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Simple Summary: We propose using quantitative imaging metrics (radiomics) derived
from the standard of care patient imaging (positron emission tomography/computed
tomography, PET/CT) to prognosticate response to advanced axicabtagene ciloleucel
(axi-cel) cellular therapy in patients treated for refractory/relapsed Diffused large B-cell
lymphoma (DLBCL). We find radiomic (shape, size) characteristics on the imaging scans
(PET/CT) of extra nodal lesions are prognostic of survival outcome. These metrics have a
high translational ability and can be used for patient selection that can benefit and spare
others from these advanced treatments.

Abstract: Background: Diffuse large B-cell lymphomas (DLBCLs) are the most common,
aggressive disease form that accounts for 30% of all lymphoma cases. Identifying patients
who will respond to these advanced cell-based therapies is an unaddressed challenge.
Methods: We propose to develop a radiomics- (quantitative image metric) based signature
on the patients’ imaging scans (positron emission tomography/computed tomography,
PET/CT) and use these metrics to prognosticate response to axi-cel (axicabtagene ciloleu-
cel), autologous CD19 chimeric antigen receptor (CAR) T-cell (CAR-T) therapy. We curated
a cohort of 155 patients with relapsed/refractory (R/R) DLBCL who were treated with
axi-cel. Using their baseline image scan (PET/CT), the largest lesions related to nodal/extra-
nodal disease were identified and characterized using imaging metrics (radiomics). We
used principal component (PC) analysis to reduce the dimensionality of these features
across the functional categories (size, shape, and texture). We evaluated the prognostic
ability of radiomic-based PC to treatment response (1-year), measured by overall sur-
vival (OS) and progression-free survival (PFS). Results: We found that radiomic PC was
prognostic of overall survival (Shape-PC, q < 0.013/0.0108, Size-PC, q < 0.003/0.0088), in
CT/PET, respectively. In comparison, the metabolic tumor volume (MTV) was prognostic
(q < 0.0002/0.0007). The radiomic PCs across the functional categories showed moderate
to weak correlation with MTV, Spearman’s ρ of 0.44/0.35/0.27, and 0.45/0.36/0.55 for
Size/Shape/Texture-PC1 obtained on PET and CT, respectively. Conclusions: We found
radiomic PC based on size and shape metrics that are able to prognosticate treatment
response to CAR-T therapy.

Keywords: image biomarkers in lymphoma; radiomics in CAR-T; response to CAR-T;
axi-cel biomarkers
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1. Introduction
Lymphomas, heterogeneously diverse hematological malignancies that arises from B

cells, T cells, or natural killer (NK) cells, are broadly classified into Hodgkin lymphoma (HL)
and non-Hodgkin lymphoma (NHL). Each disease presents unique clinical and genetic
features requiring tailored treatments [1,2]. Diffuse Large B-Cell Lymphomas (DLBCLs) are
the most common form of non-Hodgkin lymphoma, accounting for about 30% of the cases,
and are aggressive disease subtypes with a 5-year survival of 65% across all grades [3,4]. It is
reported that about 30 to 40% of cases may present with advanced relapsed/refractory (R/R)
stages that currently rely on salvage treatment that includes intensive chemotherapy and a
stem cell transplantation [5]. Axicabtagene ciloleucel (axi-cel), chimeric antigen receptor
(CAR) T-cell therapy using a CD19 target, has demonstrated superior levels of durable
response in R/R DLBCL, currently recommended as a second-line treatment [6–8]. There
have been efforts to develop clinical biomarkers, such as the International Prognostic Index
(IPI), to prognosticate survival across risk groups in DLBCL based on retrospective data [9].
This index uses pretreatment clinical variables such as serum Lactate Dehydrogenase (LDH)
and the Eastern Cooperative Oncology Group (ECOG) status, clinical stage, and extranodal
site, which have been shown to be useful at diagnosis of the disease [10]. These markers
do not provide a clear benefit in predicting disease progression or relapse beyond disease
assessment at baseline [11]. Current clinical consensus criteria for disease staging and
response include the Cheson and Lugano classification [12,13], but they are unable to
prognosticate treatment response. Metabolic tumor volume (MTV) measure gross tumor
burden, and these metrics have been recently shown to be prognostic of treatment response
in CAR-T [14–16]. However, these metrics are time-consuming to compute and do not
provide any insights into the disease progression.

There is an urgent clinical need to develop a biomarker that can be used to identify
patients who would benefit from cellular therapy. Improvements in imaging modalities
have led to better staging and detection of DLBCL on 18F fluorodeoxyglucose (18F-FDG)
positron emission tomography (PET), along with high-resolution computed tomography
(CT) imaging that has allowed for more precise evaluation of disease condition, tumor
biology, and its microenvironment [17].

Quantitative imaging metrics (radiomics) have shown enormous promise in reflecting
the pathophysiology of the tumor and describing the textural heterogeneity and shape
characteristics, and have been shown to prognosticate the disease progression across
oncological diseases [18–20]. These metrics have been recently shown to be useful in
predicting outcomes in DLBCL [21,22]. In this study, we propose to use radiomic features
on patient imaging (PET, CT) of DLBCL and test their ability to prognosticate treatment
response for CAR-T therapy, complementing our predictive models presented in our
previous work [22]. Our study overview is illustrated in Figure 1.

 
Figure 1. The study process flow shows the use of patient-level imaging metrics (radiomics, MTV).
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2. Materials and Methods
2.1. Patient Data

The study retrospectively curated 155 patient records with R/R diffuse large B-cell
lymphoma (DLBCL) who had received CAR-T therapy (axi-cel). We obtained 100 patients
from the H Lee Moffitt Cancer Center, and 55 anonymized patient records were obtained
from the clinical trial consortium (Zuma-1, sponsor Kite Pharma). Patients with non-
measurable lesions or with or without baseline PET imaging were excluded from the
study. Bridging therapy was defined as any lymphoma-specific therapy given before
CAR T-cell infusion, prior to the start of fludarabine cyclophosphamide chemotherapy for
lymphodepletion, previously presented [14,22].

Our study was approved by the Institutional Review Board (IRB) at the University of
South Florida /Moffitt Cancer Center. Patients with baseline imaging (18F FDG-PET/CT)
prior to CAR T-cell therapy were included. Most patients received bridging therapy as
a standard of care before treatment, defined as any lymphoma-specific therapy. Table 1
shows the patient cohort characteristics. Imaging data corresponding to whole-body CT
and FDG-PET (attenuated corrected) image voxel values were converted to standardized
uptake value (SUV) reference before our analysis.

Table 1. Patient demographics for the data used for radiomic analysis.

Characteristics
All Patients *

(N = 155)

Subcohorts (Lesion Level)

Extra-Nodal (n = 94) Lymphatic
(n = 124)

Age (mean, median, std.dev) 60.1
(63, 12.2)

59.4
(63.5, 12.8)

61
(63, 10.9)

Sex (male/female/unavailable) 61/39/55 36/22 53/29

LDH (mean, median, std.dev) 400.5
(266, 348.25)

448.3
(275.5, 406.79)

408.6
(267.5, 353.4)

ECOG
0–1 83 48 66
2–3 17 10 16

One Year Progression

/death
No
Yes

Unavailable 55

24 (41.4%)
34 (58.6%)

38(46.3%)
44 (53.7%)

Stage
I/II

III/IV
22
78

10
48

14
68

Bridge Therapy
Yes
No

Yes: 50
No: 50

Yes: 28
No: 30

Yes: 41
No: 41

Unavailable 55

Axi-cel therapy
Trial (cancer center)

Consortium (Zuma-1)
100
55

58
36

82
42

* Some clinical variables were unavailable for consortium patients. Lactate Dehydrogenase (LDH), Eastern
Cooperative Oncology Group (ECOG), axicabtagene ciloleucel (axi-cel).

2.2. Metabolic Tumor Volume

We used custom tools implemented on MIM PACS (version 6.8.4, MIM Software®,
Cleveland, OH) to semi-automatically identify lesions with SUV uptake over a reference
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liver region (≥2 cm diameter), which was manually located, following the PERSIST cri-
teria [23]. A clinical expert (radiologist J.W.C.) evaluated these abnormal regions and
removed falsely detected regions. Most common false detections were due to physiological
processes (brain/bladder/etc.), and a few others were removed due to inflammation. We
followed the consensus criteria for lesion identification on the PET image scans [23,24], and
considered voxels over the 41% of SUVmax to define the lesion boundary on these images.
We then summed metabolically active regions across the body to obtain Metabolic Tumor
Volume (MTV), reported in multiple scales, milliliters (mL), and cubic centimeters (cc). The
metrics have been previously presented in DLBCL patients [14].

2.3. Radiological Review

Lesions were semi-automatically identified on the PET scan and reviewed by our
research/clinical radiologist (J.W.C). Additional details about the lesion’s anatomical lo-
cation and association with the lymphatics (nodal vs. extranodal) and volume/size were
recorded. There were 1058 lesions reviewed across the patient cohort, of which 342 were
related to nodal (lymphatics), and 616 were related to extranodal (non-lymphatic). The
patient sub-cohort was organized by grouping the largest lesion in the nodal (n = 124) and
extranodal (n = 94), independently. The nodal cohort had most lesions in the abdomen,
pelvis, and neck, which are three major organ sites. The extranodal group had the most
lesions in the lungs, bone, and liver, which were the major organ sites across the patients in
the cohort.

2.4. Radiomics

The CT and FDG-PET imaging were resampled to a common reference resolution of
1 × 1 × 1 mm3 using bilinear interpolation. The PET images were standardized to SUV
units using the activity concentration to the dosage of 18F-FDG injected volume and patient
body weight. The abnormal region was converged on the PET images and was translated
to CT. We extracted 306 radiomic features for the identified lesion in each modality: CT
and PET (SUV) images, totaling 612 features for a lesion. We categorized imaging radiomic
features into three broad functional categories: Size (n = 38), Shape (n =9), and Texture
(n = 259); details on the feature descriptors are deferred to Supplemental Tables S1–S3,
which were previously reported [22]. The radiomic feature descriptor definition followed
the recommendations of the Image Biomarker Standardization Initiative (IBSI) consensus
criteria [25–27]. Features with a minimal change (coefficient of variance ≤ 3%) across the
patient samples were removed due to the invariant nature of the metric.

2.5. Statistical Analysis

The relationship between the radiomics feature-based principal components (PC) and
the metabolic tumor volume (MTV) was assessed using Spearman’s correlation coefficients
(see Table 2). We used Kaplan–Meier (KM) survival analysis to estimate the survival
function of the identified patient groups, separated using the imaging metrics (radiomics).
We used the midpoint (Median) on the PC metric to divide patients into groups and evaluate
the treatment response measured by survival time to event (OS/PFS). The process was
independently tested across the feature categories (size, shape, texture). We quantified the
difference in the survival functions using log-rank statistical hypothesis testing to estimate
the significance [28]. We computed the proportional hazard ratio (HR) for these cohorts
using the Cox-regression model [29] and reported concordance (C-index), to continuous
event time measured by survival time (OS/PFS) [30]. A p-value of less than 0.05 was
considered statistically significant in our analysis. We corrected for multiple testing by
computing adjusted p-value (q-value or false discovery rate) [31].
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Table 2. The relationship between metabolic tumor volume (MTV) and radiomics features PC (princi-
pal components) across feature categories was assessed using Spearman’s correlation coefficient.

Radiomic Metric
(Principal Component, PC)

Spearman
Correlation (ρ) p-Value

Lymphatics (CT Images)

Size PC1 0.368 0.0000268

Shape PC1 0.3002 0.0007

Texture PC1 −0.345 0.00008

Extra-Nodal (CT Images)

Size PC1 −0.4519 0.000004

Shape PC1 0.3698 0.00024

Texture PC1 0.5535 0.00

Lymphatics (PET Images)

Size PC1 0.3698 0.000023

Shape PC1 0.2717 0.0023

Texture PC1 0.175 0.0518

Extra-Nodal (PET Images)

Size PC1 0.4496 0.0535

Shape PC1 0.3590 0.00038

Texture PC1 −0.275 0.0073

3. Results
The study assessed patients’ baseline PET and CT scans (n = 155), and we formed

sub-cohorts based on the anatomical location of the largest lesion related to the lymphatic
or nodal (n = 124) and non-lymphatic or extranodal (n = 94). The most frequently involved
nodal sites (lymphatic) were the abdominal (46.77%), pelvic (17.74%), and mediastinal
(8.87%). The most frequently involved extranodal sites were lung (36.17%), musculoskeletal
(21.28%), and pelvic (8.51%). The radiomic features were categorized into functional
categories: Size (n = 38), Shape (n = 9), and Texture (n = 259), and the lesions were
characterized independently across the imaging modalities (CT and PET).

We obtained principal components (PC) on features in each of the feature categories.
We found the size-based PCs in extranodal CT and PET (-SUV) images showed the highest
correlation with metabolic tumor volume (MTV), ρ = −0.451 and 0.449, respectively. Texture
and Shape-based PCs on lymphatic lesions in PET (SUV) scans had the lowest correlation
with MTV, a ρ = 0.175 and 0.271, respectively; see Table 2. We report the top five individual
features in each of the functional categories, selected based on those with the highest
loading factors for the respective principal components. In the shape category, the shape-
PCs are related to compactness and sphericity-based features (loading of −0.43). We found
that size-based PCs showed higher loading related to volume fraction (at 10% and 90%),
which are extracted in PET images. The texture-based PCs showed higher loading factors
related to co-occurrence type features in PET images (see Table 3).
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Table 3. Top loading factors (absolute value) for principal components (PC1 to PC3) on individual
radiomic features estimated in the entire cohort.

Features
Loading Factors Median Value

PC1 PC2 PC3 MTV (Median):
169.94 mL

Shape-Related Features

Shape-PC1 (Median):
−0.1909

1 Compactness_1 −0.431 −0.122 0.024

2 Compactness_2 −0.414 −0.074 0.025

3 Spherical_disproportion 0.405 0.224 0.017

4 Sphericity −0.434 −0.141 0.020

5 Asphericity 0.405 0.224 0.017

Size-Related Features

Size-PC1 (Median):
−0.2013

1 SUV (volume_at_intensity_fraction_10) −0.031 −0.123 −0.338

2 SUV (volume_at_intensity_fraction_90) −0.147 −0.032 −0.149

3 SUV (intensity_at_volume_fraction_10) −0.097 −0.101 −0.297

4 SUV (intensity_at_volume_fraction_90) 0.023 −0.129 −0.331

5 SUV (volume_at_intensity_fraction_difference) 0.011 −0.121 −0.316

Texture-Related Features

Texture-PC1 (Median):
−2.9435

1 SUV (avg_coocurrence_joint_max) 0.030 0.001 −0.078

2 SUV (avg_coocurrence_joint_average) −0.012 0.054 0.003

3 SUV (avg_coocurrence_joint_variance) 0.050 −0.104 0.020

4 SUV (avg_coocurrence_joint_entropy) −0.064 0.055 0.044

5 SUV (avg_coocurrence_difference_average) 0.074 −0.129 0.060

We tested the ability of radiomics-based principal components to predict treatment
outcome, measured by the overall survival, OS, and progression-free survival, PFS (cen-
sored at 1 year). We then evaluated shape, size, and texture-based radiomic PCs derived
from PET and CT image data in the extranodal cohort that were significant (p < 0.05) for
OS and PFS.

We found that the shape- and size-based radiomic PC metrics on extranodal cohort
were significant (p < 0.05) for OS and PFS, in PET images (see Table 4). We illustrate patients’
image scans with high and low shape metrics (see Figure 2). We used the Cox-regression
model to assess patients’ proportional hazard (HR) to treatment outcome, measured by
survival (OS/PFS). We first evaluated the clinical metric, MTV, to outcome, and found
an HR of 3.885 and 3.64 for nodal (lymphatic) and extra-nodal (non-lymphatic) cohorts.
The c-index is 0.67/0.65 for nodal (lymphatic)/extra-nodal (non-lymphatic) cohorts (see
Table 5). We found that size and shape PCs on extra nodal CT and PET radiomic PCs were
significant and showed higher risk for adverse outcomes (c-index 0.59 to 0.6 for shape and
0.61 to 0.6 for size, in OS/PFS, respectively). Texture-based radiomic PCs on extranodal CT
show significance (c-index 0.61/0.6 for OS) (see Table 5).
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Table 4. Prognostic value of radiomics feature-based metrics (principal components, PCs), measured
by overall survival (OS) and progression-free survival (PFS), 1 Year after axi-cel therapy. The lesions
were stratified into sub-cohorts (nodal and extra-nodal) across modalities: (A) CT and (B) PET (SUV)
imaging. The MTV (metabolic tumor volume) was computed at the patient level. Adjusted p-value
(false discovery rate, q-value) was also reported; * p < 0.1.

A. Metrics on Computed Tomography (CT) Imaging

Variable

Survival Statistics (Log-rank p-Value, q-Value)

OverAll Survival (OS) Progression Free Survival (PFS)

Nodal (n = 126) Extra Nodal (n = 94) Nodal (n = 126) Extra Nodal (n = 94)

1 MTV
(total body)

<0.0001 *
(0.0003)

<0.0001 *
(0.0002)

0.00024 *
(0.0096)

0.00017 *
(0.00096)

2 Shape-PC1 0.75
(0.75)

0.008 *
(0.013)

0.67
(0.72)

0.017 *
(0.0272)

3 Size-PC 0.18
(0.24)

0.0012 *
(0.003)

0.22
(0.293)

0.00046 *
(0.0012)

4 Texture-PC 0.58
(0.663)

0.0037 *
(0.007)

0.72
(0.72)

0.0022 *
(0.0044)

B. Metrics on Positron Emission Tomography (PET) Imaging

Variable

Survival Statistics (Log-rank p-Value, adjusted p-Value)

Over All Survival (OS) Progression free Survival (PFS)

Nodal (n = 126) Extra Nodal (n = 94) Nodal (n = 126) Extra Nodal (n = 94)

1 MTV
(total body)

<0.0001 *
(0.0003)

<0.0001 *
(0.00069)

0.00024 *
(0.00096)

0.00017 *
(0.00096)

2 Shape-PC1 0.072
(0.1152)

0.0054 *
(0.0108)

0.052
(0.0832)

0.0074 *
(0.0148)

3 Size-PC 0.16
(0.2133)

0.0033 *
(0.0088)

0.21
(0.2400)

0.00061 *
(0.0016)

4 Texture-PC 0.37
(0.4229)

0.73
(0.730)

0.089
(0.11897)

0.43
(0.430)

Table 5. The proportional hazard ratio using the Cox regression model was used to assess the role
of MTV and Radiomic features in treatment outcome (Overall survival, OS) and Progression-free
survival, PFS). Evaluated across the sub-cohorts divided based on nodal status (nodal and extra-
nodal) and modalities: (A) CT and (B) PET (SUV) related to OS, (C) CT and (D) PET (SUV) metrics
related to PFS. Adjusted p-value (false discovery rate, q-value) was also reported.

A. Metrics on CT Imaging: OS

Variable
Nodal (n = 126) Extra Nodal (n = 94)

HR (p-Value, q-Value) C-Index (CI) HR (p-Value, q-Value) C-Index (CI)

1 MTV
(total body) 3.885 (0.00001), 0.0001 0.67

[0.616,0.721] 3.644 (0.000093), 0.0004 0.65
[0.575, 0.721]

2 Shape-PC1 1.183 (0.5424), 0.5762 0.52
[0.426, 0.615] 2.383 (0.0062), 0.0123 0.6

[0.516, 0.69]

3 Size-PC 1.524 (0.1293), 0.172 0.56
[0.464, 0.647] 2.546 (0.0021), 0.0056 0.62

[0.54, 0.695]

4 Texture-PC 0.858 (0.5762), 0.5762 0.52
[0.427, 0.623] 2.227 (0.0103), 0.0164 0.59

[0.495, 0.682]
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Table 5. Cont.

B. Metrics on PET Imaging: OS

Variable
Nodal (n = 126) Extra Nodal (n = 94)

HR (p-Value, q-value) C-Index (CI) HR (p-Value, q-Value) C-Index (CI)

1 MTV
(total body) 3.885 (0.000014), 0.0001 0.67

[0.603, 0.733] 3.644 (0.000093), 0.0004 0.65 (0.57, 0.725)

2 Shape-PC1 1.488 (0.1518), 0.2023 0.55
[0.438, 0.653] 2.139 (0.0148), 0.0296 0.59 (0.504, 0.683)

3 Size-PC 1.542 (0.1188), 0.1901 0.56
[0.466, 0.65] 2.477 (0.0044), 0.0117 0.61 (0.516, 0.696)

4 Texture-PC 1.175 (0.5568), 0.6364 0.52
[0.426, 0.608] 0.899 (0.7275), 0.7275 0.51 (0.424, 0.602)

C. Metrics on CT Imaging: PFS

Variable
Nodal (n = 126) Extra Nodal (n = 94)

HR (p-Value, q-Value) C-Index (CI) HR (p-Value, q-Value) C-Index (CI)

1 MTV
(total body) 2.486 (0.0004), 0.0015 0.62

[0.553, 0.68] 2.814 (0.0003), 0.0015 0.62
[0.565, 0.685]

2 Shape-PC1 1.111 (0.6683), 0.7241 0.51
[0.434, 0.586] 1.921 (0.0192), 0.0309 0.58

[0.494, 0.662]

3 Size-PC 1.355 (0.2194), 0.2926 0.54
[0.439, 0.639] 2.417 (0.0014), 0.0037 0.61

[0.519, 0.699]

4 Texture-PC 0.917 (0.7241), 0.724 0.52
[0.429, 0.611] 2.323 (0.003), 0.006 0.6 [0.51, 0.682]

D. Metrics on PET Imaging: PFS

Variable
Nodal (n = 126) Extra Nodal (n = 94)

HR (p-Value, q-Value) C-Index (CI) HR (p-Value, q-Value) C-Index (CI)

1 MTV
(total body) 2.486 (0.0003), 0.0015 0.62

[0.563, 0.67] 2.814 (0.0003), 0.0015 0.62
[0.56, 0.689]

2 Shape-PC1 1.615 (0.0545), 0.0872 0.56
[0.463, 0.659] 2.078 (0.0087), 0.0175 0.6

[0.529, 0.665]

3 Size-PC 1.36 (0.2135), 0.2440 0.54
[0.447, 0.633] 2.598 (0.0009), 0.0025 0.6

[0.533, 0.674]

4 Texture-PC 1.521 (0.0910), 0.1214 0.56
[0.477, 0.638] 0.806 (0.4284), 0.4284 0.54

[0.424, 0.647]

We compared the radiomic feature-based principal component (PC1) computed in
each of the feature categories (size, shape, texture) across patients separated based on their
clinical disease condition at follow-up time (disease progression and non-progression).
We found a significant difference in the radiomics PC metric across all feature categories
(see Figure 3a). We then repeated the comparison in patients with lower tumor volume
(MTV < 147.5) and higher tumor volume (MTV ≥ 147.5). The MTV cut-point of 147.5 mL
was established in previously published findings [14], to prognosticate patient response.
We found that shape PC and size PC metrics show significant differences between the
progressors and non-progressors in the lower tumor volume group (see Figure 3b). In the
larger tumor volume groups, we do not see significant differences in clinical progression
(See Figure 3c). We used the radiomic PCs to prognosticate treatment outcomes (OS/PFS),
using the Kaplan–Meier survival analysis across, and statistical significance was assessed
using a log-rank test (See Figure 4).



Cancers 2025, 17, 1832 9 of 19

 
(A) (B) 

Figure 2. Patient scans showed representative slices in the fused image (CT/PET) with a pointing
arrow towards lesions with significant uptake. Representative patients (Lung and Abdominal) image
slice for (A) High shape metric and (B) Low shape metric.

(a) 

Figure 3. Cont.
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(b) 

 
(c) 

Figure 3. Distribution of patients based on clinical outcome (progression at 1-year) for MTV, Shape
PC and Texture PC for (a) all patients, (b) patients with lower total tumor burden, and (c) patients
with higher tumor burden. The cut-point value was based on prior work (Blood Adv., 4(14) 2020) [14].
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(a1) 

(a2) 

(b1) 

Figure 4. Cont.
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(b2) 

(c1) 

Figure 4. Cont.
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(c2) 

Figure 4. Kaplan–Meier (KM) plots of patient cohort separated using median split based on features
extracted on the largest extra-nodal lesions in a patient’s PET/SUV scans, for feature categories
based on Principal Component (PC1)—Overall survival. Feature categories PC1, KM plots, (a) size-
based principal components (PC1)—OS (a1) and PFS (a2), (b) shape-based principal components
(PC1)—OS (b1) and PFS (b2), (c) metabolic tumor volume—OS (c1) and PFS (c2), (See details in
Table 4).

4. Discussion
This study used retrospective patient data to develop a quantitative imaging metric

(radiomics) signature derived from their baseline PET/CT scans that could be used as a
biomarker to prognosticate response (1-year) in patients undergoing axi-cel therapy. We
systematically assessed the lesions based on their role in the lymphatic system (nodal, extra-
nodal) and categorized them based on the functional description (size, shape, texture). We
showed that radiomic-based features (PC on shape and size) derived from the extra-nodal
lesions have a higher risk of adverse outcomes and are a prognostic indicator of survival.

The heterogeneous nature of lymphoma disease makes it challenging to assess and
prognosticate treatment response [32,33]. Current clinical consensus assessment crite-
ria [12,13], do not fully capture the disease condition, nor can they predict disease prognosis,
especially in axi-cel therapy, leaving a need for better biomarkers. Characterizing subtle
physiological changes seen on radiological imaging with quantitative metrics (radiomics)
that describe them has been shown to be related to disease conditions and their response
outcomes [18–20]. This study is unique in many aspects; firstly, we use lesion-based met-
rics across many organ sites and form predictors to evaluate the ability to prognosticate
survival outcome. Secondly, we subdivided the lesions at the patient level based on nodal
(or lymphatic) and extra-nodal (or non-lymphatic) sites. Our study showed that the princi-
pal components of radiomic features have the ability to prognosticate patient treatment
outcomes to axi-cel treatment. Few other teams have shown similar outcomes without
distinguishing the disease sites [21,34].
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Beyond tumor metabolic activity, the shape of the lesions observed on imaging scans
(PET, CT) can potentially play a diagnostic role in lymphoma [25,35–38]. In current clinical
practice, lesion tracer uptake (PET activity) is assessed on a point scale with qualitative
reference to the normal metabolic uptake (liver or mediastinum) [12,39]. Grayscale char-
acteristics in PET/CT image scans can be quantified with metrics describing the lesions’
size, shape, or texture. There has been abundant literature that has shown the usefulness of
radiomic features in predicting the pathological cancer status, oncogenic mutations, or clin-
ical response [18,40–43]. There have been many studies that have attempted to assess the
response of axi-cel therapy in DLBCL [7,44]; most useful quantitative biomarkers have been
limited to gross measures such as the MTV. These metrics are known to describe the extent
of the disease and have been reported to be prognostic of treatment response [14,45–47]. In
our prior work [22], we tested the ability of the radiomic metrics to predict the treatment
outcome of axi-cel therapy (AUC 0.68, compared to TMV 0.72), while others have shown
the utility of radiomic features (on PET images) related to maximum intensity, skewness,
major axis, and gray-level emphasis, which were predictive of the treatment outcome (AUC
of 0.73, compared to TMV of 0.66) and prognostic of OS/PFS for 3-month follow up [21]. In
comparison, our study identifies the largest lesion in nodal/extra nodal and characterizes
them using descriptors in three major feature categories (size, shape, texture), and tests their
ability to prognosticate treatment outcome (OS/PFS). The study shows that shape-based
descriptors in the extra-nodal cohort on PET images show a significant survival difference
(OS/PFS) after axi-cel treatment (1-year). Our findings have been validated by several
groups, and patients with extra-nodal lesions are reported to have worse outcomes [48,49].
In a multivariate analysis, the number of sites of extra nodal disease with initial high LDH
at lymphodepletion was reported to have an inferior survival outcome [49]. In lymphoma,
single variable-based models with reproducible thresholds are often used to prognosticate
patient outcomes [50,51]. Our methodology uses PCs on the radiomic features in functional
categories, where the size category has 38 features, the shape category has nine features,
and the texture category has 259 features, see Supplementary Materials Table S1. An ensem-
ble combination (like principal component, PC) of these features with similar function, in
these categories, provides a better basis that could be used as a biomarker to prognosticate
treatment response. In our study, we found non-size-based PCs (Shape-based PC1) on
extranodal lesions to be prognostic (p < 0.05) of OS/PFS on PET, and non-size-based PCs
(Shape and Texture based PC1) on CT images were also found to be prognostic (p < 0.05)
of OS/PFS (see Table 4, Figure 4) and higher risk for survival outcome (see Table 5). We
find these radiomic PCs (Shape, Texture and Size) had a low level of correlation with the
metabolic tumor volume metric (MTV), computed at the patient level (highest Spearman’s,
ρ of 0.45, 0.37, 0.55, respectively). In solid tumors, it has been reported that most prolifera-
tive lesions are non-circular, and irregular compared to benign lesions [37,52,53]. A recent
publication [54] reported that a high metabolic heterogeneity measured as a cumulative
SUV-histogram on PET images has a poor prognosis for patients with DLBCL.

There are few studies that have tracked the toxicities related to advanced immunother-
apy [55], which can certainly be an investigative area. Recent advancements in genomics
biomarkers in other blood-based malignancies have shown promise in prognosticating
disease progression [56,57]. Advancements in artificial intelligence methods will certainly
play a role in identifying finer patterns in patients that could be used to improve patient
care in these advanced treatments [58–60], there are several data requirements that need to
be considered prior to clinical utility [61,62].

Our study demonstrates the usefulness of lesion-based radiomic PCs to prognosticate
treatment outcomes. This study has identified shape and size characteristics (shape PC
and size PC, texture in CT) on imaging scans that can serve as surrogates to treatment
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response. The study contributions can be summarized as follows: (a) identifying the role of
shape/size-based features, (b) association with extra nodal lesions.

These metrics, independently or collectively, could help select patients who would
benefit from advanced axi-cel therapy and improve care delivery effectively. Our study,
despite showing novel findings, would require secondary validation for clinical translation.

5. Limitations
Our study is limited by retrospective data collection, and our findings would need

an independent validation cohort prior to clinical translation. Our study did not collect
or relate to cell therapy-related toxicities like cytokine release syndrome (CRS), immune
effector cell-associated neurotoxicity (ICANS), prolonged cytopenia, tumor lysis syndrome,
and others as previously reported [55].

6. Conclusions
The study investigated the prognostic role of radiological image metrics (radiomics)

on PET/CT images and related them to responses to immunotherapy. The study identified
radiomic signatures based on shape and size features to be prognostic of axi-cel therapy.
These image-based metrics derived at the lesion level will potentially allow greater clinical
translation in recruiting patients who will benefit from these treatments.
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