Figure 7A-C). The Patlak slope image for 100%
activity has acceptable quality. The same data was
preprocessed with Hotelling filter (PC1-4), and the
Patlak slope images were calculated for 10%, 30% and

100% injected activity (Figure 7D-F). The Hotelling fil-
tered Patlak-slope image quality is acceptable for all
injected activities (Figure 7D-F), and visibly comparable
to that of the non-filtered 100% data (Figure 7C). We
manually delineated 5 regions-of-interest (putamen,
cerebellum, the eye, thalamus and white matter). These
ROI definitions were applied on the Patlak-slope images
generated with Hotelling filtered data (10%, 30%, 100%
activity), and 100%, non-filtered data. We found that the
quantification of the Patlak slope values generated with
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Figure 5 Time-activity uptake curves. Comparing time-activity curves in blood and metastasis region-of-interests in the same data as Figure 4.
Original data (diamonds for metastases, squares for blood) and Hotelling filtered data (lines). This ROI-based time-activity graph shows preserved
quantitation and the removal of noise can be seen for the metastasis curve.
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Figure 6 Parametric image. A) Patlak slope image of liver metastases using [18F]-FDG calculated employing original dynamic data. B) histogram
of pixels in the liver for image A. C) Patlak slope image of the same data preprocessed by the Hotelling filter (PC 1-6) prior to Patlak calculations.
D) histogram of pixels in the liver for image C, which displays a more narrow distribution than for the non-filtered data.
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Hotelling filter agreed within less than 10% for all
injected activities to that of the 200 MBq original data.

Quality control

The intensity explained in different principal compo-
nents was investigated using a Scree plot [22]. The plot
was constructed by plotting the explanation factor as a
function of component number (Figure 8A). In all cases
investigated, it was observed that the explanation factor
decreases with higher principal component, and con-
verges to a value close to zero.

After defining regions of interest, a second form of
Scree plot was constructed by analyzing ROIs in the
principal component images. The ROI explanation factor
was plotted, for each ROI, as a function of component
number (Figure 8B). This region-of-interest based Scree
plot works well to pinpoint if an anatomical region re-
quires more principal components than others. For in-
stance, it was found in the FDG Patlak slope work that
the nose uptake was significant in principal component
3, but had decreased to close to zero in component 4
(Figure 8B). This was the reasoning for filtering that data
with components PC1-4.

In another form of quality control the residual image,
defined as the difference between original image and

filtered image, was calculated. Observing how the re-
sidual image varies with increasing number of included
components, pixel values in the anatomical region goes
from being highly correlated to noisier (Additional
file 5). The principal component where anatomical infor-
mation in the residual image stabilizes with increasing
component seems to coincide with the component fol-
lowing where the curve in the Scree-plot bends to nearly
horizontal. The conclusion is that the residual image is a
possible quality control criterion. One thing to remem-
ber is that the noise typically increases with (square root
of) amplitude. This will naturally cause high-uptake
regions not visible in the uptake image to be accentuated
in a residual-image. Thus higher-uptake areas will in the
residual image show higher minimum and maximum
values, than will the low-uptake regions. This is not to
confuse with a badly applied filter, but is statistically
unavoidable. The test for this is to look at the ROI-value
in the residual image (or ROI explanation factor plot),
which should approach zero when enough principal
components are employed.

Discussion
The 2D Hotelling filter enhances image quality in
existing dynamic PET scans, without loosing quantitative
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Figure 7 Dose reduction. A-C) Patlak slope images calculated for 10% (20 MBq), 30% (60 MBq) and 100% (200 MBq) of typical injected activity.
D-F) Patlak slope images preprocessed with Hotelling filter (PC1-4) prior to Patlak slope calculations. G) Bar graph displaying the uptake in five
regions of interests measured in images C-F.
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Figure 8 Quality control. Examples from the 9-frame FDG brain data (20 MBq activity): A) Scree plot showing the normalized eigenvalues and
explanation factor as a function of the principal component number n. B) A ROl explanation factor plot showing the average pixel value from the
principal component images, of five regions-of-interest, plotted as a function of principal component number n. The interpretation is that n
equals 4 is a good selection for this data, since the intensities for all ROls have converged to near zero at n=4.

information. This could open up various new opportun-
ities. A potential major application, as demonstrated in
this paper, could be a substantial radiation dose reduc-
tion which might reduce risk to patients and healthy vol-
unteers. This lower dose also implies the potential to
perform multiple scans on the same subject, without ex-
ceeding standard dose limits.

Alternatively, the Hotelling filter could be utilized
to improve image quality with existing levels of
injected radioactivity. This enhanced image quality
allowed the creation of parametric images, that in
some cases were clinically unreliable when created
using non-filtered images. A major benefit with this

method would be that it is possible to implement on
any computer, can be used on images from existing
scanners and would be independent of scanner
manufacturer.

There does not seem to be any mathematical mechan-
ism in the principal component analysis that affects the
image resolution, and the simulation studies showed this
to be true within the limits that our analysis permits.
The Hotelling filter therefore does not seem to suffer
from the resolution degrading of traditional low pass fil-
ters. Visually, the effect of removing noise actually gives
an appearance of improved resolution, probably due to
the better contrast achieved. One application of this is
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that filtered images can give more reproducible region-
of-interest delineation.

To derive some types of parametric images, the blood
input function is required. The improved image quality
for low injected activity (50 MBq) heart study showed
that the blood pool can be delineated. Thus, without
adding any significant dose to the patient, a time activity
curve of the arterial blood could be acquired prior to a
second scan. Later, a second injection with higher activ-
ity can be performed allowing a second scan over an-
other body part. Assuming that systemic circulation is
unchanged, this allows for kinetic modeling without any
arterial blood sampling, potentially increasing the clin-
ical appeal of kinetic modeling techniques in PET.

Since the principal-components are sorted according
to the variance, it is hard to infer if a large area with
small variance or a small area with large variance will
get precedence and be explained in a higher-order prin-
cipal component. However, the beauty of the Hotelling
filter is that the order of the components is not import-
ant as long as the significant components are included
in the filter. This is secured by inspecting the Scree plot
either for the whole image, or preferably for the import-
ant regions of interest (ROI explanation factor plot). A
trained operator may learn to do this Scree test visually
directly in the image domain, by increasing the number
of components while inspecting when the features in the
image becomes stable. Features in the residual image
(the removed noise) can also be interactively compared
with the original image while adjusting the number of
principal components, and only unordered noise should
remain. Worth noting is that using the residual image is
a mere visual inspection, and it is not an obvious meas-
ure. Furthermore, it requires a trained operator to tell
the high noise level from a high-uptake region apart
from correlated uptake. Hence, we would recommend
using the Scree tests, in both forms.

Observing the residual image (and also the principal
component images), we have found that small structures
can be lost in the Hotelling filter. The reason seems to
be that these structures appear in lower order compo-
nents, even though their kinetic patterns are unique and
with high amplitude. This is part of the principal com-
ponent algorithm, where the total variance in a region
with its own kinetic is compared to the variance in the
whole image. This should not be specific to any particu-
lar tracer, but to the size of a region and its uptake amp-
litude. We believe that this should be studied further in
order to make it possible to minimize the manual in-
spection of ROI-based Scree plots and residual images.

We have found that a good work flow to avoid missing
small structures (see above paragraph) is to use the
possibilities in the imlook4d [23] software to vary the
number of employed principal components using the
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computer mouse, while inspecting the Hotelling-filtered
image. For a trained radiologist, it is easy to follow the
decrease in noise while lowering the number of used
principal components. At a point when features start to
change in intensity, too many components are removed,
and the radiologist then goes back until the features are
back. This whole sequence takes a few seconds to per-
form. It is also possible to view the residual images
(that is the data that is removed by the filter) while vary-
ing the number of used principal components.

If quantification is to be performed, drawing regions-
of-interest can be done more easily on the Hotelling-
filtered images. Quality control is then done creating a
ROI explanation factor plot for these particular ROIs.
The procedure to do this is to view the principal-
component (PC) images, and performing a “time-activity
plot” (which makes the Scree plot for the ROIs when the
imlook4d software is in PC-image mode).

Comparing the 3D Hotelling filter to the 2D Hotelling
filter, the focal uptake in Raclopride gave a large time-
dependent bias in the 3D Hotelling. This may be explained
by the observation in the above paragraph. The striatum is
represented by a much smaller fraction of the pixels in the
3D volume than in the 2D slice, and therefore the striatum
is in the 3D case represented by several lower principal
components. Thus, parts of the uptake may be lost when
removing components. The alternative approach, to re-
move fewer principal components in the 3D Hotelling fil-
ter would render less noise reduction.

From the presented results, we believe that the 2D
Hotelling filter is more suitable to perform noise-
reduction in a quantitative way, than is the traditionally
applied 3D filter. Also, since the 2D and 3D Hotelling
filter seems to perform equally for other tracers, we be-
lieve that the 2D Hotelling filter is the safest method.

In order to validate the filter for clinical use for a spe-
cific tracer and part of the body, the filtering parameter
may be varied in a sufficiently large sample of patients.
With this approach we have found that for the presented
tracers, and 10 or more time frames, using Hotelling
filter (PC1-4) preserved quantitation and reduced image
noise. This process is similar to the validation of
any other reconstruction parameters, for instance the
optimization of the number of iterations and subsets in
an iterative reconstruction.

The principal-component transform is sensitive to pa-
tient movement. We have observed that using the typical
Hotelling filter (PC1-4), patient movement induces edge
effects in the filtered data. These effects can also be
clearly seen in the residual image. Increasing the number
of employed principal components, the edges disappear
but because we use more principal components the
noise level in the filtered images go up and we gain less.
It is therefore important to either immobilize the patient
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or to realign the different time-frame images to each
other. Based on this observation, we speculate that prin-
cipal component analysis might be possible to use as a
tool to spot uncorrected motion.

The presented filter has, apart from PET, been tried
on dynamic SPECT, MR and CT and the images appear
much nicer. Employing the Hotelling filter in the above
applications may allow injections with lower activity, or
could be used to enhance image quality.

Conclusions

The 2D Hotelling-filtering single-slice dynamic PET data
is a computer-efficient method that gives improved differ-
entiation of different tissues due to removal of noise. We
have also observed that for the focal uptake in Raclopride,
the 2D filter is preferred compared to the volumetric 3D
filter. We have found that the Scree-plot, combined with
the ROI explanation factor plot, is a simple interactive and
fast method to determine the number of principal compo-
nents to employ. Parametric Patlak images on Hotelling-
filtered display improved clarity, compared to non-filtered
Patlak slope images without loss of quantitation. We have
for FDG Patlak slope images of brain, shown that a sub-
stantial patient dose reduction is possible with no or little
loss of quantitation.

Additional files

Additional file 1: Simulation data. Simulated data for frame 3, 33%
blood pixels. Blood regions are regions 1, 4 and 7 in image A. A) Noise-
less simulated data. ROl numbers are indicated in the figure. B) Simulated
data with applied noise. C) Activity curves for noise-less data (A) D)
Activity curves for noisy data without filtering.

Additional file 2: Residuals in 2D and 3D Hotelling filter. Activity
plotted as a function of time (logarithmic time scale) of the residual for 4
tumour ROIs for the Acetate head-neck data: A) 3D Hotelling filter PC1-4.
B) 2D Hotelling filter PC1-4.

Additional file 3: Histograms. Example of histograms measured in
volume-of-interests from frame 10 in the head-neck acetate data: A)
Blood pixel values in original data. B) Blood pixels in Hotelling filtered
data (PC1-4), displaying a much more narrow distribution than in A. C)
Metastasis pixels original. D) Metastasis pixels in Hotelling filtered data
(PC1-4), displaying a much more narrow distribution than in C

Additional file 4: Liver metastases imaged with CT, and dynamic
FDG PET. A) CT shows intensity variations (Hounsfield units) that do not
completely overlap PET uptake. A square is drawn in the CT and PET
images to guide the eye. B) PET uptake 45 minutes post injection (5
minute frame duration), in units Bg/ml. C) Patlak slope image of original
data, in units min™'. D) Patlak slope image of Hotelling filtered data (PC
1-6), in units min".

Additional file 5: Residual images. An example of the use of residual
images for quality control, applied to the cardiac study. A-C) display data
filtered using components 1-2, 1-4, and 1-6, respectively. D-F) display
the residual images, that is, the data that was removed in the filtering
process. All intensity scales are in unit Bg/ml. It can be noted that in D)
both positive and negative homogeneous residual areas exist, which
suggest that not enough principal components are used. In E) the
homogeneous negative residual area has been exchanged with noise,
and the images do not appear to change when further increasing the
number of components (F). The observed larger residual-fluctuation in
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pixels with high uptake is not surprising, since large uptakes
accommodate higher noise amplitudes (even though they are visually
harder to notice in the uptake images).
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