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Low-affinity CD4þ T cells are major responders
in the primary immune response
Ryan J. Martinez1, Rakieb Andargachew1, Hunter A. Martinez1 & Brian D. Evavold1

A robust primary immune response has been correlated with the precursor number of

antigen-specific T cells, as identified using peptide MHCII tetramers. However, these tetra-

mers identify only the highest-affinity T cells. Here we show the entire CD4þ T-cell

repertoire, inclusive of low-affinity T cells missed by tetramers, using a T-cell receptor (TCR)

signalling reporter and micropipette assay to quantify naive precursors and expanded

populations. In vivo limiting dilution assays reveal hundreds more precursor T cells than

previously thought, with higher-affinity tetramer-positive T cells, comprising only 5–30% of

the total antigen-specific naive repertoire. Lower-affinity T cells maintain their predominance

as the primary immune response progresses, with no enhancement of survival of T cells with

high-affinity TCRs. These findings demonstrate that affinity for antigen does not control

CD4þ T-cell entry into the primary immune response, as a diverse range in affinity is

maintained from precursor through peak of T-cell expansion.
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T
he number of antigen-specific CD4þ T cells in the naive
mouse correlates with the effector potential of the
population. Defining the total number of antigen-specific

T cells in an organism, therefore has important ramifications
for understanding immune response outcomes1–6. Currently,
peptide-major histocompatibility complex (pMHC) tetramers
(Tet) provide the gold standard for the identification of antigen-
specific CD4þ T cells7,8. Tetramers are limited to identifying
CD4þ T cells with higher-affinity T-cell receptor (TCR):pMHC
interactions9–12 and bind via an avidity-dependent mechanism
without dependence on CD4 co-receptor11,13–18. Thus, unbiased
assessment of the total number of antigen-specific T cells has
been challenging in the case of CD4þ T cells, owing to the high-
affinity predisposition by tetramers. Therefore, the contribution
of lower-affinity T cells in the naive and expanded T-cell
repertoires is currently unknown, in part due to the difficulty of
accurately quantifying these T cells in the naive repertoire.

Previous studies have suggested T cells with higher-affinity
TCR:pMHC interactions possess enhanced survival or preferred
selection during the primary or secondary immune response19–21,
with others reporting affinity independence of T-cell maintenance
during an immune response22. These experiments only analysed
biased populations by restricting ab TCR diversity and/or
sampling with pMHC tetramers, thereby potentially missing
clones participating in the response. Further works using
TCR-transgenic (Tg) models and altered peptide ligands
support the concept that optimal responses occur in the case of
highest-affinity interactions23,24. Yet, none of these analyses
encompass the full polyclonal repertoire, leaving the question on
the contribution of lower-affinity and higher-affinity T cells in the
expanded T-cell population unanswered.

To study the contribution of low-affinity and high-affinity
CD4þ T cells to the primary immune response, the number
of naive and expanded total T cells must be identified.
Multiple groups have acknowleged the presence of lower-affinity
(Tet-negative, Tet� ) T cells, but these cells are difficult to
adequately quantitate at any point during the immune
response9,11,25. To accomplish this task, we repurposed the
Nur77gfp TCR signalling reporter as a method for identifying
lower-affinity, Tet� antigen-specific CD4þ T cells. To define
the number of precursor T cells, we used the Nur77gfp reporter in
an in vivo limiting dilution assay (LDA), finding Tet� CD4þ
T cells made up the majority of the naive antigen-specific
T-cell population. On expansion, the ratio of high-affinity to
low-affinity antigen-specific CD4þ T cells was reduced,
signifying high-affinity TCRs do not confer a clonal expansion
advantage. As well, total naive precursor numbers positively
correlate with expanded CD4þ T cells, indicating total precursor
number predicts expansion when the entire range of TCR affinity
is analysed. These data demonstrate T-cell responses are
population based with a range of naive affinities that are
maintained throughout an immune response to preserve affinity
and diversity.

Results
LDA reveals similar numbers of Tet� and Tetþ CD4þ T cells.
The transfer of bulk CD4þ T cells at the tetramer-positive
(Tetþ ) limiting dilution level has proven fruitful in the study
of single-cell expansion and differentiation26,27. However,
polyclonal antigen-specific CD4þ T cells with lower-affinity
TCR:pMHCII interactions are not detected by traditional
pMHCII tetramer staining used in these assays9,10,28.
Consequently, lower-affinity, antigen-specific CD4þ T cells are
missed in these single-clonotype pMHCII tetramer-
based analyses. To better define the response inclusive of

lower-affinity T cells, the TCR-specific signalling reporter
Nur77 was used as a readout of antigen specificity29–31. To
determine the extent that lower-affinity T cells participate in an
immune response, we transferred T cells from Nur77gfp mice at
the levels reported to be limiting for Tetþ LCMV GP66–77-
specific CD4þ T cells (6� 106 CD4þ Thy1.2þ T cells into
congenically distinct Thy1.1þ recipients)26. At day 7 post
immune challenge with peptide antigen in Complete Freund’s
adjuvant (CFA) (GP66/CFA; Fig. 1a), GP66-Tetþ CD4þ T cells
were enriched and designated as donor (Thy1.2þ ) or host
(Thy1.1þ ) derived based on their respective Thy1 expression
(Fig. 1b, gating strategy Supplementary Fig. 1A). At this number
of transferred T cells, four of the seven mice possessed a GP66-
Tetþ donor clone, in close agreement with published results26.
To identify if these mice also contained lower-affinity Tet� cells,
the samples were depleted of GP66-Tetþ T cells by tetramer
pulldown, and the remaining T cells (Fig. 1c) were stimulated
in vitro for 18–24 h with specific (GP61–81) or non-specific
peptide antigen (Aasf24–32, MOG35–55, NP311–325; Fig. 1a). To
assess antigen specificity, the nuclear receptor Nur77 was used as
its expression has been shown to be TCR signalling strength
dependent29. On the basis of Nur77 expression, six of the seven-
transferred Tet� CD4þ T-cell populations stimulated with
GP66 demonstrated Nur77/CD69 expression with a greater than
three s.d. increase above the mean of the non-specific controls
(Fig. 1d). There was a low-level background of Nur77 expression
that was priming antigen independent (Fig. 1d), but the
normalized per cent increase of Nur77/CD69 expression for the
GP66-stimulated samples caused the greatest increase. These
findings show lower-affinity, Tet� populations are present at
least as frequent as Tetþ cells, as demonstrated by similar
number of mice with antigen-specific populations (4/7 mice for
Tetþ , 6/7 mice for Tet� ).

Nur77 expression has been used to readout functionality of
CD4þ T cells in multiple systems29–35. Even though these T cells
are functional, it does not describe the role these T cells are
playing in the immune response. Therefore, we interrogated the
expression of Bcl-6, the lineage-defining transcription factor for
follicular helper T cells (TFH), in the Tetþ and Tet� antigen-
specific T cells. Bcl-6 expression has been reported to be induced
with a variety a range of affinity, with the highest-affinity and
lowest-affinity interactions, inducing Bcl-6/TFH development36.
Antigen-specific T cells showed expression of Bcl-6, regardless of
whether they were Tetþ or Tet� , although a greater frequency
of higher-affinity, Tetþ T cells expressed Bcl-6 compared with
lower-affinity, Tet� antigen-specific T cells (Fig. 1e). Antigen-
inexperienced (CD44� ) T cells and antigen-experienced but not
antigen-specific (CD44þNur77� ) T cells demonstrated little to
no expression of Bcl-6 (Fig. 1e). Our data support the findings
that TFH differentiation can occur for TCRs with a range of
affinities36,37. As well, the data show that high-affinity and low-
affinity T cells have shared, but distinct functions in the total
T-cell population.

Low-affinity T cells predominate the naive repertoire. Although
the above data identified Tet� CD4þ T cells during an immune
response, it did not quantitate the initial precursor number of
these lower-affinity T cells. We next set out to enumerate the
precursor frequency of naive antigen-specific CD4þ T cells
independent of pMHCII tetramer by using the Nur77 reporter in
an in vivo LDA38. Varying numbers of CD4þ T cells from
Nur77gfp mice were transferred into T-cell-deficient TCRa� /�

mice and recipients were immunized with peptides emulsified in
CFA (Fig. 2a). Lymphopenic hosts were used as this allowed for
larger blast sizes for individual T-cell clones, thereby increasing
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the sensitivity of the assay as it is dependent on population
increases in expression of Nur77. At 21 days post immunization,
splenocytes from recipient mice were restimulated ex vivo for
18–24 h with specific or non-specific peptide antigens before
assessment for Nur77gfp and CD69 expression (Fig. 2b).
Representative flow plots of transferred CD4þ T cells that
demonstrated positive responses (top row, Fig. 2b) and negative
responses (bottom row, Fig. 2b) are shown for NP311–325-primed
mice. NP311–325-stimulated samples containing a Nur77gfpþ

CD69þ population greater than three s.d.’s above the mean of
two non-specific peptides (GP61–81 non-specific peptide control
shown) were tabulated as positive and graphed as a function of
the number of CD4þ T cells present in the hosts after transfer
(Fig. 2c). The points at which 37% of the hosts do not possess a
clone equates to where a single precursor cells is present in the
population (dotted line, Fig. 2c) and is based on a 20% park rate
into lymphopenic mice with a total of 4� 107 CD4þ T cells
per mouse. The precursor frequencies were calculated for six
different epitopes (MOG35–55 self-antigen: 1,099 (669–1805) cells,
MTB 85b280–294: 1,206 (682–2,133) cells, LCMV GP61–81: 627
(322–1,218) cells, Chlamydia Aasf24–32: 350 (169–725) cells,
Influenza NP311–325: 285 (179–454) cells, and Salmonella
FliC427–441: 192 (92–402) cells) that were chosen as they
spanned the range of previously published tetramer precursor
frequencies and were plotted with their 95% confidence levels
(Fig. 2d)8. Comparison of the LDA and naive tetramer

enrichments revealed Tetþ numbers accounted for 5–30% of
the total naive antigen-specific repertoire, demonstrating tetramer
only identifies a minor subset of each antigen-specific T cells in a
naive population. Control LDA experiments were performed for
NP311–325 antigen in wild-type (WT) mice and in TCRa� /�

mice, when using only 10 mg ml� 1 of peptide for restimulation,
instead of 100 mg ml� 1 as for previous LDA experiments, finding
similar results across all experiments (Fig. 2e,f, gating strategy
Supplementary Fig. 1B for WT). These findings demonstrate
Tet� T cells are present in the naive T-cell repertoire at greater
frequencies than Tetþ CD4þ T cells and proliferate in an
antigen-specific manner that could be read out by the Nur77
assay.

Lower-affinity T-cell clonotypes are identified by LDA. To
confirm the Nur77gfpþ CD4þ T cells identified Tet� T cells,
pMHCII tetramer was used to costain unstimulated LDA samples
when calculating precursor numbers (Fig. 3a). Of the 34
mice receiving T cells for calculating the precursor numbers for
NP311–325, only one mouse possessed Tetþ T cells (Fig. 3a, left
panel), while 20 mice possessed antigen-specific Nur77gfpþ cells
and the remaining 13 mice did not respond. Next, the micro-
pipette adhesion frequency assay (MP) was used to determine the
affinity of CD4þ T cells from mice that were either positive or
negative for antigen-specific Nur77 upregulation during LDA.
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Figure 1 | Tetþ LDA reveals low-affinity CD4þ T cells in the naive repertoire. (a) 6� 106 Nur77gfp CD4þ T cells (6� 105 after a 10% park rate,

Thy1.2þ ) were transferred into congenically distinct (Thy1.1þ ) mice and immunized with GP61–81 peptide/CFA followed by tetramer enrichment and

restimulations. (b) Flow cytometry of representative GP66-Tetþ enrichment of secondary lymphoid organs from day 7 immunized mice with a positive

donor (Thy1.2þ ) clone identified. (c) After tetramer enrichment, the unbound cells were independently stimulated with 100mg ml� 1 of specific (GP61–81)

or non-specific (Aasf24–32, MOG35–55 or NP311–325) peptides and gated to identify donor CD44þ Tet� Thy1.2þ CD4þ T cells by flow cytometry.

(d) Percent change over averaged background of Nur77gfpþCD69þ CD4þ T cells after stimulation with individual antigens (n¼ 7, two independent

experiments, *¼ 3 s.d. above background average, NS¼ no significance). (e) Bcl-6 expression measured by flow cytometry of CD4þ T cells from day 5

immunized mice within identified subsets. Frequency of cells expressing Bcl-6 within each subset identified (points represent individual mice, n¼ 6–7, two

experiments, one-way analysis of variance, NS¼ no significance, ***Po0.001,****Po0.0001).
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CD4þ T cells from LDA-positive mice had a significantly greater
adhesion frequency for the priming antigen NP311–325 (left panel,
Fig. 3b), than mice with no measurable antigen-specific Nur77
upregulation, allowing for the calculation of TCR:pMHCII
affinity (middle panel, Fig. 3b). The affinity for influenza
NP311–325 was below that for which we previously reported was
necessary for detection by MHC class II tetramers (410� 4mm4;
right panel, Fig. 3b)9,39. When the affinity of T cells from five
individual mice were assessed, mouse 2, 3, 4 and 5 displayed a
range in affinity of o10-fold (Fig. 3b). TCR affinity ranges of
10-fold or less are characteristic of clonal T-cell popu-
lations12,28,30,40, while polyclonal populations can possess a
1,000-fold range in affinity9,41. Of note, mouse number 1
displayed a wider range of TCR affinity that appeared as
distinct higher-affinity and lower-affinity populations,
suggesting the presence of two clones. This is consistent with
the frequency of T cells (1.2� 106 CD4þ T cells transferred) for

that animal being above the limiting dilution level and the
potential presence of more than one clone. A polyclonal
assessment of TCR affinity for NP311–325 was included (Fig. 3b),
displaying the wider affinity range (4100-fold) observed in
polyclonal responses and demonstrating a similar range to the
single clones measured (Fig. 3b). Overall, the micropipette
analysis defined the presence of antigen-specific T cells with
affinities below the minimum required for tetramer staining,
while suggesting their clonality and confirming the antigen
specificity of the functional Nur77gfp LDA measurements.

To further demonstrate clonality of the LDA experiments,
single-cell TCRb sequencing was performed on Nur77gfp-positive
and -negative populations from NP311–325 LDA mice. All
LDA-positive mice were highly enriched for a single-TCRb
clonotype (470%) with no TCR sequences shared between the
mice (shared sequences identified as same colour in individual
mice, Fig. 3c). The remaining sequences from each mouse
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Figure 2 | Increased number of naive precursor identified using an in vivo LDA. (a) Varied numbers of purified Nur77gfp CD4þ T cells were transferred

into individual TCRa� /� mice, immunized with peptide antigen in CFA and allowed to expand for 21 days before peptide rechallenge. (b) Day 21 flow

cytometry analysis of antigen specificity on donor CD4þ T cells after NP311–325 immunization showing CD69/Nur77 expression after antigen rechallenge

with either control (GP61–81-left panel) or priming antigen (NP311–325-right panel). NP311–325-positive clone shown on top row with negative clone shown on

bottom row. (c) Positive clones were identified when the antigen-specific upregulation of CD69/Nur77 were three s.d.’s above the background mean and

were graphed as a function of initial cells transferred after accounting for a 20% park rate in lymphophenic mice (n¼4–12 mice per concentration per

antigen). Dotted line represents 37% mark of nonresponding mice. (d) Tabulated pMHCII tetramer and Nur77 LDA calculated naive CD4þ T cells number

for a single antigen, represented as mean±95% confidence interval. FliC and Aasf Tetþ values are taken from previously published work (Marc Jenkins,

personal communication, Nelson et al.8). (e) Limiting dilution experiments in WT mice after immunization with NP311–325/CFA, with flow cytometry plots

showing CD69 and Nur77 expression for background (MOG35–55) or antigen-specific stimulation (NP311–325; representative sample). (f) Enumeration of

naive LDA for NP311–325-specific T cells in TCRa� /� or WT mice restimulated with 100mg ml� 1 of peptide or TCRa� /� mice restimulated with

10mg ml� 1 peptide (five independent experiments, three to four T-cell dilutions per experiment, data represented as mean±95% confidence level, one-

way analysis of variance, NS¼ no significance).
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correlated with the background green fluorescent protein
expression identified in all Nur77gfp animals. No TCRb chain
predominated in mice lacking antigen-specific T cells clones as
defined by LDA or amongst the Nur77gfp� T cells in a mouse
with a positive clone identified by LDA (Fig. 3c). These data
demonstrate the in vivo LDA with TCR repertoire analysis can
identify and isolate single, lower-affinity T-cell clones and
provides an effective method for calculating the precursor
number of Tet� CD4þ T cells in the naive repertoire.

T-cell expansion is correlative with naive T-cell numbers. As we
estimated the total antigen-specific CD4þ T cell for six epitopes
in the naive mouse and found them to outnumber Tetþ coun-
terparts, we wanted to next determine the contribution of the
low-affinity CD4þ T cells on immune expansion. Naive Tetþ
precursor frequency predicts the immunodominance of an anti-
gen-specific T-cell population4,8, but these assays have not
included Tet� CD4þ T cells or even those antigens enriched
for lower-affinity TCRs such as self antigens like MOG.
Analysis of foreign antigen-specific Tetþ CD4þ T cells after
immunization with peptide in CFA confirmed the positive
correlation between (r2¼ 0.41, Po0.0001) precursor and
expanded T-cell numbers (different antigens represented by
each point, dotted line, Fig. 4a, gating strategy Supplementary
Fig. 2). Yet, when MOG self-antigen-specific CD4þ T cells are
included in the tetramer analysis (solid line, Fig. 4a) the r2 value
decreases to 0.22 with a P value of 0.0021, indicating factors other
than precursor frequency may contribute to Tetþ T-cell

expansion to self-antigens42,43. Next, MP analysis of T cells
from mice immunized 14 days earlier with peptide/CFA showed a
strong correlation with the naive precursor frequency measured
by LDA (Fig. 4b). When lower-affinity T cells measured by MP
were included in the expanded T-cell numbers, the naive to
expanded T-cell correlation improves, even with the inclusion of
CD4þ T cells specific for MOG self-antigen (Fig. 4b). Further
comparison of the precursor numbers from tetramer staining and
LDA calculations revealed a significant correlation between the
methods, suggesting tetramer can be used to roughly estimate
the hierarchy within naive populations, though it still vastly
underestimates naive T-cell numbers (Fig. 4c). In addition, MP
identifies B10–150-fold greater numbers of expanded antigen-
specific CD4þ T cells than by tetramer, significantly altering our
understanding of the extent of CD4þ T-cell expansion.

To determine how TCR:pMHCII affinity influences the
expansion of T cells during the primary immune response, the
ratio of Tetþ to Tet� T cells were compared for all epitopes in
both naive and immunized samples (Fig. 5a). No increase in the
frequency of Tetþ T cells was found at the peak of expansion
(day 14 after immunization), signifying Tetþ T cells did not gain
a competitive advantage over lower-affinity T cells. In fact, a
significant reduction in the frequency of Tetþ CD4þ T cells of
the total expanding population was found for all antigens
(Fig. 5a). This was not a function of the time point measured,
as kinetic analysis of the MOG-specific repertoire revealed
higher-affinity T cells contributed the most in naive state, with
significantly less involvement as the immune response progressed
(Fig. 5b). The large contribution of lower-affinity CD4þ T cells
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was also found in the NP311–325-specific T-cell population
responding during influenza x31 infection and NP311/CFA
immunization (Fig. 5c). This demonstrates that low-affinity T-cell
recruitment does not only occur in response to CFA, but is equally
present during infection. Next, the fold expansion of antigen-
specific populations (Tetþ and Tet� , each point is a unique
antigen) was graphed separately as a function of precursor
frequency (Fig. 5d), finding CD4þ T-cell populations with smaller
precursor numbers exhibiting greater expansion. MOG was
removed from the analysis for higher-affinity T cells due to its
altered expansion due to tolerance. When the higher-affinity (solid
line) and lower-affinity (dotted line) populations were compared at
the same precursor frequency, the lower-affinity T cells have the
potential to expand to a greater number than the higher-affinity,
Tetþ T cells (Fig. 5d). Interestingly, the slopes of the two
lines generated are similar (Tetþ : � 0.47, Tet� : � 0.42),
signifying the two populations of cells compete within themselves
comparably (Fig. 5d). Therefore, TCR:pMHCII affinity
does not control the accumulation of CD4þ T cells
during the immune response, and instead immune activation
selects for a diverse range of affinities during primary immune
expansion.

Discussion
Precise quantification of T-cell precursor numbers and expansion
is essential for understanding the function of the adaptive
immune system, vaccine design and adoptive T-cell therapeutics.
Initially, T-cell numbers were defined by in vitro LDA based on
the frequency of functionally responsive cells38. TCR-Tg mice
allowed for the study of the naive frequency and expansion of
monoclonal populations, but did not address the diversity
present in a polyclonal immune response44,45. The advent of
pMHC tetramer technology began to address the limitation of
monoclonal analysis by providing improved assessment of
precursor and expanded T-cell numbers in more clonally
diverse populations4,7. Key insight into the relationship between
precursor numbers, expansion and cross-reactivity was provided
with the use of the tetramers although tetramer-based affinity
and avidity interactions do not fully encompass polyclonal
T-cell responses, especially those enriched for lower-affinity
interactions, that is ones specific for self-antigen8,42. Previous
studies had identified these low-affinity, Tet� T cells, but have
never developed a way to quantify, identify and phenotype these
polyclonal T cells in their naive or activated state11,25. Therefore,
this work adds to these initial observations, allowing for the study
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of low-affinity, Tet� T cells in a polyclonal model, providing
increased depth of understanding to CD4þ T-cell responses.

A major goal of this work was to quantify the precursor
number of antigen-specific CD4þ T cells inclusive of lower-
affinity T cells missed by MHC class II tetramers. In calculating
the total naive T-cell numbers, we chose to perform these
experiments in T-cell-deficient mice. As the LDA is a digital
response (cells are either present or absent), the lymphopenic
environment increases the signal to noise ratio of the assay
by allowing for larger proliferation of the single clone being
measured for Nur77 expression after restimulation. The lympho-
penic environment has minimal impact on the competition
dynamics between high-affinity and low-affinity T cells, as LDA
calculations were similar between mice with (WT) and without
(TCRa� /� ) T cells. Therefore, we can conclude the lympho-
penic environment has minimal impact on competition dynamics
between high-affinity and low-affinity T cells in the LDA
calculations. This is in agreement with previous work as groups
have suggested the initial precursor frequency of CD4þ T cells is
low enough to prevent the competition between antigen-specific
T cells24. Once T cells have expanded, some infer that
competition for resources could favour the dominance of
individual clonotypes that many would presume relate to TCR
affinity19,20. Instead for all polyclonal responses analysed here, we
find a distribution of TCRs where low-affinity CD4þ T cells
expand from their naive numbers to remain more numerous in
the immune repertoire. On secondary challenge, both high-
affinity and low-affinity T cells have been shown to have an
advantage in survival19,22. We hypothesize that there will be
narrowing of the antigen-specific TCRb population, as only some
of the clones will respond to antigen, but between the high-
affinity and low-affinity populations there will be no enhanced
survival. This is likely due to mechanisms that can modulate TCR
signalling such as TCRb downregulation22 and Lck-coreceptor
conjugation46, which have been shown to occur after primary
immune responses.

Our data indicate TCR affinity does not predict the peak
expansion of T cells in response to primary antigen exposure,
though we do not know if affinity affects the efficiency of entry
into the immune response. The correlation between affinity and
expansion has been proposed before, but conflicting data exists.
For example one could conclude that affinity does not correlate
with expansion to antigen based on Tg-barcoding experi-
ments47,48. In these experiments, a single OT-I T cell can have
a range of contribution to the expanded repertoire even though
each T-cell expressed the same clonal TCR47,48. As well, high-
affinity and low-affinity CD4þ T cells show similar efficiency of
proliferation in both in vitro and in vivo work22,28. On the
other hand, the use of altered peptide ligands (APLs) or a fixed
TCRb chain Tg has demonstrated the magnitude of expansion
and contribution to the total repertoire was correlative with
TCR:pMHC affinity21,23. It is unclear what factors are different
between these experiments, but potentially infection type, TCR-
Tg T-cell thymocyte development or competition with the
endogenous repertoires may affect competition and expansion.
Thymocyte development has been shown to play an important
role in setting the basal activity of T cells49, but TCR-Tg T cells
would not undergo these varied developmental consequences,
thereby potentially altering an important negative regulatory loop
in T-cell development with different affinities. Our data based on
the polyclonal T-cell response to six different antigens indicates
that TCR affinity does not influence clonal expansion dominance.

The identification of low-affinity CD4þ T cells always comes
with questions about the functionality of this T-cell subpopula-
tion, as it is hypothesized that low-affinity equates to sub-optimal
and that the enumeration of Tetþ and functional responses leads

to similar magnitudes6,50. However, these assumptions are
not completely accurate. Transcription factor profiling of the
CFA immune response has shown Tetþ cells have at most
20% T-betþ (TH1 lineage-defining transcription factor) expre-
ssion8,43. In contrast, experiments monitoring cytokine secretion
by T cells in this same immune response have show interferon-g
(IFN-g) enzyme-linked immunoSpot (ELISPOT) data and Tetþ
T-cell number equate8,42. Therefore, Tetþ T-betþ CD4þ T
cells cannot be the sole source of IFN-g production in ELISPOT
experiments. Likely, lower-affinity T cells are contributing to this
pool of antigen-specific T cells identified by ELISPOT. Recent
work using a pMHCII dodecamer (12 pMHCII arms instead of
four) supports this hypothesis as they found Tet� , but
dodecamerþ T cells exhibited similar function to Tetþ T
cells51. The dodecamer reagent, while giving increased numbers
as compared with tetramers, only showed two to three times
greater identification of T cells, which is still an underestimation
as compared with the seven to eight times increase we find using
Nur77 in the naive repertoire and 410� increases found using
the micropipette. Please note, that Nur77, like all functional
responses, underestimates the numbers of CD4þ T cells in an
immune response as not every T cell can respond at a given time.
For example, analysis of cloned TCRs in a retrogenic system
found that several retrogenic-TCRs (TCR-Rg) could cause
autoimmune diabetes30, but within each TCR-Rg group, only a
fraction could upregulate Nur77 even though the population
shared the same TCR. Therefore, induction of Nur77 expression
as readout by the reporter is likely less sensitive then the
measurement of effector functionality and likely independent of
TCR affinity. More work will be needed to understand the
interaction of TCR affinity, T-cell signalling thresholds and their
correlation with effector function.

Since polyclonal TCR affinities during the CD4þ T-cell
response are maintained from the naive state, this diversity most
likely serves a functional purpose, as biological systems are
seldom wasteful. In T-cell immunotherapeutics, some TCRs have
been engineered for higher-affinity pMHC interactions with the
belief that the highest-affinity TCR would generate the most
efficacious immunodominant response52. Of interest, the
selection of engineered higher-affinity TCRs has been both
successful and disastrous in patients with outcomes that
have included death53,54. This points to a need for further
understanding of what is an optimal affinity range for effective
immunity, with recent data showing greater function of TCRs
with intermediate affinity22. Instead of a single unusually high-
affinity TCR, a range of affinities might prove more advantageous.
Our data demonstrates that population diversity is a property of
the immune response and that mechanisms maintain a diverse
affinity range of CD4þ T cells in a polyclonal population. For
example, population diversity of antigen responsive T cells can be
seen in the production and use of interleukin-2. While only a
subset of T cells produce interleukin-2, both high-affinity and
low-affinity T cells may use this key growth cytokine36,55,56. A
counterpoint to the concept of favoring higher-affinity T cells are
the findings that lower-affinity T cells possess preferred differen-
tiation patterns, with these T cells more likely to acquire TH2, TFH

or TCM phenotypes6,36,50,57,58. As well, data has shown that initial
induction of peripherally derived regulatory T cells can arise from
lower-affinity TCR:pMHCII interactions59,60. By understanding
the population characteristics of lower-and higher-affinity CD4þ
T cells together, unique immune treatments may be developed
with targeted characteristics.

Inclusion of lower-affinity TCRs in immune repertoires leads
to a large increase in the numbers of CD4þ T cells specific
for a single epitope, altering our understanding of TCR
cross-reactivity. TCR cross-reactivity, defined as a single ab
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TCR binding to multiple pMHC, has been shown to be necessary
for complete immune protection against pathogens, as there are a
greater number of potential epitopes (209B5.12� 1011) than
estimated mouse ab TCR clonotypes (2� 106)2,61. Our findings
of increased CD4þ T cells specific for a single antigen increases
the theoretical amount of TCR cross-reactivity required for
complete immune protection by eightfold2. Due to the increase in
cross-reactivity, the amount of T cells needed to protect an entire
mouse, termed the protecton, may be similarly decreased due to
the increased number of T cells for a single antigen3. Future work
will need to clarify how affinity impacts cross-reactivity or if there
is any correlation at all.

In conclusion, we find the expansion of naive CD4þ T cells in
the primary immune response is independent of TCR:pMHCII
affinity, while also quantitating the total number of CD4þ T cells
in an immune response. Quantitation of the total repertoire
reveals that up to 90% of the CD4þ T cells participating in the
immune response are ignored by conventional analyses. It will be
of interest to determine if this frequency of ignored CD4 T cells is
a constant or if it can be altered based on the antigen delivery.
Potentially, priming antigen doses used here could affect the ratio
of high-affinity to low-affinity T cells, as it has been shown
antigen dose changes the expansion and differentiation of high-
affinity, Tetþ CD4þ T cells26. However, recent work has shown
use of low-antigen concentration to activate CD4þ TCR-Tg T
cells with different affinities for the same antigen causes similar
primary division rates, thereby maintaining the diversity of the
T-cell population even across a range of affinities22.Since lower-
affinity CD4þ T cells have been shown to have similar roles as
higher-affinity T cells26,36, the sole use of pMHCII tetramers
underestimate the diversity and richness of the immune system
by not monitoring these lower-affinity cells. The expansion and
continual presence of these T cells likely highlight the need of
affinity diversity for maintenance of a healthy immune system
and limiting microbial immune evasion62–64. Future studies are
needed to fully understand how low-affinity T cells may impact
human immune health, as we predict to see similar total numbers
of antigen-specific T cells in mice and humans given that they
possess similar repertoire diversity and specificity2,65.

Methods
Mice. C57BL/6NCr (WT) mice were purchased from the National Cancer
Institute, while MOG KO mice66 were a gift from Hugh Reid and were bred
on site. Thy1.1þ , Nur77gfp and TCRa� /� mice were purchased from Jackson
Laboratories and were bred on site. Mice were 6–8 weeks old when used for
experiments. Both males and females were used. WT mice immunized with
MOG35–55 were monitored for weight loss due to experimental autoimmune
encephalomyelitis (EAE) and were killed if weights fell o20% of initial starting
weight. Experimental sample sizes were chosen from previous experiments on
naive and expanded T-cell numbers8. No mice were excluded from analysis. No
randomization was performed for experiments and no investigator blinding was
performed. All animals were housed in an Emory University Department of
Animal Resources facility (Atlanta, GA, USA). Permission was granted and
performed in accordance with the protocols of the Institutional Animal Care and
Use Committee.

Peptide priming. MOG35–55 (MEVGWYRSPFSRVVHLYRNGK), 85b280–294

(FQDAYNAAGGHNAVF) GP61–81 (GLKGPDIYKGVYQFKSVEFD),
Aasf24–32 (VSSPAVQES), NP311–325 (QVYSLIRPNENPAHK) and FliC427–441

(VQNRFNSAITNLGNT) peptides were synthesized on a Prelude peptide synthesizer
(Protein Technologies, Inc., Tuscon, AZ, USA). For all peptide immunizations,
200mg of the peptide was emulsified in 375mg of CFA and injected subcutaneously
into the flank of a mouse on days 0 and 7 (150ml total volume per injection). CFA
was made in-house by mixing 20 ml of Incomplete Freund’s Adjuvant (Becton
Dickinson, Franklin Lakes, NJ, USA) and 100 mg of desiccated Mycobacterium
tuberculosis H37 Ra (Becton Dickinson). On days 0 and 2, 300 ng of pertussis
toxin (Ptx, List Biological Labratories, Campbell CA, USA) was injected intraper-
ionteallly in all immunizations to compare both the self and foreign immune
responses.

Tetramer enrichments. Tetramers and monomers were provided by the National
Institute of Allergy and Infectious Diseases Tetramer Core Facility at Emory
University or were a generous gift of Marc Jenkins. Tetramer enrichment and
staining was performed as previously described67. Briefly, mouse peripheral
lymphoid organs (spleen and inguinal, para-aortic, brachial, axillary, cervical and
mesenteric lymph nodes) were processed into a single-cell suspension. Cells were
then stained with the respective tetramer (phycoerythrin (PE)- and/or
allophycocyanin (APC)-conjugated, 4 mg ml� 1 final concentration) for 60 min at
room temperature, washed, stained with 50 ml of anti-PE or anti-APC magnetic
microbeads for 30 min on ice (Miltenyi Biotec, Germany), washed and enriched on
a magnetized LS column (Miltenyi Biotec). The bound and flow-through samples
were then sampled to determine population counts using AccuCheck microbeads
(Invitrogen, Carlsbad, CA, USA) and stained for analysis by flow cytometry.
Antibodies used are show in Supplementary Table 1. For intracellular staining, cells
were treated with the Tonbo or eBioscience Fixation and Permiabilization kits as
per the manufacturer protocol. Samples were collected on an LSR II (Becton
Dickinson) and analysed using FlowJo (Treestar, Ashland, OR, USA).

CD4þ T-cell adoptive transfer. Splenocytes from naive mice were collected and
processed into a single-cell suspension. CD4þ T cells were purified following
manufacturer instructions using the CD4þ T-cell negative isolation kit (Miltneyi
Biotec). Purified CD4þ T cells were analysed by flow cytometry for purity and
counted by flow cytometry using AccuCheck microbeads (Invitrogen). Purified
CD4s were injected intravenously into recipient mice and immunized 24 h later.
Park rate at 24 h was measured in TCRa� /� and found to be B20%
(Supplementary Fig. 3).

Nur77 analysis. For experiments comparing donor high-affinity and low-affinity
T cells in a WT mouse using tetramers, spleens and lymph nodes from recipient,
immunized mice were collected and processed into single-cell suspensions.
Tetramer enrichment was performed as described above. Bound samples were then
analysed by flow cytometry. For adoptive transfer limiting dilution experiments in
WT mice, Thy1.2 enrichment was performed using anti-Thy1.2 antibody and
anti-APC magnetic Microbeads (Miltenyi Biotec) following manufacturer protocol.
For Nur77 analysis in WT mice flow-through (FT) samples were used and not
enriched. For all cases, prepared samples were stimulated for 18–22 h in quad-
ruplicate with 10 mg ml� 1 of peptide (one specific peptide and three non-specific
peptides). Samples were then collected and stained for analysis of donor
(Thy1.2þ ) CD4þ T-cell Nur77 upregulation by flow cytometry. For analysis of
the frequency of Nur77 upregulation, non-specific background was averaged and
subtracted from both specific and non-specific samples, and then graphed. Dis-
crimination of positive and negative clones for LDA was performed as described in
the section on calculations with the values being reported as mean±95% con-
fidence intervals.

For experiments calculating naive precursor frequency of low-affinity CD4þ
T cells, spleens from recipient TCRa� /� mice were collected and processed
individually into single-cell suspensions. Splenocytes (2–3� 106) from each mouse
were plated in quadruplicate, with three samples stimulated with 100 mg ml� 1 of
peptide for 18–22 h and one sample remaining unstimulated. The unstimulated
sample was used for pMHCII tetramer staining to detect higher-affinity CD4þ
T cells. Stimulated splenocytes were collected, stained with antibodies shown and
analysed by flow cytometry as described above. Discrimination of positive and
negative clones was performed as described in the section on calculations.

Nur77 functional measurement. Spleen and lymph nodes of previously immu-
nized mice were processed into a single-cell suspension and counted. Samples were
split in half and both set of cells were stimulated with 10 mg ml� 1 of peptide at a
concentration of 1� 107 cells per ml in complete media (RPMI 1640, 10% (v/v)
FCS, 2 mM L-glutatmine, 0.05 mM 2-mercaptoethanol and 0.05 mg ml� 1 genta-
micin sulfate) for 4 h. One sample received MOG35–55 (antigen specific), while the
other received GP61–81 (non-specific). Samples were then collected and tetramer
enrichment was performed as described above. Both bound and flow-through
samples were then analysed by flow cytometry.

TCRb sequencing. Single-cell Tcrb VDJ sequencing was performed as previously
described68. In preparation for sequencing, LDA experiments were performed for
the NP311–325 antigen in TCRa� /� mice (see section on LDA). After restimulation
and flow cytometry, the samples were analysed to determine if they possessed a
low-affinity T-cell clone (see section on Calculations). Single CD4þ T cells from
positive and negative LDA samples were then index-sorted by a FACS Aria II
(Becton Dickinson) into a 96-well plate containing 2.5 ml cDNA master mix (iScript
cDNA Synthesis Kit, Bio-Rad). Column 12 of the 96-well plate did not receive cells,
thereby acting as a negative control wells for each plate. After production of
complementary DNA, nested Tcrb VDJ PCRs were performed on each sample and
the negative control column was confirmed by gel electrophoresis. Samples were
then sent to Beckman Coulter Genomics (Danvers, MA, USA) for Sanger
sequencing. Individual sequences were tabulated and parsed by in-house designed
software and then analysed by The International Immunogenetics Information
system (IMGT)69–71. Non-productive sequences were not analysed.
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TCR affinity measurement. Spleens from immunized mice were removed on
the noted days and processed into a single-cell suspension. CD4þ T cells were
purified using the CD4þ T-cell positive selection kit (Miltenyi Biotec) as per
manufacturer instructions. In parallel, CD4þ T cells were counted by flow
cytomtery using AccuCheck beads as described above. Red blood cells (RBCs) were
isolated in accordance with the Institutional Review Board at Emory University
and prepared as previously described12. RBCs coated with various concentrations
of Biotin-X-NHS (EMD) were coated with 0.5 mg ml� 1 streptavidin (Thermo
Fisher Scientific, Waltham, MA, USA), followed by 1–2mg of pMHCII monomer.
The pMHCII-coated RBCs were stained with anti-MHC class II PE antibody,
and purified T cells were stained with anti-TCRb (eBioscience, H57-597) PE
antibody. The densities of I-Ab and TCR were calculated using BD QuantiBrite
Beads (Becton Dickinson). The micropipette adhesion frequency assay was then
preformed as previously described12. In brief, a pMHC-coated RBC and
T cells were placed on opposing micropipettes and brought into contact by
micromanipulation for a controlled contact area (Ac) and time (t). The T cell was
retracted at the end of the contact period, and the presence of adhesion (indicating
TCR–pMHC binding) was observed by elongation of the RBC membrane. This
TCR–RBC contact was repeated 25 times and the adhesion frequency (Pa) was
calculated. The relative 2D affinity (AcKa) of each cell that had a Pa of 410% was
calculated using the Pa at equilibrium (where t-N) using the following equation:
AcKa¼ � ln[1�Pa(N)]/(mrml), where mr and ml reflect the receptor (TCR) and
ligand (pMHC) densities, respectively. The total frequency of cells that bound to
pMHCII-coated RBCs was tabulated and used for the calculation of antigen-
specific CD4þ T-cell numbers below. Previous reports have shown that as few as
10 cells in a polyclonal population need to be ran to generate an average affinity for
the population, while considerably fewer cells (estimated to be five to seven cells) in
a monoclonal repertoire need to be measured for an average affinity6. For each
antigen, the number of binders and cells ran is as follows (shown as binders/cells
ran): WT MOG35–55 (33/95), KO MOG35–55 (27/80), GP61–81 (38/174), FliC427–441

(11/154), Aasf24–32 (11/165), NP311–325 (17/249) and 85b280–294 (32/208).

Influenza x31 infections. WT mice were infected intranasally with influenza
A/HKx31 (H3N2) at 30,000 EID50 (50% egg infectious doses) as previously
described72. Spleens were collected at day 10 post infection. Magnetic enrichment
was performed using CD4þ -positive selection following manufacturer protocol
(Miltenyi Biotec). Purified cells were then stained with 4 mg ml� 1 NP311:I-Ab PE
tetramer for 60 min at room temperature or used in the MP assay to determine the
number of antigen-specific cells.

Calculations. For Nur77gfp LDA experiments, all samples were stimulated with
their immunized antigen (100 mg ml� 1) and two to three other non-specific
antigens (100 mg ml� 1). The frequencies of CD44þNur77gfpþCD69þ CD4þ
T cells were tabulated from specific and non-specific antigen controls. Samples
were determined to be positive if the frequency of Nur77gfpþCD69þ CD4þ
T cells in the antigen-specific sample was three s.d.’s above the mean of the
averaged non-specific controls. The number of antigen-specific T cells from the
LDA curves was calculated using an online calculator from a previously described
method and reported as mean ± the 95% confidence interval73.

To calculate the number of CD4þ T cells specific for a given antigen by MP,
the frequency of non-specific binders was determined by performing the MP assay
on CD4þ T cells from mice immunized with non-specific peptide in CFA
(Supplementary Fig. 4). These background-binding frequencies were subtracted
from the frequencies generated in antigen-specific experiments and total numbers
of antigen-specific CD4þ T cells were calculated from previously generated
absolute counts of CD4þ T cells in the spleen.

Statistical analysis. One-way analysis of variance, two-tailed, unpaired Student’s
t-tests, linear regression and two-tailed Student’s t-tests were performed using
Prism (GraphPad, LaJolla, CA, USA) Software.

Data availability. The data and analysis software that support the findings of this
study are available from the corresponding author on request.
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