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Abstract

The formalization of multilayer networks allows for new ways to measure sociality in complex so-

cial systems, including groups of animals. The same mathematical representation and methods

are widely applicable across fields and study systems, and a network can represent drastically dif-

ferent types of data. As such, in order to apply analyses and interpret the results in a meaningful

way the researcher must have a deep understanding of what their network is representing and

what parts of it are being measured by a given analysis. Multilayer social networks can represent

social structure with more detail than is often present in single layer networks, including multiple

“types” of individuals, interactions, or relationships, and the extent to which these types are inter-

dependent. Multilayer networks can also encompass a wider range of social scales, which can help

overcome complications that are inherent to measuring sociality. In this paper, I dissect multilayer

networks into the parts that correspond to different components of social structures. I then discuss

common pitfalls to avoid across different stages of multilayer network analyses—some novel and

some that always exist in social network analysis but are magnified in multi-layer representations.

This paper serves as a primer for building a customized toolkit of multilayer network analyses, to

probe components of social structure in animal social systems.
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Multilayer network analysis is an increasingly popular approach for

studying social systems. The aim of this paper is to help behavioral

scientists who are new to multilayer network analysis navigate the

structure of a multilayer social network, generate ideas about how it

could be used with their data, and point out things to consider when

constructing and analyzing their multilayer networks. Social net-

work analysis is now widely used in animal behavior research, usu-

ally representing the social structure of an animal group as a single

network (i.e., a monolayer or single layer network). Multilayer net-

works are a recent advance in network science (Kivelä et al. 2014),

and can retain more detail about an animal group by using multiple

connected “layers” of networks stacked together, allowing for a

more complete representation of the social situations of animals in a

group (Finn et al. 2019). Multilayer networks therefore facilitate

defining and measuring specific components of social structure,

making them useful to anyone who studies animal social behavior.

The first part of this paper explains why multilayer social network

analyses form an excellent toolkit for measuring components of social

structure. Next, I describe where the parts of a multilayer network are

represented in a matrix, the mathematical representation that analyses

often act on. Then, I break down the different parts of a multilayer net-

work, from the most micro to the most macro social scale as they are

functionally related to social dynamics. Finally, I describe many of the

caveats to this approach to orient researchers to the many decisions

and considerations faced when conducting multilayer social network

analyses. I give suggestions to overcome these challenges, and/or sug-

gest future work that is needed to address them.

Measuring Social Structure

It has long been realized that sociality exists across many scales

(Hinde 1976, 1978; Hinde and Datta 1981), making it intrinsically
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difficult to define and measure. Further complicating matters, inter-

actions and data widely vary across different species, making it diffi-

cult to generalize methods (Bergman and Beehner 2015). Hinde

(1976) conceptualized the patterning of interactions over time as a

relationship, and the patterning of relationships in a group as social

structure. While numerous ways have been proposed to quantita-

tively measure a dyadic relationship (Silk et al. 2013), there are

much fewer that measure an individual’s overall social role, sub-

groups, or the entire structure of a group, while considering multiple

possible types of interactions (Fischer et al. 2017) and other nuances

such as time, space, and context. Quantifying these components of

social structure is valuable, as they are believed to correspond with

many important outcomes such as stress physiology (Sapolsky 1982;

Brent et al. 2011; Balasubramaniam et al. 2016; Vandeleest et al.

2016; Wooddell et al. 2017; Schrock et al. 2019), disease transmis-

sion (Drewe 2010; Balasubramaniam et al. 2019), group stability

(Beisner et al. 2015), and collective colony responses (Pinter-

Wollman 2015). Quantifying characteristics of how groups are

structured, sometimes conceptualized as notions of “social complex-

ity,” is also valuable for testing hypotheses about the evolution of

sociality, such as predation pressures (Groenewoud et al. 2016) or

other ecological factors (Wittemyer et al. 2005) driving its evolution,

or social complexity itself driving the evolution of cognition

(Whiten and Byrne 1988; Kummer et al. 1997; Dunbar 1998) and

the evolution of communication (Freeberg et al. 2012; Sewall 2015).

More generally, having a framework to think about social structure

is important for any researcher studying a social animal (Lehmann

and Ross 2011). If we lack a sense of an animal’s overall social situ-

ation, do we really have a sense of the meaning or function of a

given social interaction in our data? What does a given set of inter-

action data actually represent in the scope of the animals’ social

lives?

Fortunately, the computational tools available to social scientists

are beginning to catch up with the complexity and detail that we

have always known exists. In the current age, social scientists are in-

creasingly using computational methods, researchers from mathem-

atics, physics, and computer science are seeking social data to assess

their toy models of social processes, and the division between

“hard” and “soft” sciences is blurred or even trivial. Social network

analysis was instrumental to bridging this gap. Networks themselves

are interesting mathematical objects with numerous properties to be

explored and measured, yet they also provide a framework to direct-

ly represent and analyze social data. Social networks offer a way to

measure how relationships are organized in a social group, and can

encode sociality across multiple social scales, from the social spheres

of individuals (e.g. ego networks) to the overall group structure

(Croft et al. 2008; Wey et al. 2008). However, a single network may

miss nuances across relationships types, and some researchers have

identified that multiple social networks may be necessary to charac-

terize parts of a group’s social structure and dynamics (Lehmann

and Ross 2011; Barrett et al. 2012; Lehmann et al. 2012).

Multilayer networks, however, can contain an even wider range of

social units—they can simultaneously represent micro-level interac-

tions, higher-level patterning of interactions into relationships and

individual roles, macro scale structure across the whole group such

as dominance hierarchies, and finally the entire group structure

across all social domains, all of which are important components of

sociality (Hobson et al. 2019).

The added structure of multilayer networks can allow research-

ers to overcome some common criticisms of single layer network

representations of their study systems. For instance, a criticism of

social networks is that they do not always factor in all of content

that exists in real social ties (Borgatti et al. 2014)—interactions that

are functionally different or occur in different contexts might not be

distinguishable from each other if in the same network. However,

multiple network layers can include several different types of inter-

actions, or interactions that occur in multiple different contexts.

Similarly, layers can represent interactions that occur in different

time windows, addressing another criticism that networks are static

representations and ignore dynamics (Borgatti et al. 2014). Since

multilayer networks can link interactions across layers, they also

allow for a better representation of interdependencies that exist

across different types of interactions, which cannot be encoded in

single layer networks. Multilayer networks are promising tools be-

cause they can encode such additional information about interac-

tions within animal groups into a single framework (Barrett et al.

2012; Silk et al. 2018; Smith-Aguilar et al. 2018; Finn et al. 2019;

Beisner et al. 2020; Pereira et al. 2020).

I suggest that measures of various parts of multilayer networks

are ideal to create a “toolkit” to describe the numerous properties of

social structure in socially sophisticated animal groups. Similar tool-

kit approaches exist for measuring other complex structures such as

hierarchies (Zafeiris and Vicsek 2018), dyadic relationships (Silk

et al. 2013), and time series (Goldberger et al. 2002), all of which

themselves can exist within social structure. Despite the promise of

multilayer social network analysis, it can still be a challenge to iden-

tify which characteristics of social structure one should quantify to

assess a particular outcome, and which tools to use to best measure

and summarize it. Conducting multilayer network analyses requires

the researcher have a good conceptualization of what their network

represents, what parts make sense to measure, and what exactly the

tools they use are measuring. The remainder of the paper provides a

detailed breakdown of multilayer social networks to make them

more accessible, and serves as a guide for modeling a social system

as a multilayer network to help researchers quantify specific compo-

nents of social structure in their study systems to answer their own

specific research questions.

The Supra-adjacency Matrix

The mathematical formulation of multilayer networks (De

Domenico et al. 2014; Kivelä et al. 2014; Aleta and Moreno 2018),

and the utility of various multilayer analyses for studying numerous

topics in animal behavior (Pilosof et al. 2017; Silk et al. 2018;

Smith-Aguilar et al. 2018; Finn et al. 2019; Atkisson et al. 2020;

Pereira et al. 2020) have been reviewed elsewhere. Briefly, compared

with a single layer network (Figure 1A), a multilayer network is

comprised of multiple “layers” of networks (Figure 1B). Like single

layer networks, nodes (Figure 2A) can represent some entity, often

individuals (though they need not be), and are connected by edges

(Figure 2B), which often represent an interaction or relationship

(though they need not be). In multilayer networks, nodes in the

same layer can be connected with intralayer edges, or nodes in dif-

ferent layers can be connected with interlayer edges. Multiple

“stacks” of layers can be grouped into separate aspects, and nodes

can even be connected across aspects (see Figure 3C). Different

layers can represent different node types, edge types, time points, or

any sort of distinction a researcher wants to make about social inter-

actions (Finn et al. 2019). If layers represent different types of inter-

actions or different time periods, there may be multiple “copies” of

nodes across the layers (e.g. the same individuals are represented on

both an aggression and an affiliative layer). Such “copies” of nodes
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are sometimes referred to as “node-tuples” (see Figure 2A; Kivelä

et al. 2014). Multiplex networks are special cases of a multilayer

network, where interlayer edges only exist between node-tuples of

the same node (see Figure 2A; Kivelä et al. 2014) (e.g. individuals

are only connected to themselves across layers). Note that for most

of this paper I discuss examples of multilayer networks that are

multiplex social networks, where different layers are different types

of interactions that occur among the same set of individuals, but

other representations are also possible.

Single layer networks are represented by an adjacency matrix,

where the IDs of individuals are represented across both columns

and rows of a matrix (see Figure 2A, upper half). If individuals inter-

act, the weight of the network edge (e.g., number or amount of

interactions) is indicated where they align on the adjacency matrix

(see Figure 2B, upper half). The diagonal cells of this matrix are cells

that match individuals with themselves. If self-loops (i.e., an edge

connecting a node to itself; e.g., an individual directing a behavior

toward itself) are not allowed, the diagonal of this matrix is zero or

holds no values (see Figures 1 and 2). If the edges do not have a dir-

ection, the adjacency matrix is symmetrical across the diagonal—the

values in the upper triangle of cells exist as a mirror reflection across

the diagonal in the lower triangle of cells. If the edges do have a dir-

ection, the numbers on the upper and lower the triangles represent

interactions directed from one individual to another and can be dif-

ferent values. If the edges have weight (e.g., indicate the frequency

or duration of interactions between 2 individuals), the values in the

cells can be any number. If the edges are unweighted (e.g., indicate

that an interaction happened, but no detail about the amount), the

values in cells are binary 1 or 0. Figure 1A shows a single layer net-

work that is weighted and undirected, and its associated adjacency

matrix.

Like single layer networks, multilayer networks have matrix rep-

resentations called “supra-adjacency matrices.” These can be con-

ceptualized as a matrix of matrices. Interactions between individuals

that interact on the same layer are represented the same way as they

would be in an adjacency matrix for a single layer network, and

there are one of these matrices for each network layer. In a supra-

adjacency matrix, adjacency matrices for each network layer are

“glued” together diagonally, and interlayer edges that connect nodes

across layers are indicated in the remaining squares on the larger

matrix of matrices. In an adjacency matrix, all individuals are paired

with all individuals, and in the supra-adjacency matrix, all of the

layers are paired with all layers. On these non-diagonal matrices in

the supra-adjacency matrix, the diagonal cells indicate where nodes

link to copies of themselves on other layers. In a multiplex network,

these will be the only interlayer edges. Nodes can be attached to all

copies of themselves on all layers, or only to the adjacent layer (as

seen in Figure 3B). If the entire multiplex network is undirected,

including the interlayer edges, the entire supra-adjacency matrix is

symmetrical across the diagonal—the matrices in the upper triangle

of matrices exist as a mirror reflection across the diagonal in the

lower triangle of matrices. If interlayer edges are directed, the lower

triangle that corresponds to the upper triangle of the supra-

adjacency matrix will be different. A weighted and undirected multi-

plex network and its associated supra-adjacency matrix are shown

in Figure 1B.

A number of single layer matrix operations have been or could

be generalized to supra-adjacency matrices [e.g., Page Rank versatil-

ity (De Domenico et al. 2015d), infomap community detection (De

Domenico et al. 2015a)]. In addition, this network structure allows

for the creation of new measures and analyses that do not exist for

single layer networks.

The Functional Parts of a Multilayer Social
Network

Individuals—node-tuples and interlayer edges
At the most micro level, social structures are comprised of individu-

als and interactions. While both are present in single layer networks,

already there are differences between single and multilayer

Figure 1. Single and multilayer networks and their matrices. A single layer network (A) is comprised of nodes (labeled A–J) connected by undirected edges whose

weights are indicated by the thickness of the lines. If there are multiple types of connections that form edges, they could instead be separated into multiple dis-

tinct network layers as a multiplex network (B). Here, there is a copy or “node-tuple” of each A–J node on each layer, which are connected to each other across

layers.
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representations. A multiplex network may contain a set of node-

tuples for each individual, which themselves are connected by inter-

layer edges and can “interact” (see Figure 4A). An intuitive example

is a multiplex transportation network (Strano et al. 2015; Chodrow

et al. 2016)—perhaps each node is a city, each layer is a mode of

transportation between cities (e.g., flights, train, and car), and inter-

layer edges are travel within cities between for instance, a train sta-

tion and an airport. In this case, both intralayer and interlayer edges

could be weighted by travel time. In a multiplex social network

where there are copies of an individual on each layer, interlayer

edges are perhaps less intuitive when it comes to assigning values to

Figure 2. Nodes and intralayer edges in single and multilayer networks. The

nodes in a single layer network (purple circles in the top of panel A) are repre-

sented as columns and rows of the corresponding adjacency matrix (purple

cells in the top of panel A). The nodes of a multiplex network are also repre-

sented as the columns and rows of the corresponding supra-adjacency ma-

trix, grouped by which layer they are in (each layer is a different color in

panels A and B). Repeated copies of the nodes from each layer (i.e., node-

tuples, colored circles in the bottom of panel A) are represented as repeated

sets of rows and columns in the corresponding supra-adjacency matrix,

pasted next to each other (colored cells in the bottom of panel A). The edges

in a single layer network (purple lines in the top of panel B) are represented

as values in the cells of the corresponding adjacency matrix (purple cells in

the top of panel B). If there are no self-loops allowed, the diagonals are blank

or zero (dark gray cells in panels A and B). In the adjacency matrix, values are

zero where edges do not exist between different nodes, and non-zero with

values that represent the edge weight where edges do exist (purple cells in

the top of panel B). The edges of each layer of a multiplex (colored lines in

the bottom of panel B) are represented as adjacency matrices for each layer,

pasted together diagonally across the supra-adjacency matrix (blue, orange,

green, and yellow cells in the bottom of panel B).

Figure 3. Unique multilayer network characteristics. There are parts of a

multilayer network and their corresponding locations on a supra-adjacency

matrix that do not exist on single layer networks or their adjacency matrices.

In the same way that individuals are organized across columns and rows in

an adjacency matrix, layers (colored rectangles in panel A) are organized as

sets of columns and rows in the corresponding supra-adjacency matrix (col-

ored sections in panel A). This structure creates cells that correspond to all

combinations of all node-tuples. In a multiplex network where interlayer

edges only connect to node-tuples of the same node, interlayer edges (dotted

lines connecting nodes across layers in panel B) only exist across the diago-

nals of the matrices that represent connections across different layers (bold

values in panel B). In this network, node-tuples are only connected on net-

works that are next to each other, so some of these values are 0 for layers

that are not adjacent. If node-tuples were connected to their counterparts on

all layers, all of these diagonals would have non-zero values. If the network is

not a multiplex network and allowed node-tuples to be connected to node-

tuples of different individuals across layers, cells other than the diagonals in

these interlayer matrices could have values. If interlayer edges are directed,

these values would not be symmetrical across the diagonal of the whole

supra-adjacency matrix, as they are in panel B. Finally, multilayer networks

can be represented as stacks of different layers (i.e., aspects, orange and

green stack of layers in panel C), and nodes can be connected across aspects.

While the supra-adjacency matrix is not shown here, it would increase in

scale in a similar way from the jump from single to multiple layers, but to in-

clude copies of all of these parts for multiple aspects that themselves could

be connected.
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them or using them to represent data. As is the case for edges in sin-

gle layer networks, what exactly they represent is up to the research-

er, and there are endless possibilities. Some analyses do not require

or use interlayer edge weights (e.g., interlayer correlations or some

measures of layer compressibility; De Domenico et al. 2015b), and

others allow the researcher to explore outcomes across a range of

interlayer couplings (De Domenico et al. 2015a).

It is a valid option to explore outcomes across a range of inter-

layer edge weights, and it could even be the case that if certain out-

comes are already known or expected, the interlayer edge weights

can be what is calculated. For example, if a researcher already

knows which individuals are in true sub-groups or communities, one

could compute the interlayer edge weights that best reproduce these

communities from interaction data, and learn how coupled various

interaction types are within the social dynamics that produced those

communities. Similarly, if interlayer edge weights that connect indi-

viduals are different across individuals in the same layers (e.g., indi-

vidual 1 is strongly connected across layers A and B, while

individual 2 is weakly connected across layers A and B), one could

potentially infer how coupled various interaction types are within

the individuals that produced those communities.

If uniquely assigned to individuals, interlayer edges can help pre-

serve more detail about how individuals are likely to behave and

represent individual differences in a more detailed way. Researchers

can represent “types” of individuals in ways that match the differen-

tiation a species is able to make among group members given their

cognitive abilities (Hobson et al. 2019), or in ways that reflect func-

tionally different contributions to group dynamics. Interlayer edges

could, for example, be weighted to reflect attributes of an individu-

al’s personality, and the unique weighting and direction of interlayer

edges could reflect different personalities. For instance, layers in a

multiplex network could represent different group-wide contexts

(e.g., feeding, traveling, and resting), and all intralayer edges could

be aggression. An individual that behaves very flexibly might have

weak interlayer coupling if how they behave across contexts varies

drastically, whereas an individual that behaves very consistently and

is always aggressive might have strong interlayer coupling. Another

possibility is that interlayer edges could represent temporal coupling

of interactions. If one layer represents grooming and another repre-

sents aggression, a group or species that has high rates of post-

conflict reconciliation, or often receives post-conflict social support,

might have heavily weighted directed edges from aggression to

grooming in a multiplex, while other groups or species might have

lightly weighted or absent interlayer edges in that direction if

grooming rarely follows aggression.

Finally, interlayer edges in a multiplex could even reflect physio-

logical processes. For example, to understand disease transmission,

a multiplex network could be comprised of layers of different types

of social interactions that could spread a disease [e.g., biting and

grooming (Drewe 2010)] (De Domenico et al. 2016; Finn et al.

2019), and interlayer edges could reflect an individual’s likelihood

of infection, or the likelihood that exposure via one behavioral type

would become transmissible through another behavioral type of ex-

posure. In such a scenario, if interlayer edge weights were high, it

would be more likely that an individual could transmit the disease

through a different behavioral means than it was acquired. There

Figure 4. Smaller scale parts of a single and multiplex network. In both single and multiplex networks, individuals, relationships, and an individual’s role exist as

smaller scale parts of the network. For individuals (A), while 2 different individuals are represented only as nodes in the single layer network (A, top), there are

multiple copies or node-tuples of each of them in each layer in the multiplex network, and they are connected by interlayer edges (A, bottom). For a relationship

(B), there is only one edge connecting 2 individuals in a single layer network (B, top), while there can be edges on each layer between 2 individuals in a multiplex

network (B, bottom). For an individual’s role (C), an ego network includes the individual and it’s alters connected by edges (C, top), while in a multiplex network,

an ego network includes the node-tuples for an individual and it’s alters on each layer, and the edges that connect them on each layer.
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are of course many more possible uses of interlayer edges not listed

here, and even more in a multilayer network that is not multiplex,

where interlayer edges can connect different individuals across

layers. What is appropriate for a given network construction is en-

tirely dependent on the study system, data, research question, and

chosen analysis.

Interactions and relationships—intralayer edges and N-

grams
Depending on the data and study system, edges in a single or multi-

layer network may or may not represent a relationship. In social spe-

cies that use many different behaviors to interact, it is unlikely that

one edge type can encompass the entire relationship, but rather may

represent a “type” of relationship such as a dominance relationship

(Hinde 1976; Hinde and Datta 1981). Multilayer networks can con-

tain multiple of these “relationship types” (see Figure 4B) and poten-

tially represent an entire relationship, or at least a larger amount of

a dyad’s “relationship space.” A set of edge weights between a dyad

across multiple layers (i.e., vector of edge weight values) is some-

times referred to as an “N-gram” or “l-gram” (Atkisson and Finn

2020; Wu et al. 2020). For example, in a multiplex with 3 layers

(threat, chase, bite), if individual A and individual B threaten and

chase each other but do not bite each other, their relationship can be

represented as the unweighted N-gram [1,1,0]. An N-gram could

also be weighted to reflect the edge weights of each layer; if individ-

ual A and B threaten each other 2 times, chase each other 4 times,

and bite each other zero times, their weighted N-gram would be

[2,4,0]. When layers contain directed interactions, N-gram represen-

tations would need to contain multiple values for each layer to rep-

resent both directions. Say A and B both threaten each other once, A

chases B 3 times while B chases A one time, and they never bite each

other. The 2 directed N-grams would be: A->B [1,3,0] and B->A

[1,1,0]. Alternatively, each direction could be treated as though it is

a separate layer, containing an “initiate” and “receive” layer: A-> B

[1,1,3,1,0,0]; B-> A [1,1,1,3,0,0] (Beisner et al. 2015; Atkisson and

Finn 2020).

N-gram representations of relationships can encode the number

of layers in which dyads interact in, the weights and directions of

those interactions, and how these edges are distributed across layers.

With this more nuanced categorization of social bonds, researchers

can better assess differentiation and the degree of differentiation of

relationships, an important component of social structure

(Whitehead 2008; Bergman and Beehner 2015). For example, one

might consider a dyad in a single layer network connected with an

edge weight of 4 to have a stronger bond than a dyad connected

with an edge weight of one. In a multilayer network, a dyad that has

an aggression layer edge weight of 5 and a grooming layer edge

weight of 0 might be considered strongly antagonistic, another dyad

that has an aggression layer edge weight of 2 and a grooming layer

edge weight of 1 might be considered mildly antagonistic, and a

dyad with an aggression layer edge weight of 1 and grooming layer

edge weight of 8 might be considered strongly affiliative.

It may be useful to consider a relationship within the context of

the other relationships an individual has. A single edge can contain a

direction and a weight and can be assessed relative to an individual’s

other edges. The proportion of an individual’s interactions that are

with one partner can index how important a relationship might be

to an individual (of course, this may vary based on edge type).

Similarly, the amount by which individuals are similarly important

to each other could reflect balance or imbalance in the relationship.

For instance, Figure 5A,B shows the connections of individual

“Blue” (blue node) and individual “Red” (red node) in grooming

networks. In Figure 5A, the connection may be more “important”

to Blue, since half of blue’s grooming is with Red, whereas only one-

sixth of Red’s grooming is with Blue, creating an imbalanced groom-

ing relationship. In contrast, in Figure 5B, one-third of the grooming

for both Red and Blue is with each other, creating a more balanced

grooming relationship.

Similarly, one can assess relative importance and balance of rela-

tionships by comparing a dyad’s N-grams to their other N-grams for

a more nuanced characterization of importance. A relationship

might be relatively important to one individual in only one or in

many behavioral domains. Similarly, a dyad might have an imbal-

anced relationship in only one domain, or in all domains. Perhaps a

relationship could even be balanced if the individuals have equiva-

lent imbalances in different social domains. There are numerous

ways these attributes could be conceptualized. For instance, in

Figure 5C, Red and Blue groom each other a lot, but do not interact

on other layers (huddle and aggression). Because neither have other

grooming partners, their relationship still may be important, despite

only interacting in one behavioral domain. In contrast, in Figure 5D,

they only interact in the grooming layer and they both have many

other grooming partners, so this relationship may not be very im-

portant. Alternatively, instead of being important because they are

each other’s only interaction partner in a behavioral domain (e.g.,

Figure 5C), in Figure 5D, Red’s relationship with a different individ-

ual “Orange” (orange node) may be important because they interact

in all layers—grooming, huddling, and fighting may indicate they

are relevant to each other in many social contexts. The redundancy

or uniqueness of a relationship may also contribute to how import-

ant a relationship is. For instance, in Figure 5E, the N-gram for

Red’s relationship for both Blue and Orange is [1,1,0]. Red has a

total of 3 of these N-grams, indicating multiple relationships with

the same patterning where they groom and huddle but do not fight.

Thus, Red’s relationships with Blue and Orange may be redundant

social support. While it may be important to have redundant social

support, the specific relationship with any of them may not be

uniquely important. In contrast, the N-grams of all of blue’s rela-

tionships are unique, and Blue’s relationship with Red is their stron-

gest exclusively affiliative relationship.

The notion of balance in multilayer relationships can also have

diverse manifestations. For instance, in Figure 5F, Blue and Red’s re-

lationship may be imbalanced—Blue’s connection with Red com-

prises a smaller proportion of their connections than Red’s

connection to Blue on all layers, making Blue a more important con-

nection for Red on all layers. Alternatively, Figure 5G shows inter-

actions in grooming, huddling, and mating layers, where their

overall relationship may be more balanced—Red comprises a larger

proportion of Blue’s grooming, whereas Blue comprises a larger pro-

portion of Red’s huddling, and they both exclusively mate with each

other. Multiple behavioral layers can allow researchers to better as-

sess differential investment across behavioral domains, possible

tradeoffs that exist in relationships, reciprocity that occurs “across

currencies.”

Finally, as is the nature of social networks, the connections and

attributes of an individual’s other connections could influence the

significance of other relationships. For instance, in Figure 5H, Blue

has more grooming and huddling partners than Red, and it may ap-

pear as though Red and Blue’s grooming and huddling relationships

may be more important for Red than for Blue. However, all of

Blue’s grooming and huddling partners also have many other

grooming and huddling partners, whereas Red’s few other grooming
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and huddling partners also only have one or no other partners. This

could indicate the difference between having a small number of close

ties versus many weak ties, or personality characteristics such as

introversion and extraversion. If Red’s ties with fewer others are in-

deed stronger social bonds, Red’s connection with more gregarious

Blue may actually be a less important grooming and huddling tie. In

the mating layer, it may appear as though Red is more important to

Blue, since Blue only has one other mate while Red has 3 other

mates. However, Red’s other mating partners also have many other

mating partners (5, 5, and 6), making the mating investment less cer-

tain in those ties. Blue’s other mating partner exclusively mates with

Blue, making it a more certain mating investment. Thus, Red’s tie to

blue is actually Red’s most certain mating investment, whereas

Blue’s tie to Red is their least certain mating investment.

Considering these relationship details across the entire relationship

of Red and Blue in these particular behaviors, it is much less clear

how important or balanced their overall relationship is, but there

are also many more ways to probe that question.

Individual roles—multilayer ego networks, centralities,

and versatilities
An individual’s role in a society emerges from its unique patterning

of interactions and relationships with other group members. This

Figure 5. Examples of relationships and their relative importances and balance. Panels A and B show the connections of individual Blue (blue node) and individ-

ual Red (red node) in a grooming network, and panels C–H show their connections in a multiplex social network. Their alters are represented as either gray or or-

ange nodes. All connections are unweighted, and the degrees of the relevant individuals are shown inside the node-tuples, and the proportion of connections the

blue and red individual have that are with each other is noted below the edge that connects them on each layer when relevant. The behavioral dimension that the

layer represents is labeled to the left of each layer. In panel E, the N-grams of all of Blue and Red’s relationships are shown as vertical vectors, with binary values

corresponding to whether or not they interacted on each layer.
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can correspond to a node’s position in the overall network when the

network is comprised of relevant interactions with others as edges

(see Figure 4C). In a single layer network, this can be summarized

many different ways including the total number of interaction part-

ners (i.e., degree), the total strength of all of these connections (i.e.,

weighted degree), how diversely the edge weights are distributed

across interaction partners [e.g., partner diversity in Silk et al.

(2013) and Cheney (1992); disparity (Barthélemy et al. 2005), and

various other centrality measures (e.g., eigenvector centrality,

betweenness centrality, etc.)]. In a multiplex network, an individu-

al’s role emerges from the intersecting behavioral dimensions by

which the individual is involved (Barrett et al. 2012). Again, there

are multiple possible conceptualizations: an individual exists in a

slice through social domains [i.e., the layers or “behavioral

dimensions” (Barrett et al. 2012)], and also exists in a slice through

their connections (i.e., their set of N-grams). The additional richness

of a multilayer representation allows for individuals to be character-

ized as summaries of how they behave across different social

domains, summaries of how they behave across different relation-

ships, or combinations of the 2.

Considering just an individual’s node tuples and its connections

to others (i.e., alters) on each layer (e.g., Figure 4C), we can consider

a vertical slice (through layers) and compression (of relationships) of

an individual’s social space into a vector of length L (where L is the

number of layers), filled with values of any of the above individual

measures calculated on each network layer. For instance, a vector of

an individual’s degrees from all layers is considered the multidegree

(Kivelä et al. 2014). As the diversity of social domains may be a rele-

vant component of how a group is structured (Whitehead 2008;

Ramos-Fernandez et al. 2018), measures of variance across these

“vertical” values can be informative about how consistently or di-

versely an individual invests interactions to different social domains.

Alternatively, we can consider a horizontal slice (through relation-

ships) and compression (of layers) of an individual’s social space

into a vector of length A (where A is the number of alters), filled

with values of any of the above measures calculated on N-grams.

For instance, an individual could be described as a vector of the

number of layers an individual interacts in for each of its alters. As

social differentiation may be a relevant characteristic of how groups

are structured (Whitehead 2008; Bergman and Beehner 2015), meas-

ures of variance across these “horizontal” values can be informative

about how consistently or diversely an individual invests interac-

tions toward different individuals.

There are numerous ways one could calculate the distribution of

an individual’s interactions across their whole ego multiplex net-

work (i.e., the connection of an individual and their alters), that

compresses and summarizes across both layers and relationships in

various ways, all offering different possible interpretations of the di-

versity and redundancy in their social interactions and relationships.

For example, in some data, unique N-grams can be conceptualized

as distinct “types” of relationship. The entropy of an individual’s

interactions as they occur across different types of relationships [i.e.,

how diversely an individual’s interactions are distributed across rela-

tionship types or “weighted N-gram entropy” (Atkisson and Finn

2020)] could index how evenly or consistently an individual’s inter-

actions are spread over different relationships types, or if they tend

to invest more in or preferentially associate within one type of

relationship.

Such a measure is conceptually similar to a multilayer disparity

measure, and the Individual Level Relationship Diversity (ILRD)

proposed by Fischer et al. (2017), with subtle differences. They all

describe patterns of interactions as relationships and assess the dis-

tribution of an individual’s interactions across relationships. N-

gram entropy coarse grains relationships into relationship types (i.e.,

N-grams), while disparity counts each interaction partner as a differ-

ent “type,” and ILRD identifies unique relationships types with a

multi-step process, performing a clustering analysis on values com-

puted for multiple dyadic level summary statistics from multiple

behaviors. N-gram entropy then measures how diversely an individ-

ual’s interactions are distributed across relationship types using

Shannon entropy, whereas disparity measures the spread of interac-

tions across unique interaction partners using variance (or perhaps

in a multilayer version, a vector of spreads, or the variance of vec-

tors), and ILRD measures the extent to which one relationship type

dominates and individual’s relationships using a version of the

Simpson diversity index. Such subtle differences across measures

may be important when tailoring an analysis to a specific question

and study system.

In another example, the amount of overlap in edges within rela-

tionships across layers could be calculated, and an individual could

be represented by a vector of the edge overlap values across all layer

combinations, or a single overlap measure. Constructing the multi-

plex ego network of individuals is a great way to begin conceptualiz-

ing which of the numerous components of an individual’s social

situation one might want to capture for individuals in their unique

dataset, and how these components could be compressed into a sum-

mary statistic to represent a particular dimension of sociality that

address their research question.

For centrality measures that extend beyond an individual’s im-

mediate ties (e.g., eigenvector centrality where the connections of

connections are also considered), there are numerous aggregation

methods that have been used to describe an individual’s role across

multiple layers, that summarize the structure at various stages of

compression [see Supplementary Materials 2 in Finn et al. (2019)

for a discussion of some of these methods]. Some methods calculate

a multilayer centrality by calculating a centrality measure on each

layer, then aggregating this measure across layers into one summa-

rizing value (Kivelä et al. 2014). When layers represent different

types of interactions, it may be the case that different centrality

measures might represent which individuals are “important” to the

group. For example, a Borda count (de Borda 1781) or Kemeny ag-

gregation (Kemeny and Snell 1962) has been used to rank individu-

als combining centrality measures across layers where layers use

either eigenvector, degree, or betweenness centrality (Pósfai et al.

2019; Beisner et al. 2020). A modified Borda count has also been

used to calculate “meta-centrality” to identify “super-spreaders” by

combining multiple centrality measures calculated from the same

layer, aiming to create a measure that is more generalizable across

different networks (Madotto and Liu 2016).

In contrast to aggregated centralities where values are calculated

separately for the position of node tuples on each separate layer be-

fore aggregation, multilayer versatilities aggregate values calculated

for the position of node tuples in the full multiplex structure (Kivelä

et al. 2014; De Domenico et al. 2015d). For instance, multilayer

Page Rank centrality calculates Page Rank for a node-tuple with the

steady state of a random walker through one layer, then aggregates

these values for all an individual’s node-tuples. In contrast, Page

Rank versatility calculates Page Rank for a node-tuple with the

steady state of a random walker across the whole multilayer net-

work, moving from node to node over both intra and interlayer

edges, then aggregate these values for all an individual’s node-tuples

(De Domenico et al. 2015d). The centrality version does not use
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interlayer edges, so it may be easier to account for network differen-

ces such as density so that one layer is not disproportionately repre-

sented. In addition, the centrality version avoids potential confusion

regarding what “flow” across network layers represents, when

layers represent interactions that are functionally very different.

While the versatility version does require more careful attention to

weighting of edges for different layers and may require more careful

interpretation, it allows for the opportunity to incorporate interlayer

edges, and is actually measuring the structure across the entire multi-

plex network.

For example, Figure 6 shows 3 different multilayer networks

that have 4 different sets of layers. The first is a multiplex network

that has different prosocial or affiliative behaviors on each layer:

groom, proximity, huddle, and sleep. A multilayer versatility meas-

ure could be useful on this network for questions regarding which

individuals are of greatest risk for disease spread. Because the edges

on each layer represent a behavior functionally related to physical

proximity related to disease spread, flow across layers could make

sense. A versatility measure could be useful for questions regarding

which individuals are most important for social cohesion, though if

edges were weighted, it would be less clear what interlayer edge

weights would represent. In the second network, the function of

edges in each layer is more distinct from each other, as both affilia-

tive and agonistic behaviors are present. Flow across layers makes

less sense, but a multilayer centrality measure could still be useful to

indicate the influence or prominence an individual has in a group.

Other individual descriptors using N-grams could also be inform-

ative here. The last network is not a multiplex, as one layer repre-

sents a spatial network of locations where certain behaviors

occurred, in addition to behavioral layers and an attribute layer of

relatedness. Here, neither centrality nor versatility measures would

be interpretable.

Transmission and flow—multilayer pathways
In a single layer network, social dynamics arise from the interactions

between individuals and as a result, meso and global network struc-

tures emerge. Thus, we can identify patterns between small sets of

individuals, and/or patterns across the whole network, that may be

informative about the underlying dynamics that led to that struc-

ture. When a network is not completely connected nor randomly

Figure 6. Different types of layers. Three hypothetical multilayer networks are represented in panels A–C. The network in panel A is a multiplex network that has

layers which reflect various prosocial behaviors. It could represent the affiliative social structure of a group and its structure could feasibly be measured as such.

The network in panel B is also a multiplex network but includes layers of both affiliative and agonistic behaviors. Because the behaviors are functionally different

and sometimes of opposing functions (e.g., bite versus run away), it is less clear what pathways through or combinations of the layers would be representing.

Other measures such as layer coupling could still be informative to understand how layers relate to or influence each other. The network in panel C is a multilayer

network that includes affiliative and agonistic behaviors, relatedness, and a location layer. This network has some interlayer edges connecting individuals on

interaction layers to location nodes where that behavior occurred. It is less clear what it’s overall structure represents, but it could still potentially be summarized

in ways that are informative about who does which behaviors where, and how much influence there is from family structure.
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connected, there exist potentially meaningful differences in how cer-

tain individuals are connected to each other, either by direct links (A

-> B) or longer indirect pathways that span across the connections

of multiple individuals (A -> C -> B) (see Figure 7A; Wey et al.

2008; Pinter-Wollman et al. 2014).

Some analyses use network pathways to detect clusters or com-

munities where there is a set of individuals where most are con-

nected to each other with direct or short pathways (Krause et al.

2007; Wey et al. 2008). Other analyses use pathways to assess glo-

bal properties such as acyclicity, which reflects the general direction

of pathways across a whole network and relates to social structures

like dominance hierarchies (Finn 2019). Indirect pathways in a net-

work could index indirect relationships between individuals formed

via transitive inference (Beisner et al. 2016), if for instance, an indi-

vidual observes a dominance interaction between its interaction

partner and a third party, and is able to infer its dominance or sub-

ordinance to the third party. Cognitively sophisticated forms of rea-

soning such as this may determine which interactions in a group are

likely to influence an individual’s behavior, and which interactions

one may care to quantify. In a multilayer network, the number of

pathways that exist in a network by which individuals could be con-

nected increases with multiple network layers, and increases even

more when interlayer edges exist, though care should be taken that

all edges that are measured make sense as a plausible pathway in

flow-based measures.

Some network analyses use a random walker to move across

edges in the network to infer characteristics of its structure based on

how often the random walker reaches certain nodes and how often

certain pathways are traveled. Often, which direction a random

walker goes is determined probabilistically by the weights and direc-

tions of both the intralayer and interlayer edges (if weighted and

directed) (De Domenico et al. 2015a). Should the random walker be

more, less, or equally likely to travel to the node-tuple of the same

individual on a different layer, compared with other nodes in the

same layer? For such measures, and even for measures that don’t ex-

plicitly employ a random walker technique but assess characteristics

about the “flow” (e.g., of information or disease transmission)

through edges (e.g., measures of acyclicity, network diameter,

betweenness centrality, and closeness centrality), thinking about a

random walker traveling across pathways is a fairly intuitive way to

consider how interlayer edges might influence certain multilayer net-

work measures, and help guide thinking about if and how interlayer

edges should be incorporated into pathways that are used in an ana-

lysis. As described for centrality and versatility measures in Figure 6,

pathways that span multiple network layers may or may not be ap-

propriate, as they may or may not have sensical interpretations.

Edges from different layers and edges between layers need to match

in a coherent way for a pathway to be useful.

Subgroups—multilayer communities
Subgrouping is a common focus of how groups are structured

(Whitehead 2008; Grueter et al. 2012; Ramos-Fernandez et al.

2018). For instance, subgroups in a social group could be character-

ized by individuals that interact in different social contexts, and

could do so consistently or with high variability (Ramos-Fernandez

et al. 2018). Others have described subgrouping or communities

within a nested or modular social stratification (Grueter et al.

2012). Communities can vary in size, number, or in how differenti-

ated they are from each other (Whitehead 2008). Multilayer com-

munity inference methods could facilitate quantifying these

components of social structure, by assessing community structure

over layers that represent interaction types or time windows (e.g.,

number of communities, number of layers by which node-tuples are

from within communities, and number of communities an individu-

al’s node-tuples are assigned to).

Some community detection algorithms have been generalized to

multilayer networks (Kivelä et al. 2014; De Domenico et al. 2015a).

The community detection algorithms (or perhaps more accurately

called community inference or community assignment algorithms

because they do not necessarily detect a ground truth) that exist for

multilayer networks allow a researcher more flexibility in deciding

how communities should be assigned, as the coupling between layers

can be adjusted (for an example of this, see Supplementary Material

2 in Finn et al. 2019). Briefly, in multilayer community assignment,

node-tuples of the same individual can be assigned to the same or

different communities (see Figure 7B), and the coupling between

layers can determine if it should be more strongly biased to group

node-tuples of the same individual into the same community, or

more strongly biased by the intralayer edges a node-tuple has with

other individuals on each layer. As such, the researcher can decide if

they want to assign node-tuples to communities while emphasizing

differences in relationship types or emphasizing consistent sub-

groups of individuals (Supplementary Material 2 in Finn et al.

2019).

For instance, the first multiplex in Figure 6 has functionally simi-

lar behavioral layers (affiliation), so one could assign strong cou-

pling between layers (de-emphasizing differences across layers), and

use community assignment to identify different social cliques.

Alternatively, in the second multiplex in Figure 6 where the layers

are functionally different behaviors, one could assign weaker cou-

pling between layers (emphasizing differences across layers) and use

community assignment to identify subgroups more representative of

different relationship types. One could even more creatively use

community assignment in the third multilayer network, where in

addition to 2 behavioral layers, there is a layer with nodes of loca-

tions, and a layer of edges that reflect relatedness. While inferred

communities may not represent subgroups in the same capacity, the

composition of communities could be informative about who is

doing what, where, and with whom. For example, if one location is

grouped with a larger number of node-tuples from one of the behav-

ioral networks, it could reflect that certain interactions or contexts

are linked to a location. If individual’s node tuples from the related-

ness layer are more likely to be in the same communities as their

node tuples from the grooming layer, it could represent that groom-

ing is more related to nepotism.

Group connectedness and fragmentation—multilayer

clustering
Group connectivity is another common description of social struc-

ture (Lehmann and Dunbar 2009; Lehmann et al. 2012). For in-

stance, some social structures are characterized by having

fragmented subgroups while still maintaining overall social cohesion

(Lehmann and Dunbar 2009). Such attributes could be indexed by

both measures of clustering and community assignment. However,

clustering and presence of distinct communities do not necessarily

co-vary—clustering indexes “connectiveness” of subgroups, instead

of who is in each subgroup or how many exist. Clustering can be

measured locally (i.e., to what extent is an individual in a strongly

clustered region) or globally (i.e., to what extent are individuals in

the group clustered), often assessing the number and density of tri-

angles (where 3 individuals are all connected to each other) in

regions of the network. Some clustering measures have been
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generalized to multilayer networks (Kivelä et al. 2014). Still, care

should be taken in how they are used to ensure they are capturing

structure in the network that is meaningful. For instance, does it

make sense for clustering to also reflects how strongly node tuples of

the same individual are connected to each other, as well as how

closely they are connected to others? This may or may not make

sense for different datasets.

In a multiplex social network, clustering measures could be use-

ful in a number of cases by measuring how individuals are clustered

based on sets of behaviors instead of just one. For instance, if there

are 2 similar behaviors (e.g., huddling and grooming) that both re-

flect the same general social domain (e.g., affiliation), and interact-

ing with both indicates stronger bonds than only interacting with

one, clustering measures of a multiplex network of both behaviors

might be a better representation of how “cliquey” a group is. This

would be especially true if one of the behaviors sometimes serves

other purposes in the absence of the other [e.g., grooming for polit-

ical reasons (Wooddell et al. 2019)]. See Section 4.2.3 in Kivelä et

al. (2014) for a review and discussion of multilayer clustering meth-

ods, and numerous other recent clustering analyses for multilayer

networks (Chen and Hero 2017; Chen et al. 2019; El Gheche et al.

2020).

Behavioral dimensions and domains—layers
Layers are of course what allow for the more detailed descriptions

of individuals and relationships in multilayer networks. Different

interaction types, time periods, seasons, or contexts (e.g., interac-

tions during provisioning versus not) can be separated into different

layers such that they are not conflated, yet still exist in one structure.

Different time windows can be represented as different layers (or

different aspects), reflecting different group memberships or changes

in relationships. This can allow researchers to differentiate between

stable versus unstable relationships, or long-term social bonds versus

brief interactions. The number of layers also indexes the number of

dimensions by which relationships can differ—more socially sophis-

ticated groups may have more types of interactions (Barrett et al.

2012), more contexts in which they interact (Freeberg et al. 2012),

and/or greater use of cues or signals (Anderson and McShea 2001),

all of which can be represented as layers.

What constitutes a distinct layer? Especially when there are

many different presentations or levels of a specific behavioral type

(e.g., intensities of aggression or submission), it may not be clear

which behaviors should be grouped together or separated into dis-

crete layers. This can also be an issue in single layer analyses, though

it is no longer an invisible problem when you must actively decide

what should be multiple distinct network layers. For example, even

within the same species, which behaviors are used to create an ag-

gression layer can vary quite a bit [see Finn et al. (submitted for pub-

lication) for a discussion about this in Barbary macaques], making

results across studies less comparable. How then, can one decide

which behaviors are functionally similar enough to be in the same

layer, or different enough such that they should be kept separate?

While some methods exist to aid such decisions, blind applica-

tion of them is unlikely to yield results that are optimal for your

unique dataset and study. Methods such as layer reducibility (De

Domenico et al. 2015b) are designed for a mathematical optimiza-

tion of distinctly different layers that may or may not match the

Figure 7. Larger scale structure arising from social processes. Structure arises in subgroups and across the entire network from the dynamics of interacting indi-

viduals. In a single layer network, nodes can be connected directly or through pathways (panel A, top), and in multiplex networks, there are many additional path-

ways that connect individuals that span across both intra and interlayer edges (panel A, bottom). For communities of more connected sets of individuals,

individuals are usually assigned to only one community in single layer networks (panel B, top), whereas node-tuples of an individual can either be all in the same

communities or in different communities in a multiplex network (panel B, bottom). Layer coupling can only be measured with multilayer network layers (panel

C). Layers can be grouped based on how similarly structured they are, or how strongly connected they are to each other (e.g., the dendrogram in panel C indi-

cates which layers are most similar to each other).
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aims of behavioral researchers, which are probably to use layers of

behaviors that serve different biological or social functions. It is like-

ly important to combine multiple behaviors that are functionally

equivalent or redundant to the study species (Hobson et al. 2013),

not just in their network structure. Two layers might show very

similar structure that might be optimally combined based on some

algorithm, but it may be the case that based on knowledge of the

study system, the behaviors are functionally different, in which case

one may want to keep them separate. That 2 layers of functionally

different behaviors are structured similarly may even be informative

about that social group.

It is also important to understand what parts of the network are

being used in methods that aim for some optimization, so that one

can consider whether or not those network structures are functional-

ly important or what one may want to optimize. Some methods may

not factor in the weight or direction of edges (De Domenico et al.

2015b), which could be very important for your networks. For in-

stance, a method might use percent of edge overlap to decide if 2

layers should be combined, but perhaps you are making decisions

about agonistic behaviors, and care more about how similar the dir-

ection in the flow of edges across the networks are more than you

care that the same animals used the behaviors.

Decisions about combining or separating behaviors into separate

layers should be made considering both your knowledge about the

species/study system, properties of the networks, and what those

properties mean given your species/study system. One may need to

use a combination of species knowledge and descriptive network

statistics to make decisions, and those decisions might vary for dif-

ferent research questions. See van der Marel et al. (2020) for a

framework and suggestions to guide these decisions.

Behavioral covariation—interlayer coupling
Within the same social group, networks of different types of interac-

tions may be structurally very similar or distinct from each other

(Lehmann et al. 2012; Beisner et al. 2020), and therefore measures

of layer coupling could be useful for characterizing a group’s social

structure or social dynamics. For instance, some species may use dif-

ferent behaviors for different goals or have context-specific social

investments (e.g., association choices may decrease competition,

while grooming choices may reestablish relationships) (Lehmann

and Boesch 2009). Multiple network structuring mechanisms such

as this would then likely generate layers with very different

structure.

Interlayer coupling could be used to describe a layer, pairs of

layers, or the overall network, and can be based on either connectiv-

ity with interlayer edges, or similarity of intralayer edges. If one

layer is more coupled to all other layers, it could be a keystone net-

work that disproportionately influences other layers and overall

group dynamics (Fushing et al. 2014). Measures of layer coupling

can also be used to aid decision-making about which layers to use

during network construction, as descriptive statistics to describe the

similarity of layers.

An index that uses interlayer edges reflects coupling based more

on attributes such as flow between layers, strength of connection be-

tween layers, or “dynamical spillover” (Vijayaraghavan et al. 2015).

In the same way that single or multilayer networks can be described

with a distribution of node-level measures (e.g., degree distribution

or distribution of a versatility measure), sets of network layers or an

entire multilayer network can be described as the diversity or distri-

bution of interlayer edge weights between layers. For instance, if 2

layers are more strongly coupled than others, their interlayer edge

weights might be skewed toward higher values more than other sets

of layers. There could also exist differences in the variation of inter-

layer edges between layers—two layers may have relatively consist-

ent interlayer edge weights or directions connecting nodes across

layers, whereas the interlayer edges weights connecting nodes across

another 2 layers may widely vary.

Interlayer coupling can also be described not by how strongly

layers are tied by interlayer edges, but by how similar their intra-

layer edges are to each other. Such measures are based more on

attributes such as similarity, overlap, or correlation between layers.

A network could have layers that are equally different from each

other, or some that are more similar to each other (see dendrogram

in Figure 7C). There are a number of approaches that could be used

to assess similarity between layers, many of which are compiled into

lists elsewhere [4.2.5 in Kivelä et al. (2014); Evolutionary models

section and Supplementary Materials 1 in Finn et al. (2019); De

Domenico et al. 2015c]. Some methods and implementations can

even group layers based on how similar they are to each other, simi-

lar to a community assignment of layers [see Kao and Porter (2018),

Stanley et al. (2016), and the implementation of both layer correla-

tions and layer reducibility (De Domenico et al. 2015b) in Muxviz

De Domenico et al. (2015c)].

Social situation—the global multilayer network
An entire social group can be described with summaries of the distri-

butions of any of the smaller social units described above, combina-

tions of them, or measures of the entire structure. For instance, the

distribution of social roles in the group could be homogenous, di-

verse, or skewed (Whitehead 2008), and the distribution of a multi-

layer centrality or versatility measures could capture this, to the

extent that the measures reflect functionally different roles in a so-

cial group. More globally, the social structure could be indexed by

how individuals and interactions are organized across the entire

multilayer network (Barrett et al. 2012).

The full structure of a multilayer social network describes a so-

cial group with the patterning at which all of the smaller social units

are organized, capturing characteristics of interest such as redundan-

cies in a social system (Anderson and McShea 2001), how diversely

individuals interact, and the degree to which individuals preferen-

tially associate with others (Whitehead 2008). Considering the num-

ber of layers and edge attributes (weights, direction), one can think

about all the different possible combinations of interactions individ-

uals could have—when all possibilities exist across all individuals,

the network is maximally entropic, such that probabilistically it is

completely uncertain who is going to interact and in what capacity,

since each interaction is equally likely. This would not necessarily be

the most “complex” social structure, as one could argue that every-

one would then have the same relationship (Ramos-Fernandez et al.

2018). In contrast, if no individuals interact, the network would be

minimally entropic (Barrett et al. 2012), which one could argue is

also not very complex. As there are countless properties of a net-

work that could be measured, it is not likely that one measure will

wholly reflect everything a researcher wishes to index about a social

group, or even perfectly map on to one notion of sociality one may

have (e.g., complexity or uncertainty in the example above). Instead,

one may need to carefully build a toolkit of measures that are appro-

priate for their properties of interest.
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Multilayer Social Network Analysis in Practice

The above sections aim to help researchers studying social behavior

navigate the multilayer network structure, conceptualize their study

system as a multilayer network, and begin thinking about which

components of sociality could be measured from that representation.

The remainder of the paper serves to help researchers think deeply

about the measures they use and offer tips to reason through the

decisions that must be made when using multilayer social network

analysis.

The sheer number of necessary decisions and lack of standar-

dized approaches may seem daunting, and maybe the approach

appears underdeveloped. However, in some sense, this is true for all

statistical approaches. The choices we make when collecting, proc-

essing, and analyzing data (e.g., the ethograms, the sampling, sample

size, units/metrics, behavioral proxies, assignment of variables, con-

trol of confounds, choice of statistical analysis, statistical models,

and choice of nulls) or “researcher’s degrees of freedom,” for any

analysis matter, and it’s not the case that time tested analytical

approaches and conventions are necessarily best practices [e.g., p-

hacking (Smaldino and McElreath 2016; Munafò et al. 2017)].

Because more detail from one’s data is being used, there may be

more decisions to be made. However, these decisions are not inher-

ently any different than the types of choices researchers make during

any other analysis—it is just the case that they are not always

thought about, and for these analyses they must be.

I do not believe there will be—and do not think there should

be—plug-and-chug network analyses. What social networks (both

single and multilayer) represent is unique to a given study system

and dataset (Wey et al. 2008; Farine and Whitehead 2015). As such,

the analysis one uses on any network must be applied uniquely and

interpreted uniquely to a given dataset and study question (James

et al. 2009). This is even more so the case with multilayer networks,

as the representation gets more complicated with each additional

node or edge type. We can begin creating guidelines to follow, and

collaborations with network scientists can of course be helpful.

However, nothing can replace the researcher (1) knowing what their

data represents about a real world system, (2) understanding what

the multilayer network of their data represents in that system, and

(3) knowing what a measure or analysis is assessing about that struc-

ture. Without these things, one cannot be confident in any interpret-

ation of a measure. It is vital that whoever constructs the network

and runs the analysis has a very clear idea of what the network rep-

resents, and what about that structure the analysis is capturing

(Farine and Whitehead 2015). Here, I discuss some of the common

pitfalls one faces using single layer network analyses that are exacer-

bated with multiple layers, and then outline some of the pitfalls one

may face that are unique to multilayer networks.

Exacerbated pitfalls of general social network analyses
Forming an analysis plan

One’s approach to multilayer social network analysis might be dif-

ferent if they are starting from the very beginning where they are

designing a study including the data collection, versus trying to use

multilayer network analyses to learn something from an existing

dataset. However, regardless of the starting point, the following 3

things need to both be translated from the study system to a multi-

layer network (or vice versa) and must all conceptually match: the

research question, the data, and the analysis (see Table 1 and

Figure 8). A network must be constructed from data that can be

measured in a way that is informative about the study system. While

this is true for single layer network analysis, this is more difficult

with multiple network layers, because they often contain multiple

types of data in different layers which need to be measured together

in an interpretable way.

Mining versus designing a network. If you are designing a study

where you expect you will use multilayer network analysis, you can

formulate your study question, decide on the analyses to answer the

question, and then design the network you would need to answer

the question (starting point at The Research Question in Figure 8).

Then, you can collect your data to exactly reflect the characteristics

of your study system needed for the analysis to answer your ques-

tion. While this is ideal, it is often the case data have already been

collected to answer a question without considering the network con-

struction or what specific analysis will be used. In this case, more

care is needed to make sure the network constructed from the data

are a good representation of the component of sociality they are

interested in, and that the measure captures this component.

Sometimes, a researcher may even begin with an interesting

multilayer network dataset but lacks a specific study question (start-

ing point at the data in Figure 8). It is likely the case that one can

still learn many things from their data with multilayer network ana-

lysis from this starting point, but there may be limitations to what

one can do. Even more care should be taken to make sure they

understand what the data represents about the study system and the

analysis captures something about it that is interpretable. We even

see researchers, usually from quantitative fields, begin with a novel

method, then search for a dataset they can use it on (starting point

at the analysis in Figure 8). The analysis trajectory that is most

prone to a mismatch is when data are explored as a multilayer net-

work, without a particular question, as the interpretation of a result

for any pre-existing analytical method on a pre-existing dataset may

be unclear, or even inappropriate for the dataset. Despite the start-

ing point, it is important to consider the research question, the data,

and the analysis in relation to each other and ensure they match in a

coherent way.

When beginning with questions and a dataset (or even a question

about a study system), it may be the case that one needs to develop

new measures to capture the part of the system they wish to assess.

Many existing methods are published in quantitative journals by

quantitative researchers, and the measures are not necessarily

designed for a certain study system. As a result, they may conclude a

general interpretation that may or may not be true for your data and

question [e.g., optimal layer reducibility methods (De Domenico

et al. 2015b) discussed above].

Measures versus classes of measures
Sometimes classes of measures are touted to have a general meaning

(e.g. centrality measures, communities in community detection,

measures of modularity, and measures of assortativity). In reality,

there are multiple different analyses that fall into these classes that

sometimes measure different parts of a network (Farine and

Whitehead 2015). For example, there are many different measures

of “centrality” (e.g., betweenness, page rank, and eigenvector) that

can all index the “importance” of an individual or “how central” it

is. However, each of these captures a different characteristic of how

edges are patterned in a network. Similarly, community detection

algorithms assign individuals to communities, but countless methods

exist that determine communities in different ways, some of which

may assign communities that are similar or different to the types of

subgroups you may be interested in Fortunato and Hric (2016).
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In addition, what a measure functionally represents could be quite

different with different edge types (e.g., the same centrality measure in

an agnostic versus an affiliative network) (Wey et al. 2008; Farine and

Whitehead 2015; Beisner et al. 2020). While many datasets can all be

represented by a network structure, the analyses done on that structure

may not have the same interpretations across datasets. It may appear

that some network measures have a “meaning” (e.g., importance of an

individual to a group), but there is no functional interpretation of any

network measure that exists absent the study system and data, nor do

they generalize across all datasets.

The temptation and risk of overgeneralizing across a class of meas-

ures may be greater in a multilayer network, as the outcome spans mul-

tiple behavioral domains. For instance, it may seem that a multilayer

versatility may reflect even better how important or central an individ-

ual is, as it considers multiple behaviors; or, it may seem that the com-

munities that node-tuples are assigned to may be closer to a ground

truth, since it includes multiple behaviors and it doesn’t constrain an

individual to only one community. However, the reality is that there is

still a lot of variability across values generated by different measures

within a class of measures. For instance, Muxviz (De Domenico et al.

2015c) contains implementations of 13 different multiplex centrality

or versatility measures. Figure 9 shows the values from all of these

measures calculated on the same 2-layer multiplex network of groom-

ing and associations in a baboon group, with data from Franz et al.

(2015a, 2015b) (also analyzed for Page Rank versatility in Finn et al.

2019). While Finn et al. (2019) showed that individuals were ranked

differently using Page Rank on the separate layers, aggregated net-

work, or multiplex, individuals are also ranked differently using these

different centralities measures on the multiplex. Even though the layers

are both related to affiliation, and all measures are centralities that

more or less represent how “central” an individual is, which individu-

als have the highest values is far from consistent. The reality is also that

it may be more difficult to match these multilayer analyses to both a

dataset and a question in a sensical way, and one must have a good

understanding of how each measure is calculated and what their data

are in order to decide which one is most appropriate. All interpreta-

tions of network measures are relative to what the data are, so the

interpretation of multilayer measures is relative to the unique combin-

ation of multiple types of data that make the network.

Designing a measure. As mentioned before, there is a decent chance

that there does not exist a measure or analysis that well captures the

component of social structure one wants to quantify. This is not neces-

sarily a problem and may in fact be a great opportunity for a new col-

laboration and/or an additional methods paper. It is often the case that

network scientists are willing (even eager) to collaborate with social

scientists that have data and intimately know a real-world system. If a

researcher conceptualizes their system and data as a multilayer net-

work, identifies the scale of sociality they are interested in, and

describes what parts or characteristics of the network they want to

quantify, it may become clear how they should compress and summar-

ize the data. If not, chances are that by communicating these things to

a network scientist, together they will be able to construct an appropri-

ate measure. As network science and multilayer networks have become

increasingly popular in quantitative fields as well, it is likely there exists

such a scientist in the physics, mathematics, or computer science de-

partment at most universities. Social network analysis is intrinsically

an interdisciplinary endeavor, and cross disciplinary collaborations

should be the norm.

Statistical significance and randomization
Network analysis often requires additional statistical techniques

such as network randomizations to account for structure that may

exist merely because the data are being represented as a network. It

can be a challenge to determine what is an appropriate

Table 1. Forming a coherent social network analysis

The research question The data The analysis

What is the thing you are trying to learn

or identify about your study system?

Over which behavioral domains, time

scales, or social scales does it exist? If

your system was represented as a net-

work, how would you phrase this as a

network question?

The data must be constructed into a net-

work to contain the structure and in-

formation necessary to answer your

question. Is the thing about your study

system that you are interested in meas-

uring represented and contained in a

network of this data?

Could this measure act on the parts and

social scale relevant to your research

question? Could an interpretation of

analysis outcome answer your ques-

tion? What would you learn from dif-

ferent values of this measure about

your system?

You must be able to construct a network

from your data that makes sense to

your study system. What can the inter-

layer and intralayer edges reflect? What

are the nodes? What are distinct layers?

What parts of your system does this

network represent?

The measurement must make sense to the

data. What parts of a network is the

analysis combining and summarizing?

What data do those parts represent?

Does it make sense to combine them in

this way?

Which measurement or analysis are you

going to use, and what part of a multi-

layer network does it measure? What

does it capture about how nodes,

edges, or layers are related to each

other? What is the range of possible

results and what would they mean?

Three important components—the study question, the data, and the analysis—must all match each other within the context of a study system and within the con-

text of a network structure. There can exist mismatches between any 2 of these components, or between how all 3 fit together. Each square in this table gives

examples of questions, to assess that each of these components is clear and combinations of them are coherent.
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randomization even in a single layer network, though it is still im-

portant to make sure measures are not merely an artifact of the data

being structured as a network, or an artifact of how the data were

sampled [see Farine (2017) for an overview of randomizations as

null models for animal social networks, Fosdick et al. (2018) and

Newman (2018) for more about network randomizations, and

Supplementary Materials in Finn et al. (submitted for publication)

for an example of designing randomizations on a dataset, and

Hobson et al. (2020) for an extensive discussion of reference mod-

els]. Which parts of the networks one should randomize or preserve

varies depending on what question is being asked with a given meas-

ure (i.e., what other parts should be controlled for in the randomiza-

tion), and also varies depending on how the data were sampled (i.e.,

to preserve any bias in the randomizations that may have induced

from the sampling methods, to ensure the structure isn’t just an arti-

fact of that bias) (Farine 2017). In a multilayer network, there are

many more parts to potentially randomize or consider. The same

considerations that apply for a single layer network apply to each

layer of a multilayer network. If data for layers was collected using

different sampling, there may need to be different types of

randomizations on each layer. In addition, depending on whether

researchers are using interlayer edges and whether those also are

assigned values from data, randomizations may need to be used on

these edges as well.

Depending on the measure used and study question, edges can ei-

ther be randomized within layer only, or across all layers. For ex-

ample, if each layer is a different behavior and a researcher is

interested in measuring some characteristic about an individual’s

role, it may be appropriate to only randomize connections within

layers. Similarly, randomizations in multilayer motif analyses may

only randomize within layers, as they aim to detect significant pat-

terns that span multiple layers (Smoly et al. 2017). In contrast, if

one was interested in how layers were related to each other, they

may want to randomize across layers to preserve the frequencies at

which behaviors were used, or even randomize the values within

multi-degree vectors for each individual to preserve the total amount

that individuals interacted. Intralayer edges could be randomized

only among intralayer edges, or across interlayer edges as well.

Another option, depending on the data and question, may be to ran-

domize isolated parts of the network at one time (e.g., only one

Figure 8. Flowchart of an analysis plan. Ideally, multilayer social network analysis begins with a research question, though in practice researchers sometimes

start with a dataset or a novel analytical method. This flowchart outlines some of the important questions and considerations researchers should be able to ex-

plain, from various starting points. Regardless of the starting point, it is important that the research question the data, and the analysis conceptually match.
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layer), but do several randomizations that each randomize different

parts, to assess the effects of various potential confounds. For each

randomization, one should know what parts of the network struc-

ture are being randomized or preserved, and functionally what that

means. What about the network structure does the randomization

remove? What about the network structure is being preserved for

each part that is not randomized? In general, each randomization

should serve a unique purpose to statistically validate specific struc-

tural properties, and control for specific possible confounds. Like

any other network analyses, randomizations will never be a one size

fits all solution and depend on the unique study question, dataset,

and analysis used.

Pitfalls specific to multilayer networks
Differences across layers

Besides the magnification of existing potential pitfalls in social net-

work analyses, there are new challenges unique to multilayer net-

works to keep in mind. There are numerous attributes that can

differ across network layers that can influence the values calculated

in certain analyses. The following characteristics are important to

consider when constructing and measuring a multilayer network.

Network properties. Not all behaviors occur at the same rates,

which could cause networks of different behaviors to be different

sizes, even if they were sampled at comparable intervals. If this is the

case, some layers may be disproportionately represented or have

inflated influence by certain analyses (Finn et al. 2019). For

example, in measures that use a random walker, a random walker

may end up spending more time on network layers that have greater

participation (i.e., more individuals use a behavior), higher densities,

or higher average degree, and therefore have a greater influence on

the outcome. This may or may not be desirable. If the intention is to

treat each layer as different but equally influential social domains,

you may need to employ normalization procedures to lessen this in-

flation, or use methods that explicitly treat layers as separate, but

equal contributors to the estimate (Beisner et al. 2020). Generally,

comparing networks of different sizes can be challenging (James

et al. 2009), and measures that compare layers will face similar

problems.

Sampling. If the data from some behaviors were sampled differ-

ently than others (e.g., one used scan sampling while another used

event sampling), some behaviors could have much higher frequen-

cies in the data, even if they happened similar amounts. This creates

similar problems as having networks of behaviors that occur at dif-

ferent rates. One may need to use different normalizations for edges

on different layers, or account for this during randomizations.

Units. In addition, if different sampling occurred for different be-

havioral data, layers may represent data that were measured in fun-

damentally different units. For example, some edges might be

weighted by the total number of days an animal was observed

engaging in behaviors, while other edges might be weighted by a

count of the number of times behaviors occurred. Beyond sampling

differences, edges or layers could also differ in units due to the na-

ture of representing categorically different attributes (Finn et al.

2019). If some behaviors occur for long periods of time (i.e., behav-

ioral states), while others occur very quickly (i.e., behavioral events),

some edge types might represent a duration engaged in a behavior,

while others might represent a count of instances of a behavior. If

some layers are not a behavioral type (e.g., relatedness), the unit

might be something completely different (e.g., percent of genetic

similarity). For some multilayer network measures, the results gener-

ated from layers that contain edges of different units could be diffi-

cult to interpret or uninterpretable. Different units might just rule

out the ability to use certain analyses, or each layer may need to be

further course-grained or normalized to make sense. For instance, if

some edges represented total days observed, others represented total

scans observed, and others represented total instances observed,

using unweighted n-grams (i.e., the presence or absence of the be-

havior overall) may be a better option to analyze relationship types.

Otherwise, with continuous edge weights it is unlikely any 2 rela-

tionships will appear similar even if they are (which is a problem if

the intention is to identify relationships types), and/or it may be

hard to reason about what the values of each edge mean relative to

the whole relationship. Another option could be to discretize varia-

bles into categories of low, medium, and high, so each layer has a

similar range of values that represent the relative amount they were

used.

Which layers to use?
One of the most immediately obvious caveats to a multilayer net-

work approach to quantifying social structure is that in order to get

a reasonable representation of the social situations of a group, you

would need to include all important and relevant layers (e.g., inter-

action types and contexts). Which types of social interactions are

unique and important for a species might not actually be known (or

even knowable). While it is the case that many datasets contain mul-

tiple interaction types or contexts, it is unlikely that many datasets

contain all interaction types or all contexts that are relevant to an

Figure 9. Multilayer centrality and versatility measures. Thirteen different

centrality or versatility measures can be calculated on Muxviz (De Domenico

et al. 2015c). All of them were calculated here on a 2-layer multiplex network

of grooming and associations in a baboon group with data from Franz et al.

(2015a, 2015b). The results are displayed in the annular visualization created

in Muxviz—the darker the green, the higher the relative value for each central-

ity measure. Values for each centrality measure are shown as a ring in the

visualization, with Kcore being the innermost, to Strength of Indegree being

the outermost, following the order of the legend. Individual IDs are repre-

sented as numbers along slices of the circular figure.
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individual’s social life. If for instance, you wanted to compare the

social structure of different species (Pasquaretta et al. 2014), but left

out an important layer or layers for some of the species, the net-

works would not be good representations. For any given study,

however, it may not be the case that all social domains are necessary

or appropriate to include, unless the research aim is to make a com-

plete and thorough assessment of a group’s social structure. Many

or most study questions likely focus on specific components of social

structure, and possibly even a narrow range of behavioral domains

(e.g., agonism). Adapting the common phrase about modeling: all

multilayer network representations are wrong, but some are useful.

When deciding which behavioral layers to include when running

a particular analysis, many of the decisions may overlap with decid-

ing what should be distinct layers. A researcher may have separately

decided which layers should be distinct layers to represent their

study system, in which case they then need to decide which are rele-

vant to include in the analysis. Alternatively, a researcher could

make decisions at the same time about which layers to separate,

combine, or include in the analysis. For example, if a study question

is related to agonism or a group’s hierarchy, should layers of affilia-

tive behaviors also be included? Considering what the analysis meas-

ures about a network’s structure, which behaviors should that

structure be made of? Unless the aim of the analysis is purely ex-

ploratory, it is likely not the best approach to include all possible

layers, and instead they should be selected carefully with reference

to the study question and method. There may be additional practical

considerations as well, such as a maximum number of layers that

could be used due to computational constraints, or constraints of

statistical power for a given method and group size.

Code and software

Unfortunately, even of the existing analyses, not all have easy to im-

plement software and code. For those that do have accessible imple-

mentations (see a list of some in Table 1 of Finn et al. 2019), it is

still important that the researcher understands exactly what the ana-

lysis is doing. Especially with regards to interlayer edges, some soft-

ware platforms may be using edges in unanticipated ways, or ways

that are inappropriate for some data. For example, while Muxviz

(De Domenico et al. 2015c) is a very useful platform for multilayer

network visualization and analysis, some commands use data in po-

tentially unexpected ways. Some analyses in Muxviz have the option

to also calculate measures on the aggregate single layer network.

Sometimes this preserves interlayer edges from the multilayer net-

work that connected node-tuples of the same individual, as self-

loops connecting a node to itself in the aggregate network. This

could inflate a very basic measure such as degree, if one did not in-

tend to count interlayer edges or self-loops.

Interlayer edges that connect node-tuples of the same individual

may also create undesired inflation of multilayer measures that are

not aggregated if run blindly. For instance, consider a scenario with

a 2-layer multiplex network where betweenness versatility is calcu-

lated, which measures the number of shortest pathways between all

dyads that pass through an individual. If an individual is connected

to itself on both layers A and B with an interlayer edge between

node-tuple A and node-tuple B, but node-tuple A does not interact

with any individuals in its layer, node-tuple B is going to be involved

in every shortest path between node-tuple A and all node-tuples for

all other individuals on both network layers, substantially inflating

the betweenness centrality of node-tuple B. Such effects may or may

not be desirable depending on the research aim, so it is important to

think them through.

In addition, some measures might not work if the data have

directed or weighted edges, or such attributes might not be used in

an analysis. Therefore, it is important to locate either the source

code, or the original articles that the implementations are based on,

to understand what the analyses are doing. When in doubt, it is al-

ways a good idea to create toy networks and test them out on the

software, to make sure it is doing what one thinks it is doing. A re-

searcher can build an intuition for when the values should be differ-

ent and create model networks to check the output of the software

against their intuition. For instance, one can start with a small net-

work with only a few nodes and layers, manipulate the edges, and

see if the measure changes in the way they expect. They can create a

network that they think should produce a high value of a measure,

and a network they think should produce a low value of a measure.

By simulating a set of networks that vary by the characteristic they

are trying to measure, they can then double check that the measure

and implementation they are using is capturing this characteristic

across the simulated set.

Final remarks

While multilayer networks will not solve all our problems, they can

be extremely useful tools for quantifying social behavior if used

thoughtfully and carefully. The promise of multilayer network ana-

lysis is not in what it can do for us, but what we can do with it. It

will never be a plug-and-chug analysis, nor will it ever sort through

all the complexities of our system by itself and tell us what we want

to know. The sorting and decision-making still falls into the hands

of the researcher, so it is important, as it is with any statistical

model, to have a good sense of what the data are and what the ana-

lysis is doing with it. This is important on a conceptual level with

regards to the study system, at an analytical level on the network,

and that these 2 things map onto each other coherently through the

data. There is a good chance a measure does not already exist for

the exact thing a researcher wants to measure in a network con-

structed from their unique data, but there is also a good chance such

a measure could be created. Do not be afraid to create your own

measures or collaborate with a network scientist to create an ana-

lysis that does what you want! Because of the vast diversity of sys-

tems multilayer networks can represent, the future of multilayer

network analysis depends as much, if not more, on empirical

researchers identifying meaningful structure in their systems and

data they want to quantify, as it does on quantitative researchers

developing new tools. The relationship space of our study systems is

the final frontier.
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