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Abstract

Health outcomes following infection with Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-CoV-2) are remarkably variable. The way the virus spreads inside hosts, and how

this spread interacts with host immunity and physiology, is likely to determine variation in

health outcomes. Decades of data and dynamical analyses of how other viruses spread and

interact with host cells could shed light on SARS-CoV-2 within-host trajectories. We review

how common axes of variation in within-host dynamics and emergent pathology (such as

age and sex) might be combined with ecological principles to understand the case of SARS-

CoV-2. We highlight pitfalls in application of existing theoretical frameworks relevant to the

complexity of the within-host context and frame the discussion in terms of growing knowl-

edge of the biology of SARS-CoV-2. Viewing health outcomes for SARS-CoV-2 through the

lens of ecological models underscores the value of repeated measures on individuals, espe-

cially since many lines of evidence suggest important contingence on trajectory.

Introduction

Infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can yield

strikingly different health outcomes. Some people experience few or no symptoms, others have

devastating health consequences, from mortality to chronic afflictions. This combination is

what makes this virus such a formidable public health challenge. Asymptomatic infection

enables SARS-CoV-2 to spread widely, since people can transmit the infection without know-

ing it, while severe outcomes have yielded devastating death tolls and challenged health sys-

tems around the globe.

Evidence on potential risk factors for severe outcomes with SARS-CoV-2 is growing, so far

encompassing age [1,2], sex [2,3], and comorbities like obesity [4]. However, seemingly similar

people still experience very different health outcomes. The reasons for this remain largely mys-

terious, yet viral, immune and physiological dynamics within individuals are likely to play an

important role. Data on the time-courses of viral load, induced immune cells, signaling

responses, and effectors are accumulating [5–7], and the timing of immune responses is
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increasingly recognized as an important element of health outcomes. For example, the inter-

feron signaling proteins can be protective early in infection, but pathological later [8].

Such time-dependence implies that accounting for the dynamics of within-host processes

could provide a powerful lens for understanding health outcomes. A well-established literature

spanning a range of pathogens provides an important foundation to build on. Pioneering

work modeling the within-host dynamics of HIV, for example, provided estimates of the life

span of productively infected cells that importantly informed design of treatment regimes [9].

Furthermore, within-host models have indicated important roles for target cell depletion as

well as the timing and magnitude of induced immunity in shaping the peaks and troughs of

density for pathogens from malaria [10] to influenza [11], with implications for vaccine

design.

The duel between viruses and immunity manifests as a complex series of population inter-

actions between cells, viruses, and signaling molecules—essentially a within-host ecological

interaction. Here, we provide an overview of the potential as well as the limitations of ecologi-

cal principles (Fig 1) to understand the within-host spread of the virus and the unfolding

immune response. We discuss how, considered in this way, differences in immunity for which

we have some understanding (e.g., due to age and sex), could help explain differential disease

trajectories that remain mysterious for SARS-CoV-2.

Susceptible-infected-recovered models

Susceptible-infected-recovered models (Fig 1A) describe the spread of infection between indi-

viduals. Parameters include R0, or the number of new infections per infected individual in a

completely susceptible population, and the serial interval, or average time separating 1 infected

individual from the next, which together define early spread. For example, with R0~2 and a

serial interval of approximately 1 week, the number of infections doubles every week, aligning

with explosive early growth of SARS-CoV-2 following introduction into communities around

the world.

These principles can also describe spread of a virus like SARS-CoV-2 within hosts: Target

cells in the lung (or other organs) that express the angiotensin-converting enzyme 2 (ACE2)

receptor required for viral cell entry become the “susceptible” individuals. Leveraging known

aspects of viral biology (e.g., in vitro replication indicates that the eclipse period, or interlude

separating cell invasion to virus production, is approximately 6 to 8 hours), trajectories of viral

load can be used to estimate R0 and the serial interval for within-host spread (S1 Text). To

date, such approaches place the within-host R0 of SARS-CoV-2 between 3 and 8 [12,13], and

potentially as high as 20 in the lower respiratory tract where this has been estimated separately

[14]. Assuming a serial interval of less than a day, this indicates very rapid growth of the num-

ber of infected cells—more than tripling every day.

The magnitude of R0 also provides an approximation for the threshold for “herd immu-

nity,” or the proportion of the susceptible pool that must be removed for the incidence of

infection to start declining (S1 Text). Within-host, target cells can be removed from the sus-

ceptible pool by direct viral damage to the epithelial cells of the respiratory tract, or “friendly

fire” from the immune system, as described for influenza [15]. Striking lung damage observed

even in asymptomatic, SARS-CoV-2–positive individuals [16] suggests that loss of target cells

could be sufficient to slow (although perhaps not stop) within-host viral spread. Uninfected

cells can also be “removed” from the susceptible pool by the effects of the type 1 interferon

pathway, a fast-acting early signaling cascade associated with innate immunity that causes cells

to become refractory to infection [17,18]. In influenza in ponies, more than half the susceptible

cells are estimated to be able to become refractory within 2 to 3 days [11]; importantly, this
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immune pathway seems to be often impaired by SARS-CoV-2 [19]. For a within-host R0

between 3 and 8, between 60% and 80% of the uninfected target cells would have to be resistant

or otherwise made refractory for viral loads to start to decline (by analogy with the threshold

for herd immunity) because 1 infected cell results in less than 1 new infected cell assuming

that target cell availability is the key driver of viral spread. However, models also suggest that

SARS-CoV-2 disseminates slowly through different regions of the lungs (driving the long

duration of infection in some individuals) [14], so that relatively spatially restricted depletion

of target cells to 60% or 80% could effectively slow or prevent spread.

Even if target cell depletion alone might not be of sufficient magnitude to stop the increase

in viral load, such local effects are likely to shape the within-host dynamics in SARS-CoV-2—

especially as anything that reduces early spread will have disproportionate effects in the context

Fig 1. Ecological frameworks, and their translation toward within-host pathogen dynamics, including. (A) Susceptible-Infected-Removed models, a class of

consumer resource models where individuals (or target cells) are initially susceptible (blue box/line), then may become infected (red) on exposure to an infected

individual (or virion) via transmission (arrow); they are then removed (green box, line), e.g., via mortality. Susceptible depletion (declining blue line) eventually means

that the proportion infected ceases to grow (herd immunity threshold). Early events (e.g., earlier virus detection via TLR7 in females) will have disproportionate effects

on the trajectory of viral growth by compounding impacts on exponential growth. (B) Predator-prey models also broadly reflect consumer resource models, here with

parameters illustrating population cycling (rabbit populations collapse as wolf populations (and thus predation) increase; but once rabbit numbers are too low to sustain

wolf populations, these in turn collapse, and so on). Within-host, such compensatory dependence could explain similar peak viral loads (prey) across hosts (males and

females) with different immune system features (predators), although repeated cycling as depicted here is likely to be rare. (C) In collective action models, simple rules at

the individual level result in population level information integration (e.g., fish schooling). This might shape immune cell population coordination (e.g., CD4 T-cell fate

selection), and disruption of this signaling could contribute to immunopathology; and (D) Alternative Stable States emerge if gradual changes push the state of the

community (or immune system) to contexts that complicate return to initial conditions. Here, pro-inflammatory cytokines show accelerating and then staturating

growth beyond a threshold of viremia (purple line abruptly increases then flattens) while anti-inflammatory cytokines grow consistently (black line curves smoothly

upwards). The growth and decline in the inflammation are equal at the 3 points where the lines intersect. At 2 of these (circles), inflammation grows if it falls, and

shrinks if it increases, indicating stable equilibria that may be hard to escape; the square represents an unstable tipping point. Small differences in the timing and

magnitude of viremia/the inflammatory response might push some individuals above this tipping point while others remain below, driving very divergent health

outcomes in otherwise similar individuals.

https://doi.org/10.1371/journal.ppat.1009105.g001
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of exponential growth (in Fig 2, early reductions in viral growth indicated by the purple arrow

labeled 1 result in rapid and substantial reductions in viral load as illustrated by the deviation

between the red and blue lines). However, the start of the decline in viral load is likely to be

largely driven by later-acting but more precisely targeted immune defenses, such as virus-spe-

cific cytotoxic T cells (potentially a correlate of protection for SARS-CoV-2, as noted for other

severe coronaviruses [20]), rather than target cell depletion alone.

Known physiological sex differences generate predictions as to the early within-host growth

of viral populations. Androgens increase expression of two cell receptors necessary for cell

invasion by the virus, ACE2 [21] and transmembrane protease, serine 2 (TMPRSS2) [22].

Associated increased rates of cell invasion (β in S1 Text) could accelerate early viral population

growth in males (Fig 2). Moving onto immunity, a critical part of the immune response is

detection of the virus and triggering of appropriate signaling cascades. Since the virus seems

Fig 2. Dynamics of SARS-CoV-2 showing the hypothesized trajectory of viral load in the respiratory tract (bottom

panel) for males (blue) and females (red). The top panel broadly maps a set of potential immune responses, roughly

corresponding to recently described immunotypes [5]: Detecting and responding early (e.g., via early activation of type

I Interferons) leading to early resolution, a delayed but ultimately successful response (e.g., via moderate Type 1 T cell

activation), or an aberrant response resulting in hyperactivation (e.g., cytokine storms and exhaustion of lymphocytes)

and the most severe forms of disease. Hosts of different sexes or ages might differ in propensity to follow the possible

trajectories suggested in the top panel. For example, strong early detection and response in females or younger

individuals (purple arrow labeled 1) could result in lower early viral loads. Despite delayed control, males or older

individuals might still be able to regain the lost ground by successful development of cellular immunity (purple arrow

labeled 2); if this response is greater for greater viral loads, this could ultimately result in similar scales of viral load in

both slow and fast responding individuals around the peak of viral load. Finally, exhaustion/hyperactivation (of

adaptive and innate arms of the immune system, respectively), potentially shaped by events early during infection

(“path dependence,” such as failure of early interferon defenses or by comorbidities), could result in slower clearance

in males or older individuals (purple arrow labeled 3 would correspond to females/younger individuals).

https://doi.org/10.1371/journal.ppat.1009105.g002
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particularly adept at disrupting interferon signaling [19,23], which provides protection by

inducing cells to become refractory, any sex differences in this process might shape the trajec-

tory of viremia. The X chromosome encoded pattern recognition receptor Toll-Like-Receptor

7 acts upstream of type 1 interferons and escapes silencing to some degree in females [24], thus

potentially contributing to reduced burdens repeatedly observed in females in this pandemic

[3]; evidence for worse SARS-CoV-2 infection outcomes for males with TLR7 mutations [25]

further underscores the protective effect of this receptor (unfortunately, viral loads were not

available for these patients). Immune effectors launched following pathogen detection may

also show sex or age differences, with female neutrophils more responsive to type 1 interferon

[26], again potentially leading to earlier reductions with potentially long-term implications

predicted by the Susceptible-Infected-Recovered framework. Conversely, natural killer cells

may be more abundant and more active in younger males (although the pattern reverses with

age) [27]. At later ages, T cells may show diminished effectiveness in detecting and responding

to infection [28] that may result in faster early growth leading to potentially worse outcomes.

Susceptible-infected-recovered models provide metrics for early within-host viral growth

and identify the boundaries of viral growth, but leave open the details of how the immune

response might be affected by, and affect these dynamics. Predator-prey models provide one

direction to address this.

Predator-prey models

Over the 5 days that, on average, separate SARS-CoV-2 infection from peak viral load (Fig 2),

innate immune responses intensify and adaptive immune responses are recruited. The unfold-

ing within-host dynamic can be readily conceptualized in terms of predators (immune cells)

and prey (viral particles or viral infected cells). The metaphor of (specialist) predator-prey

dynamics (Fig 1B) is inaccurate at a basic level: The survival of the predators is not directly

contingent on consuming the prey, and “affinity maturation” in B cells allows predators to

become more efficient at capturing prey over short time-scales. Yet, such coupling of “preda-

tor” (immunity) abundance to “prey” (virus) abundance could benefit the host: If immune

cells are recruited and expanded only in the presence of the pathogen, fewer resources might

be wasted, and the design required is relatively trivial. For example, patterns of T-cell expan-

sion in response to antigen concentration suggests relatively simple competition dynamics

dependent on antigen concentration [29]; recruitment might similarly be associated with anti-

gen abundance [30].

Such effects may underpin one puzzling observation for SARS-CoV-2: Processes that

should reduce early growth of the virus in some individuals (e.g., females with greater inter-

feron responsiveness, etc.) tend not to map to an expected reduction in peak viral load. Indeed,

peak viral load seems relatively similar across groups [31,32] and shows no clear relationship

with severity [33,34] (although more severe cases may shed for longer [35], see below). Com-

pensatory growth in immune effectors might drive this convergence to the same peak, by anal-

ogy with the “paradox of enrichment” principle from ecology. For example, a reported

correlation between natural killer cells and viral load in SARS-CoV-2 [33] could lead to indi-

viduals with early high viral loads (e.g., males) having concomitant growth in immune effec-

tors like natural killer cells that reduce viral load—and this could bring viral load in males in

parity with females by the time of the peak. However, a threshold for “herd immunity” (where

target cells define a hard ceiling on viral load, see above), as well as measurement uncertainty

cannot be ruled out.

In general, individual level heterogeneity (whether due to sex, age, or other factors) can

affect the course of predator-prey–like interactions for SARS-CoV-2 in a variety of ways. For

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009105 December 11, 2020 5 / 12

https://doi.org/10.1371/journal.ppat.1009105


innate immunity, neutrophil recruitment is more efficient in females (as mentioned above

[26]), and males also seem to recruit a slightly different class of “predators,” with the propor-

tion of nonclassical monocytes amplifying in response to concentration of the chemotactic

CCL5 cytokine, a relationship not seen in females [6]. Adaptive immunity is generally qualita-

tively different in males and females, e.g., with more B cells, capable of recognizing a broader

array of antigens in females, but a higher ratio of cytotoxic T cells in males [24]. In SARS--

CoV-2, a limited T-cell response in males has been associated with worse outcomes [6], and

this lacunae is amplified by age, which generally has the effect of diminishing effectiveness of

adaptive immune cells [36]. Conversely, while some predators are “protective,” others may not

be: High antibody titres later (associated with B cells) can be associated with worse outcomes

in females [37], and the simplest predator prey framing does not address the impacts of the

multiple effectors of immunity, and their interactions.

Overall, the predator-prey metaphor may usefully address feedback between immune acti-

vation and viral load, capturing the fact that as pathogen numbers grow, so too might the pop-

ulation of the agents of their control. However, this framing where “predators” respond

independently to “prey” density equates to simplifying the diverse and highly integrated set of

immune effectors down to a single entity (the “predator”) and thus does not capture the com-

plex coordination that occurs across the immune system and is central to its effectiveness.

Collective action

For SARS-CoV-2, in addition to antigen-driven activation of virus-specific CD8 T cells, molec-

ular signatures associated with the robust T-cell response in hospitalized patients point to

bystander activation and homeostatic proliferation [38]. This wide-ranging set of triggers of

proliferation of T cells is potentially in part an adaptation to prevent hijacking of the immune

system [39], but is also likely to reflect adaptation to integrate information and coordinate

activity across the diversity of players in the immune system. Collective action models (Fig 1C)

speak to this [40,41]. Simple rule sets at the level of individuals (here, immune cells) can result

in high-level emergent properties that reflect critical information processing at the level of the

group (here, populations of immune cells). Increasing evidence of unexpected disjunctions in

the sets of immune cell communities detected in patients with the most severe cases suggest

that one of the reasons that SARS-CoV-2 pathology emerges is because this virus is somehow

disrupting mechanisms underpinning coordinated behavior [38], with bad outcomes associ-

ated with, for example, T-cell-independent B cell responses. Signatures of such disruption

might be evoked by reversal of expected sex differences, with, for example, greater antibody

responses in males for SARS-CoV-2 [42], which is at odds with data from a wide range of path-

ogens and vaccinations [24]. However, attributing this specifically to disruption of signaling

associated with collective action is not straightward. It remains relatively early days for consid-

ering how such models might be relevant to immune function, let alone applied insights from

this.

A final potentially useful ecological framing emerges from the fact that disruption of

immune function (either in terms of collective action, or more generally) could result in failure

to control the virus, but can also risk unleashing life-threatening inflammation, especially

when placed in the context of regulatory feedbacks that raise the possibility of alternative stable

states.

Alternative stable states

A surprising feature of SARS-CoV-2 is that the worst syndromic outcomes (e.g., Acute Respi-

ratory Distress) occur after viral loads have reached low levels. The feedback loops that govern
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the immune system in tandem with the impact of “friendly fire” might drive this, a phenome-

non most famously manifested in “cytokine storms.” Pinning down how this happens with

precision is complicated by the fact that “cytokine storm” has no clear quantitative definition

[43]. Although elevated levels of the cytokine interleukin 6 (IL-6) are often identified as a key

correlate, SARS-CoV-2 levels of IL-6 generally fall far short of those noted in influenza cyto-

kine storms [43]. This may be because IL-6 is a correlate rather than a driver of the associated

inflammation, but it might also reflect the more nuanced issue that a “cytokine storm” is likely

to denote a path-dependent outcome, i.e., one that depends not just on the state of a system,

but also the history of how the system got to that state, and thus is hard to measure using a sin-

gle quantity like IL-6 at a single time point.

Such path dependence is addressed by another ecological framework, i.e., that of alternative

stable states (Fig 1D). Feedbacks inherent in ecological (and immuno-) dynamics can lead to

tipping points that separate distinct equilibria that can only be reached or escaped when a driv-

ing variable (hunting [44] or fire frequency [45]) follows particular trajectories. Different

branches of immunological signaling promote or suppress inflammation, often around specific

equilibria, also referred to as set points [46]. If such set points are also context dependent (e.g.,

if the equilibrium degree of inflammation depends on viral load), alternative stable states

[47,48] may emerge (Fig 1D shows 1 possible conformation). The role of the ACE2 receptor

not only in virus spread but also in dampening inflammation may create particular vulnerabil-

ities to this outcome (also noted for high pathology influenza [49]).

Various signs point to such path dependence. For SARS-CoV-2, interferon is protective

early in disease but later becomes pathogenic [8], perhaps partly as it may also be up-regulating

ACE2 in airway epithelia [50]. The schematic in Fig 1D suggests that this could arise if early in

the infection, interferon is helping the immune system reach a first protective equilibrium,

where inflammation drives down viral incidence without causing too much damage, and low

viral load then mutes subsequent immunological activity; whereas later, interferons are forcing

the system to stay at the second problematic equilibrium associated with significant levels of

immunopathology. This might also help explain the fact that B and T-cell populations remain

elevated an entire week in severe cases of SARS-CoV-2 [38], by contrast with the few days that

tend to follow other viral infections or vaccination; the immune system has been caught in a

problematic and self-reinforcing stable state and remains there.

The framing of alternative stable states often hinges on stochastic forcing, where relatively

small chance events might push individuals from one peak to another [44]. Such small differ-

ences either in viral load or in the individual inflammatory context (x and y axes, Fig 1D)

might drive the extraordinary variety in health outcomes observed in SARS-CoV-2. As indi-

viduals age, levels of inflammation also tend to increase [51] shifting individuals up the y axis

on the inset on Fig 1D; and worse outcomes for Coronavirus Disease 2019 (COVID-19) might

therefore be more frequent. Higher innate immune cytokines led to worse outcomes relative

to healthy volunteers in females over males [6], in line with more active female immune sys-

tems. Conversely, overall, viral loads seem pretty similar between the two sexes [31] and

between symptomatic and asymptomatic infections [52], although symptomatic males might

have slightly higher loads than asymptomatic males [53], aligning with the possibility that

male symptoms are associated with a failure to control the infection, that might tip them over

into a stable state associated with worse health outcomes. Duration of viral shedding might

also be longer in males [37,54] and associated with worse health outcomes [35], potentially

also by allowing the transition to an alternative stable state.

Beyond the acute and extreme symptoms often bracketed under the heading “cytokine

storm,” even mild SARS-CoV-2 infections may be followed by persistent symptoms reminis-

cent of chronic fatigue syndrome or myalgic encephalomyelitis (“long-haulers”). Such patterns
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are also suggestive of having reached a problematic immune and metabolic equilibrium that is

hard to reverse, and might be better understood by considering individual trajectories of

immunity and physiology.

Discussion

Variation, but also consistency, in measures of SARS-CoV-2 infections has been notable. For

example, peak viral load shows little variation by sex or by age, despite these factors being asso-

ciated with known and profound differences in immune system functioning. As we outline

above, a dynamical perspective suggests candidate ecological feedbacks that could explain this:

For instance, target cell depletion might reduce viral spread at similar incidence (analogous to

the concept of herd immunity); self-limiting predator-prey dynamics dictated by interactions

with immune cells might have a similar effect.

An ecological perspective also points to measurements that might illuminate as yet unde-

tected drivers of variation in health outcomes. Alternative stable states will only emerge in the

context of relatively specific relationships linking driving variables and immunological activa-

tion (Fig 1D). Slight changes in approaches to plotting and analyzing the increasingly rich

body of longitudinal data on immune measures available [5,6,38] could be used to identify

whether such patterns emerge, e.g., laying trajectories out as illustrated on Fig 1D, and quanti-

fying slopes and nonlinearities. Further, a key feature of alternative stable states may be path

dependence—i.e., the history of states matters as much as the current state—underscoring the

value of longitudinal data, or repeated measures on an individual, in teasing apart drivers of

pathology. Considering potential ecological drivers also illustrates ways in which drivers of

variation might be elusive. If much of the surprising deregulation and lack of coordination

across adaptive immunity recorded [38] is rooted in disruptions to features driving collective

behavior, measurement is likely to be very challenging. Collective behavior will rely on tran-

sient interactions and plasticity at the individual cell level that may prove very hard to

measure.

A better understanding of the within-host dynamics of infection could shape design and

application (e.g., timing) for therapeutics from antivirals [12,13] to anti-inflammatories and

also has potential to inform vaccine design. Placing these refinements within the broader pop-

ulation context, models could also be adapted to calibrate the role of protection associated

with previous exposure to coronaviruses, via cross-reactive antibodies or T cells [55], of rele-

vance for vaccination and its consequence. Our focus here has been on ecological modeling,

but an evolutionary ecology perspective will grow in importance as deployment of vaccines

generates important selection pressures on the pathogen. The apparently weak association

between symptoms and transmission for SARS-CoV-2 suggests that virulence evolution in the

wake of selection via vaccination [56] is relatively unlikely, but data-informed models may

help bound the range of possible outcomes.

It is also clear that all four framings miss the mark in important ways, lacking in particular

the full complexity of feedbacks in the immune system. An analysis focused on the tractable

feedbacks (e.g., target cell depletion and viral load–dependent recruitment of natural killer

cells) may obscure the role of the harder to measure and perhaps undefined feedbacks. Impor-

tantly, these dynamical processes might all effectively cancel out, such that the most practical

approach to probing the immune context to better understand pathology in SARS-CoV-2 and

project treatment strategies is simply to identify early cytokine profiles that have been largely

shown to dictate disease progression [5] and use these to guide delivery of, e.g., interferons or

catch later progression into immunopathology to deliver immunosuppressants [57].
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To conclude, important dynamical features of any within-host infection include the early

phase of exponential growth, control and decline of the infection (shaped by immune effectors

and/or target cell depletion), and other complexities that emerge from nonlinear feedbacks,

such as alternative stable states. Addressing each of these with ecological models has the poten-

tial to reveal system-level mechanisms of COVID-19 pathology, with potential applications

from therapeutics to vaccination, once our understanding of (and measurement of) the molec-

ular and cellular mechanisms are further enriched.
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