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The identity of the messenger that carries the inhibi-
tory surround receptive field signal from horizontal
cells to cone photoreceptors has eluded retinal neuro-
biologists for nearly three decades. Encoded in hori-
zontal cell membrane potential, the feedback signal
presynaptically inhibits neurotransmitter release at the
cone terminal. An interesting collection of candidate
mechanisms and messengers have come, and some
have gone. In this issue of the 

 

Journal of General Physiol-
ogy

 

, Hirasawa and Kaneko (2003) take a giant step for-
ward in defining the synaptic messenger. The insight
their elegant experiments offer is that protons transmit
inhibitory surround information from horizontal cells
to cones, and that protons subtly modulate presynaptic
Ca channel activity to alter neurotransmitter release de-
pendent on illumination of the surround. That such a
ubiquitous signal, e.g., pH, is the messenger in one of
the most fundamental steps in visual processing is illu-
minating in its own right.

Center-surround antagonism is an archetype found
in every sensory system design. In visual systems, this
form of lateral inhibition was first described in 

 

Limulus

 

by Hartline (1940). Together with other pioneering
work, it was established that this network of laterally in-
teracting elements gave rise to contrast enhancement
and edge detection. Ever since the first recordings in
vertebrates of a cone photoreceptor response to light
(Baylor et al., 1971), it has been known that illumina-
tion of the surround counter-acts illumination of the
center. In the vertebrate retina, bipolar cells are the re-
cipients of modulated photoreceptor signals and have
center-surround antagonistic receptive fields, which
they transmit on to the ganglion cells (Werblin and
Dowling, 1969). In primate retina, we now know that
surround inhibition is also mediated through presynap-
tic inhibition in cone photoreceptors (Verweij et al.,
2003).

 

A Host of Hypotheses Proposed for the Mechanism of Feedback

 

Surprisingly, the mechanism(s) by which surround il-
lumination antagonizes the center at the first visual
system synapse remain unexplained. Candidates pro-
posed over the years include conventional and uncon-

ventional neural messaging systems. Because horizontal
cells make intimate synaptic contacts with photorecep-
tors and have the large receptive fields necessary for
the surround signal, these cells have naturally been the
focus of attention as the source of the inhibitory feed-
back (Fig. 1 A). GABA is found in some horizontal cells
and GABA receptors have been described both im-
munocytochemically and physiologically in the cone
synaptic terminal. GABAergic mediation of feedback,
therefore, has been a prominent hypothesis. However,
several studies have tested the persistence of surround
inhibition in the presence of GABA receptor antago-
nists and these have largely ruled out a major role for
GABA (for review see Kamermans and Spekreijse,
1999).

A second possible mechanism arose from the unique
and characteristic structure of the synaptic contact be-
tween cones and horizontal cells (Fig. 1 B). The invagi-
nating synapse, so-called due to the penetration of the
cone terminal by the dendrites of horizontal and bipo-
lar cells, gives rise to a protected microenvironment in
the synaptic cleft. At these photoreceptor synapses, the
invaginating horizontal cell processes require that ex-
tracellular current flowing to glutamate-gated channels
at the dendrite tips must follow a necessarily resistive
path.

Byzov put forward a model of electrical feedback in
which the large extracellular flow of current to postsyn-
aptic ion channels in horizontal cell dendrites, which
serve as current sinks, produced voltage differences
along the extracellular space (Byzov and Shura-Bura,
1986). Extracellular voltage differences, although rela-
tively small in size (estimates place the maximum effect
on the order of a few millivolts), affect the voltage-
dependent gating of Ca channels similarly as intracellu-
lar voltage changes. This ingenious hypothesis postulated
that the magnitude of the post-synaptic horizontal cell
response itself modulates presynaptic release via an in-
hibitory, ephaptic feedback loop.

A concern with Byzov’s electric feedback model has
been that as the central cones become strongly hyper-
polarized and reduce their release of glutamate, the
feedback is reduced since the glutamate-gated current
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sinks no longer exist. Kamermans et al. (2001) adapted
Byzov’s model by incorporating the finding that hemi-
gap junction channels, composed of connexin 26, are
found at the tips of horizontal cell dendrites deep
within the invagination (Janssen-Bienhold et al., 2001).
This revised model circumvented the perceived prob-
lems caused by the gating of glutamate-gated channels,
but it remains controversial.

The merits of other possible feedback mediators
have also been considered. The lack of conventional
presynaptic structures in the horizontal cell dendrites
brought forth suggestions of equally unconventional
neuromodulators. Nitric oxide has garnered some sup-
port as a modulator of presynaptic CNG channels and
Ca channels (Kurenny et al., 1994; Savchenko et al.,
1997). Signaling through changes in extracellular pH
has also been considered but largely refuted since it is
known that relatively large and slowly changing pH
fluctuations occur in the retina as a function of the
state of light and dark adaptation (for review see
Barnes, 1998).

 

Ca Channels in Photoreceptors and their Modulation
by Protons

 

A great deal is known about the pharmacology and bio-
physics of the L-type Ca channels in photoreceptors
(Wilkinson and Barnes, 1996). Functionally, these
channels are responsible for the release of the neu-
rotransmitter, glutamate. Identification of the gene
that causes night blindness in humans suggests that the
photoreceptor Ca channel is composed of Ca

 

V

 

1.4 

 

�

 

1F
subunits (Bech-Hansen et al., 1998; Strom et al., 1998).

 

�

 

1F mRNA was localized in photoreceptors by in situ
hybridization while antibodies directed against 

 

�

 

1F Ca

channel subunits labeled photoreceptor synaptic termi-
nals (Strom et al., 1998; Morgans, 2001). Some cones in
mammalian retina label with antibodies directed
against 

 

�

 

1D subunits (Taylor and Morgans, 1998; Mor-
gans, 2000).

External protons affect channel gating by neutraliz-
ing fixed negative surface charges distributed over the
cell membrane and by interacting with specific protein
residues on the channel surface, altering the electric
field at the channel’s voltage sensor (Hille, 2001). The
amount by which external pH shifts channel gating in
cones is 

 

�

 

1 mV per 0.1 pH unit (Barnes and Bui,
1991). Acidic conditions reduce Ca channel activity
and basic conditions increase it. The consequence for
synaptic transmission is that synaptic efficacy is in-
creased as pH is increased (Kleinschmidt, 1991; Barnes
et al., 1993; Harsanyi and Mangel, 1993). DeVries
(2001) showed that the protons released from presyn-
aptic vesicles together with glutamate provide a fast and
potent autoinhibition of cone synaptic release. Illumi-
nation induces pH changes on the order of several
tenths of a pH unit in the retina, so it might seem that
the large environmental pH changes would swamp lo-
cal fluctuations. But the complex, invaginated structure
of the invaginating synapse may protect the synaptic
cleft from these systemic changes. The key factor there-
fore may be the isolation of the local synaptic microen-
vironment from the retinal milieu afforded by the en-
sheathing cone terminal membranes.

 

Protons Mediate the Surround Signal from Horizontal Cells

 

The article by Hirasawa and Kaneko (2003, in this is-
sue) goes a long way to establishing that protons are
the major, if not the only, messenger needed for feed-

Figure 1. Site of the cone-
horizontal cell reciprocal syn-
apse—the synaptic invagina-
tion. (A) In this diagram of a
retinal slice, a cone (C) and a
horizontal cell (HC) are de-
picted as yellow-dyed. The
narrow receptive field of the
cone is integrated at its synap-
tic terminal with a broad, in-
hibitory signal arising in hori-
zontal cells, which receive in-
put from many cones (and
are often coupled via gap
junctions). The box encom-
passes the region of synaptic
contact between these cells,
which is shown greatly enlarged in B. Bar, 10 �m. (B) The invaginating synapse is shown with its four principle elements in this schematic.
The synaptic terminal of the cone (CP, cone pedicle) is shown at the site of neurotransmitter release where the ribbon structure directs
glutamate-filled vesicles to the presynaptic membrane. Two horizontal cell dendrites (HC) are shown entering the invagination alongside
a single dendrite from a bipolar cell (BC) in the typical triad formation. The dendrites of the postsynaptic cells receive signals from the
cone, but the horizontal cells feedback onto the cone via a mechanism that now appears to be mediated by protons in this protected syn-
aptic cleft.
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back inhibition. Their data confirm that a surround-
illumination-induced Ca channel activation shift (

 

�

 

3
mV in the negative direction) in cones is sensitive to
the activity of horizontal cells (Verweij et al., 1996). By
increasing the buffering power of the retinal environ-
ment, they can swamp the local changes of pH that
must be occurring in the synaptic cleft. They speculate
that the Ca channel shift is due to pH changes in the
synaptic invagination caused by proton exchange/
transport in horizontal cells. Although there may yet be
room for GABA and other systems to be operative at
this synaptic site, protons offer the most parsimonious
explanation of the new data.

Protons affect many different channels, enzymes, and
receptors. We know that another voltage-gated channel
important in photoreceptor activity, the hyperpolariza-
tion-activated cation channel responsible for I

 

h

 

, shows
about the same sensitivity to external pH as the Ca
channel (Malcolm et al., 2003). The Ca-activated Cl
channel in cones also shows strong pH sensitivity, ap-
parently due to the underlying pH-sensitivity of the Ca
channels (Barnes and Bui, 1991). Yet, owing to the le-
veraged role that calcium ions play in synaptic transmit-
ter release, the sensitivity of voltage-gated Ca channels
to pH keeps these most critical ion channels at the cen-
ter of interest.

 

What Remains to be Elucidated?

 

It will now be essential to establish that horizontal cell
dendritic membranes transfer protons in response to
membrane potential and in the right direction. Recent
work examining proton fluxes across isolated horizon-
tal cell membranes indicate that hyperpolarization is
associated with an increase in pH (Molina et al., 2000),
the opposite polarity that would be expected for the
proton-mediated feedback described by Hirasawa and
Kaneko (2003, in this issue). This issue is discussed in
the present work and may reflect a problem of pH buff-
ering, which may necessitate measurements in a bicar-
bonate-based system.

Can the extracellular, intrainvagination pH change
be measured? The authors attempted this with pH-sen-
sitive microelectrodes, but had no success. The volume
of interstitial fluid where the pH signaling takes places
is extremely small (Fig. 1 B). It will be interesting if op-
tical methods, perhaps performed with multiphoton
microscopy, can achieve the recording within these
tight confines. For now, the pH change in such a small
and protected space can only be inferred.

 

Conclusion

 

Hirasawa and Kaneko (2003, in this issue) defend a
controversial mechanistic hypothesis for the formation
of center-surround receptive field organization at the
first synapse in the visual system. The elegant experi-

ments strongly support the notion that protons carry
the feedback signal from horizontal cells to cones. Pro-
ton-mediated feedback may not only generate center-
surround antagonistic receptive fields, but chromatic
antagonism in the retina as well (Stratis and Baldridge,
2002). The mechanism may have applicability at syn-
apses throughout the nervous system. This work de-
fines a new era of research on synaptic messengers and
synaptic modulation.

 

This work was supported by the Canadian Institutes for Health
Research (MT-10968).
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