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This study aimed to explore underlying mechanisms by which sphingolipid-related genes
play a role in kidney renal clear cell carcinoma (KIRC) and construct a new prognosis-
related risk model. We used a variety of bioinformatics methods and databases to
complete our exploration. Based on the TCGA database, we used multiple R-based
extension packages for data transformation, processing, and statistical analyses. First, on
analyzing the CNV, SNV, andmRNA expression of 29 sphingolipid-related genes in various
types of cancers, we found that the vast majority were protective in KIRC. Subsequently,
we performed cluster analysis of patients with KIRC using sphingolipid-related genes and
successfully classified them into the following three clusters with significant prognostic
differences: Cluster 1, Cluster 2, and Cluster 3. We performed differential analyses of
transcription factor activity, drug sensitivity, immune cell infiltration, and classical
oncogenes to elucidate the unique roles of sphingolipid-related genes in cancer,
especially KIRC, and provide a reference for clinical treatment. After analyzing the risk
rates of sphingolipid-related genes in KIRC, we successfully established a risk model
composed of seven genes using LASSO regression analysis, including SPHK1, CERS5,
PLPP1, SGMS1, SGMS2, SERINC1, and KDSR. Previous studies have suggested that
these genes play important biological roles in sphingolipid metabolism. ROC curve analysis
results showed that the risk model provided good prediction accuracy. Based on this risk
model, we successfully classified patients with KIRC into high- and low-risk groups with
significant prognostic differences. In addition, we performed correlation analyses
combined with clinicopathological data and found a significant correlation between the
risk model and patient’s M, T, stage, grade, and fustat. Finally, we developed a nomogram
that predicted the 5-, 7-, and 10-year survival in patients with KIRC. The model we
constructed had strong predictive ability. In conclusion, we believe that this study provides
valuable data and clues for future studies on sphingolipid-related genes in KIRC.
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INTRODUCTION

Kidney cancer is a common human malignant tumor associated
with high morbidity and mortality rates. Approximately 430,000
new cases and 180,000 deaths are recorded every year (Sung et al.,
2021). Clear cell renal cell carcinoma (ccRCC), also known as
kidney renal clear cell carcinoma (KIRC), is the main subtype
(Frew and Moch, 2015; Capitanio et al., 2019). Current treatment
methods for renal cell carcinoma (RCC) include radical
nephrectomy, postoperative adjuvant therapy, radiotherapy,
chemotherapy, targeted therapy, and immunotherapy (Lam
et al., 2005; Flippot et al., 2018). The early clinical symptoms
of kidney cancer are not obvious, prognosis is poor at the late
stage, and metastatic RCC shows strong resistance to traditional
radiotherapy and chemotherapy. Over time, molecular targeted
drug therapy and immunotherapy have improved the therapeutic
landscape of patients with advanced KIRC (Rini et al., 2019).
Regrettably, many patients eventually develop drug resistance,
and the tumor progresses (Au et al., 2021). Therefore, we must
continue researching new RCC treatment methods and
identifying new predictors.

Sphingolipids are biologically active lipids widely present in
eukaryotic cells that maintain the barrier function and fluidity of
cell membranes (Hannun and Obeid, 2008). Members of the
sphingolipid family are widely involved in cancer cell growth,
migration, invasion, and other biological processes (Hannun and
Obeid, 2018). Sphingolipids and related derivatives have been
extensively studied as potential therapeutic targets in cancer
research. Important sphingolipid molecules are mainly
ceramide (Cer), sphingosine (Sph), and sphingosine 1-
phosphate (S1P). Among them, Cer and Sph mainly cause cell
cycle arrest and promote cell apoptosis, while S1P mainly
promotes cell survival. The balance between pro-apoptotic
Cer/Sph and pro-survival S1P determines cell fate, known as
“sphingolipid-rheostat”, and regulating this balance has been
considered a new strategy for tumor therapy (Haass et al.,
2015; Ogretmen, 2018). In addition, dihydroceramide
accumulates in cells by inhibiting ceramide desaturation. This
phenomenon is related to the regulation of autophagy, especially
cancer cell death induced by autophagy (Jiang and Ogretmen,
2014). Glucosylceramide synthase (GCS) is involved in
sphingolipid metabolism, and its role in regulating
doxorubicin resistance in breast cancer cells has been
demonstrated (Zhang et al., 2009; Baran et al., 2011).
Sphingolipids and related derivatives have a unique influence
on cancer progression (Samaha et al., 2019). Therefore, we aimed
to determine the relationship between sphingolipids and RCC,
and further study the role of sphingolipids in reversing KIRC
resistance.

We screened 29 sphingolipid pathway genes using Gene Set
Enrichment Analysis (GSEA). Based on the TCGA database, we
obtained CNV, SNV, and mRNA expression data for 32 cancers.
Next, the data were processed, and related research on
sphingolipid gene methylation was carried out. Following that
analysis, we performed correlation scoring and cluster analysis of
the data. Additional research, such as drug sensitivity correlation
analysis and immune cell transcription factor correlation

analysis, was also conducted based on cluster analysis. After
risk rate evaluation and least absolute shrinkage and selection
operator (LASSO) Cox regression analysis, we ultimately selected
seven genes including SPHK1, CERS5, PLPP1, SGMS1, SGMS2,
SERINC1, and KDSR by application of univariate and
multivariate Cox analyses, and produced a model in the form
of a nomogram to evaluate prognosis of patients with KIRC.
Therefore, we believe this study can provide valuable data and
information for future sphingolipid cancer research.

MATERIALS AND METHODS

Data Acquirement and Pan-Cancer Analysis
The 29 sphingolipid pathway-related genes were obtained from
the GSEA package on the WikiPathways website (https://www.
gsea-msigdb.org/gsea/index.jsp) (Mootha et al., 2003;
Subramanian et al., 2005). First, we downloaded the TCGA
dataset (https://portal.gdc.cancer.gov) to acquire CNV, SNV,
and changes in expression levels. These genetic data are from
32 types of cancers. Data were analyzed using Perl language as
well as R Studio. Then, the Toolbox for Biologists (TBtools) was
used to visualize the data (Chen et al., 2020). We collected RNA-
Seq transcriptome data from TCGA and downloaded the related
clinicopathological data (Supplementary Table S1). These data
included 539 tumor samples and 72 normal samples. In addition,
based on the obtained data, we analyzed the relationship between
CNV in sphingolipids and cancer mRNA expression on the Gene
Set Cancer Analysis (GSCALite) website (Liu et al., 2018) and
drew related heat maps.

Assessment of Sphingolipid Gene
Methylation on Survival of Kidney Renal
Clear Cell Carcinoma
To determine the impact of sphingolipid gene methylation in KIRC,
we first analyzed the relationship between sphingolipid gene
methylation and 14 cancers (including BRCA, PRAD, and
LUAD) on the GSCALite website and drew related heat maps.
Based on these results, we analyzed the association between
sphingolipid gene methylation and cancer mRNA expression. To
obtain statistically significant results, we selected data with p < 0.05.
In the resulting figures, the association is displayed as a solid sphere
where the size of the sphere represents the relevance, and the color
shows the increase and decrease in mRNA expression. Finally, we
focused on the impact of sphingolipid gene methylation on KIRC
survival. We analyzed DFI, DSS, OS, and PFS separately, and the
results are displayed by related heat maps (p < 0.05).

Cluster Analysis Based on Sphingolipid
Score
The previous dataset showed changes that were statistically
significantly different. Consequently, we constructed a
sphingolipid scoring model based on mRNA expression to
illustrate the differences between the samples. In view of the
above, we evaluated the enrichment fraction of sphingolipid
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pathway genes through single-sample Gene Set Enrichment
Analysis (ssGSEA). Differential analysis was performed using
the “gplots” package in RStudio, and the heatmap of cluster
analysis results was generated with the “pheatmap” package. The
mRNA expression levels in normal tissues were initially analyzed
and the mRNA expression status in tumor tissues was divided
into three groups: active sphingolipid-related genes (Cluster 1 or
C1), inactive sphingolipid-related genes (Cluster 2 or C2), and
general sphingolipid-related genes (Cluster 3 or C3). In addition,
we created a violin chart using the RStudio “ggpubr” package.
This analysis specified the gene enrichment of each of the three
clusters and further illustrated the expression levels. Finally, we
created a heat map to express the association between the first two
clusters and the clinicopathological characteristics of patients
with KIRC using the “pheatmap” in RStudio. A result of p <
0.05 indicated that the difference was statistically significant.

Regulon Analysis
The entire transcriptional regulatory network was rebuilt using
the R package “RTN.” To discover the association between
regulators and possible targets, we used mutual information
analysis and the Spearman rank-order correlation method.
The associations with FDR >0.00001 had to be deleted so we
applied permutation analysis. It was also necessary to clarify the
connection between variable associations. Using a bootstrapping
strategy, and after thousands of resamplings, a consensus
bootstrap result exceeding 95% was obtained. Next, we
calculated the DPI-filtered regulatory network and utilized
data processing inequality filtering. The two-sided GSEA
allowed evaluation of the single regulon activity. Finally, we
used the “MIBC_regact” package to draw related heat maps.

Drug Sensitivity Analysis Based on the
Genomics of Drug Sensitivity in Cancer
Database
We selected 12 drugs from the 266 drugs listed in the 2019 GDSC
database (https://www.cancerrxgene.org/). The “pRRopheticl”
package was used to build a ridge regression model, which could
provide an estimate of the half maximum inhibitory concentration
(IC 50) of the drugs in the three clusters (Aykul and Martinez-
Hackert, 2016). The prediction accuracy was evaluated based on a
10-fold cross-validation of the GDSC training set. All parameters
except “combat” and “allSoldTumours” tissue patterns were set to
default values, and the expression level of repeated genes was
adjusted to the average value. Finally, we used the “ggplot2” and
“cowplot” packages to draw box plots. Statistical significance was set
at p < 0.05. Additionally, based on the drug sensitivity data of GDSC
and CTRP on the GSCALite website, we analyzed 23 sphingolipid
pathway genes and their relationships.

Classic Cancer-Related Genes and Histone
Modifications
To determine the possible regulatory mechanism of sphingolipid
pathway genes in KIRC, we detected the expression of cancer-related
genes in the three clusters, and the results were expressed in the form

of heatmaps. This method utilized the “string,” “gplots,” “gird,” and
“pheatmap” packages. Correspondingly, one-way ANOVA was
applied to compare the expression levels of cancer-related genes
in different clusters. Statistical significance was set at p < 0.05. Sirtuin
(SIRT) and histone deacetylase (HDAC) not only participate in
histone modification, but also play a critical role in regulating the
production of biologically active lipids. We used the samemethod to
demonstrate the differences in the expression of sirtuin (SIRT) and
HDAC among the three sphingolipid-related clusters.

Correlation Between Sphingolipid Score
and Immune Cell Infiltration
We obtained 29 immune-related gene sets from TCGA and used
ssGSEA to quantify them. Subsequently, we drew a heat map of
the correlation between sphingolipid-related genes and immune
cell infiltration by using the “ggplot2” and “dplyr” packages in
RStudio. The Spearman correlation coefficient was utilized for
statistical analysis. Based on the results, we used the “ggstatsplot,”
“data.table,” “dplyr,” “tidyr,” and “ggplot2” packages in RStudio
to analyze and visualize the association between sphingolipid
scores and immune substances. Finally, we used the
“ggscatterstats” package to create a scatter plot showing the
relationship between the type II interferon (IFN) response and
the scores of the genes related to the sphingolipid pathway.
Statistical significance was set at p < 0.05.

Construction of a Risk Model Using Least
Absolute Shrinkage and Selection Operator
Cox Regression Analysis
Initially, we conducted a hazard ratio assessment. The “glmnet”
package was used to perform LASSO Cox regression analysis to
further determine the most valuable prognostic genes and build risk
models. Next, we applied the following formula to calculate the risk
score (RS) of every sample based on gene expression and coefficient
values: risk score = ∑ni = 1coefi×xi, where coefi represents the
coefficient and xi represents the expression value of each selected
gene. The “survminer” package was used to acquire the best cutoff
value and then we divided the sample into two different groups: high-
risk and low-risk. The “Kaplan-Meier survival” package in Rwas used
to calculate the survival curves for the two groups. Subsequently, we
used the “survivalROC” package in R to generate receiver operating
characteristic (ROC) curves. Moreover, we used the “timeROC” R
package to calculate the area under the curve (AUC) value of each
model. Finally, we analyzed the correlation between the
clinicopathological characteristics of patients with RS and KIRC
using heat maps based on these models. Due to the massive
amount of patient Nx data in the TCGA dataset, no stage N data
were obtained. Statistical significance was set at p < 0.05.

Construction of a Nomogram to Predict
Patient Prognosis Kidney Renal Clear Cell
Carcinoma
Initially, we obtained relevant immunohistochemical information
from the Human Protein Atlas (HPA). The correlation between
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patient age, tumor stage, tumor grade, tumor size (T), tumor
metastasis (M), and RS in the model was determined using
univariate and multivariate Cox regression analyses. Finally,
we used the “rms” package to design a nomogram based on
the Cox regression analysis results and clinical characteristics.
Ultimately, we were able to evaluate the survival probability of
patients with KIRC using the nomogram.

Kidney Renal Clear Cell Carcinoma Tissue
Samples
From January 2022 to April 2022, renal cancer tissue and adjacent
paired normal tissue were resected from six patients in our hospital
who did not receive other treatments after surgery, and the
histopathological subtype was identified as KIRC by a pathologist.
This study was approved by the Medical Ethics Committee of our
hospital, and the patients gave informed consent. After the
pathological specimens were excised, the samples were cut into
small pieces, an RNA protective agent was added, and the samples
were finally stored in a −80°C refrigerator. In this study, we extracted
RNA from these six pairs of pathological tissues and detected the
mRNA expression of SGMS2 in them.

The primer sequences used in this manuscript are as follows:
SGMS2 (forward, 5′-CTTAGCCCTCCACTCCC-3′ and reverse,
5′-CAGAATCTGCGTCCCAC-3′) and GAPDH (forward, 5′-
GGAGCGAGATCCCTCCAAAAT-3′ and reverse, 5′-GGC
TGTTGTCATACTTCTCATGG-3′).

In Vitro Cell Experiments Targeting
Sphingomyelin Synthase 2
In this study, the human KIRC cell lines 786-O and ACHN cells
were purchased from the Cell Bank of the Chinese Academy of
Sciences. All cells were cultured according to the manufacturer’s
protocol. 786-O cells were cultured in RPMI 1640 medium
containing 10% fetal bovine serum, and ACHN cells were
cultured in high-glucose Dulbecco’s Modified Eagle Medium
(DMEM) containing 10% fetal bovine serum. First, we
cultured 786-O and ACHN renal cancer cell lines in a
laboratory incubator using cell culture techniques.
Subsequently, we established SGMS2-overexpressing KIRC cell
lines by transfecting 786-O and ACHN cells with 10 ug/mL
plasmid (GenePharma, Shanghai) using Lipofectamine 3000
reagent (Invitrogen, California). Finally, we performed CCK8
cell proliferation experiments and Transwell cell migration
experiments in 786-O and ACHN renal cancer cell lines.

RESULTS

Widespread Mutations of Sphingolipid
Pathway Genes in 32 Cancers
At the outset, we created a flowchart of the study to illustrate each
step (Figure 1). The CNV and the 32 different types of cancer
were obtained from the GSEA website and referred to the TCGA
dataset. We observed that CNV and SNV were present in genes
related to the sphingolipid pathway in most cancer types;

however, almost no CNV was gained or lost in Thymoma.
Ceramide Synthase 2 and GBA are widely acquired by CNV
in various types of cancers (Figures 2A,B). High-frequency SNVs
were observed in DLBC, SKCM, and UCEC. In contrast, the SNV
frequency was lower in the Thymoma, THCA, and PRAD groups
(Figure 2C). We used a log2 (fold change) to depict the ratio of
gene expression status in cancer tissues to that in normal tissues.
The results showed changes in sphingolipid gene expression in
different cancer types. Gene expression levels in cancer tissues
changed significantly when compared to those in normal tissues
(Figure 2D). Furthermore, the results based on the GSCALite
website showed that CNV of sphingolipid-related genes could
lead to increased mRNA expression in cancer (Figure 2E).

Sphingolipid Genes are Mostly Protective in
Kidney Renal Clear Cell Carcinoma
We constructed a survival map based on the association between
the patient survival rate and gene expression in TCGA
(Figure 3A). If the hazard ratio (HR) was <1, the gene was
considered a protective gene, and if the value was >1, the gene was
considered a risk gene. Genes related to the sphingolipid pathway
can both promote and inhibit the growth of cancer cells in
tumors. Generally, in tumors, the expression of protective
genes decreases and the expression of risk genes increases;
however, we found that the three genes PLPP1, KDSR, and
GBA were all protective factors of KIRC. However, these genes
are also upregulated, which appears to be contradictory. The
results of pan-cancer analysis indicated that most sphingolipid
pathway-related genes were protective genes in patients with
KIRC, whereas they were not obviously so in many other
cancers. Since strong lipid metabolism, ease of transfer, and
resistance to radiotherapy and chemotherapy are all
peculiarities of KIRC, we will focus on the relationship
between sphingolipid pathway-related genes and disease in
follow-up research. Using the “survminer” package, the genes
were divided into high-expression groups and low-expression
groups according to the best cutoff value. We then used the
Kaplan-Meier curve to represent statistically significant
sphingolipid-related genes in patients with KIRC (Figure 3B).
This result is consistent with the original survival map that we
constructed (Figure 3A).

Effect of Sphingolipid Gene Methylation on
Survival of Kidney Renal Clear Cell
Carcinoma
DNA methylation has been widely studied as an epigenetic
modification in cancer. DNA methylation changes are closely
related to clinicopathological characteristics and patient survival
rates. Some researchers have predicted the prognosis of KIRC by
analyzing the DNA methylation of Hugl-2. Based on the
GSCALite website, we analyzed the relationship between
sphingolipid-related gene methylation and 14 cancers
(Figure 4A). The results showed that sphingolipid genes
undergo extensive methylation changes in these cancers. Next,
we analyzed the relationship between sphingolipid gene
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methylation and cancer mRNA expression (Figure 4B). The
resulting heat map showed a strong correlation, and
methylation of most sphingolipid genes resulted in decreased
mRNA expression. However, the methylation of GBA and
ASAH2 led to increased mRNA expression. Finally, we
analyzed the relationship between sphingolipid gene
methylation and four survival indicators (Figure 4C). The
results showed that methylation of GAL3ST1, SPTLC3,
SPTLC2, and UGCG could lead to prolongation of OS, DSS,
and PFS in patients with KIRC, and SGPP2 methylation could

lead to prolonged OS and DSS. In summary, these results indicate
that methylation of sphingolipid-related genes plays a vital role in
cancer progression and may have a positive influence on the
survival of patients with kidney cancer.

Cluster Analysis Based on the Scores of
Sphingolipid Pathway-Related Genes
To further explore the expression of genes related to the
sphingolipid pathway in KIRC, we generated heat maps

FIGURE 1 | The flowchart illustrates the research process.
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(Figure 5A). We noticed that the expression levels of these genes
were significantly different between tumor and normal tissues.
Next, these genes were analyzed in the KIRC univariate Cox
regression analysis. High expression levels of SGMS1, SPTLC2,
CERS6, PLPP1, ASAH1, KDSR, SERINC1, SGMS2, UGT8,
SPTLC1, SPTLC3, GBA, SGPP2, and PPP2CA were associated
with better survival rates in patients with KIRC and conversely,
high expression levels of CERS5 and SPHK1 were associated with
poor survival. We divided sphingolipid-related genes into three
clusters based on the final sphingolipid pathway-related scores
and gene expression levels. C1 represented tumor tissues with
active sphingolipids, C2 represented tumor tissues with inactive
sphingolipids, and C3 represented tumor tissues with normal
expression of sphingolipids (Figure 5B). A violin chart intuitively
shows that the order of the enrichment scores of the three clusters
was C1 > C2 > C3 (Figure 5C). Next, we drew the survival curves
of the three clusters to determine whether the clusters were
acceptable. The OS rate of C2 patients was significantly lower
than that of C1 and C3 patients, and the survival rate of C3
patients was slightly higher than that of C1 patients, a result that
may have been due to fewer samples (Figure 5D). This result
indicates that sphingolipid genes may be a potential protective
factor. We also analyzed the association between the two clusters
and clinicopathological characteristics, and the results showed
that a higher sphingolipid pathway score was negatively
correlated with T, grade and stage, and fustat (Figure 5E).

Differential Expression of 23 Transcription
Factor Activities in Kidney Renal Clear Cell
Carcinoma Based on Cluster Analysis
In reference to the existing molecular classifications of RCC, and
based on the three cluster samples obtained from the previous cluster
analysis, we selected 23 transcription factors related to tumor
progression. The results show that regulator activity is closely
related to our cluster analysis, which proves that this method of
dividing samples into three clusters based on sphingolipid gene
activity is reliable (Figure 6). The activities of transcription factors
ERBB3, FGFR3, PPARG, ESR1, STAT3, AR, RARB, EGFR, KLF4,
RXRA, FOXM1, RARA, FGFR1, RARG, TP63, andRXRB inC1were
generally enhanced, and FOXA1, GATA6, FOXM1, and RARA, and
the activities of RARG, TP63, ESR2, and RXRB were significantly
enhanced in C2. The activity of GATA3 was not significantly
changed, and the activities of the remaining 14 transcription
factors were significantly weakened. The activities of ESR1,
STAT3, AR, RARB, ERBB2, GATA3, HIF1A, PGR, FOXA1,
GATA6, FGFR1, TP63, ESR2, and RXRB were significantly
enhanced in C3, whereas the activity of PPARG was not
significantly changed, and the remaining eight genes were
significantly weakened. Our results showed that the activities of 23
transcription factors in the three clusters were significantly different,
and the differential expression of the activities of these transcription
factors may be the initiating factor for subsequent phenomena.

FIGURE 2 |Widespread genetic mutations of sphingolipid pathway genes. (A)CNV gains of sphingolipid pathway genes in 32 types of cancers. The adjacent color
block represents the frequency of mutations, the red color bar represents a high mutation frequency, and the blue color bar represents lowmutation frequency. (B)CNV
losses in sphingolipid pathway genes. The adjacent color block represents the frequency of mutations, the red color bar represents a high mutation frequency, and the
blue color bar represents a low mutation frequency. (C) SNV in sphingolipid pathway genes. The adjacent color block represents the frequency of mutations, the
red color bar represents a high mutation frequency, and the blue color bar represents a low mutation frequency. (D)mRNA expression of sphingolipid pathway genes.
The blue color bar represents increased mRNA expression and the yellow color bar represents decreased mRNA expression. (E) Correlations of CNV and mRNA
expression. A solid sphere indicates that the result is statistically significant (p < 0.05), the size of the sphere indicates the degree of correlation, and the larger the sphere,
the higher the degree of correlation.
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FIGURE 3 | The role of sphingolipid pathway genes in cancer. (A) Survival map of sphingolipid genes. Blue represents risk genes and yellow represents protective
genes. The gray bar represents no statistical significance. (B) The survival curve of sphingolipid pathway genes in kidney renal clear cell carcinoma (KIRC). We selected
16 meaningful genes based on the survival map. According to the best cutoff value, the samples are divided into high-expression groups and low-expression groups,
and the associated survival curve is drawn. The orange line represents the high-expression groups, and the green line represents the low-expression groups. The
abscissa represents the number of days, and the ordinate represents the survival probability.
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Relationship Between Sphingolipid Clusters
and Drug Sensitivity
Relevant data for the 12 drugs were obtained from the GDSC
database. These drugs include common targeted tumor drugs,
especially those for kidney cancer, as well as classic drugs in
tumor research, such as metformin. Sunitinib, sorafenib, and
axitinib are mainly used for the targeted therapy of KIRC.
Metformin is known to regulate lipid metabolism and is
mainly used to treat type 2 diabetes mellitus. Metformin has
been proven to exert antitumor effects in a variety of ways (Zhou
et al., 2001; Hart et al., 2019). To further explore the association
between these drugs and the sphingolipid pathway, we performed
a drug sensitivity analysis. After the analysis, the estimated IC 50
value of the drug was obtained for every sample. A lower IC 50
value indicated increased drug sensitivity. The ridge regression
model showed that the different drug sensitivities between the
sphingolipid clusters were as follows: pazopanib: C2 > C3;
sorafenib, no significant difference; sunitinib, C2 > C1 > C3;
nilotinib, C1 > C2 > C3; vorinostat, C2 > C1 > C3; axitinib, C1 >
C2 > C3; gefitinib, C2 > C1; sirolimus, C2 > C1 > C3; lapatinib,
C1 > C2; metformin, C2 > C1 > C3; bosutinib, the difference was
not obvious; and tipifarnib, C2 > C1 > C3 (Figure 7). In addition,

we analyzed the mRNA expression of sphingolipid genes and the
drug response data of GDSC and CTRP by using the GSEA
website and found a strong correlation between the mRNA
expression of most sphingolipid-related genes and the drug
sensitivity of GDSC and CTRP (Figures 8A,B).

Correlation Between Sphingolipid Pathway
Score andClassic Cancer-RelatedGenes or
Immune Cell Infiltration
We drew a heat map to show the differential expression of cancer-
related genes in the three sphingolipid pathway clusters, and
noticed that the oncogenes CCND1, BRAF, AKT1, MYC, KRAS,
MTOR, PIK3CA, and VEGFA were present. The data showed
that the expression level in C1 was significantly higher than that
in C2. The expression levels of the tumor suppressor genes PTEN
and VHL in C1 were significantly higher than those in C2. The
expression level of the oncogene HRAS in C2 was significantly
higher than that in C1 (Figure 9A). Among these genes,
mutations in the VHL gene can cause the accumulation of
HIF-1α and HIF-2α, thereby promoting tumorigenesis, and
the occurrence of KIRC is strongly associated with VHL gene
mutations. This indicates that the better prognosis associated

FIGURE 4 | Effect of sphingolipid methylation. The solid spheres demonstrate that the result is statistically significant (p < 0.05), the size of the sphere shows the
degree of correlation, and the larger the sphere, the higher the degree of correlation. (A)Widespread methylation of sphingolipid-related genes in 14 cancers. In the color
bar on the right side, red represents an increase in methylation level, and blue represents a decrease level. (B) The relationship between sphingolipid gene methylation
and cancer mRNA expression. In the color bar on the right side, red represents an increased mRNA expression, blue represents a decreased mRNA expression.
(C) Sphingolipid gene methylation and KIRC survival evaluation index. The color bar on the right side represents the HR. Red represents a higher HR (the maximum value
is 4), which means a longer life span, and gray represents a lower risk ratio (the minimum value is 0), which means insignificant change. The methylation of GAL3ST1,
SPTLC3, SPTLC2, and UGCG can lead to prolongation of OS, DSS, and PFS in patients with KIRC, and SGPP2 methylation can lead to prolonged OS and DSS. The
change in DFI is not statistically significant.
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FIGURE 5 |Cluster analysis based on the sphingolipid scores. (A) The heat map shows the difference in expression between normal tissues and tumor tissues. The
color in the block on the right represents gene regulation; red represents upregulation, and blue represents downregulation. N (blue) represents the normal sample, T
(red) represents the tumor sample (*:p < 0.05, **:p < 0.01, ***:p < 0.001). (B) Heat map of three clusters: active sphingolipid-related genes (Cluster 1 or C1), inactive
sphingolipid-related genes (Cluster 2 or C2) and generasl sphingolipid-related genes (Cluster 3 or C3). The percentage of patients whose genes are upregulated is
given on the right side of the figure. In the color bar on the right side, red represents mRNA upregulation, blue represents mRNA downregulation, and gray represents
mRNA no-regulation. The four color bars represent the sphingolipid score; red represents positive values, and blue represents negative values. (C) The violin plot shows
the enrichment scores of the three clusters. From high to low: Cluster 1, Cluster 2, and Cluster 3. The p-values are displayed above the clusters. (D) The survival curves
associated with the three clusters. The survival rate of Cluster 2 is lower than that of Clusters 1 and 3. The red line represents Cluster 1, the green line represents Cluster 2,
and the black line represents Cluster 3. The abscissa represents the number of years and the ordinate represents the survival probability. (E) The heat map shows the
correlation between the two clusters and the clinicopathological features. In the color bar on the right side, red represents gene upregulation, and blue represents gene
downregulation (*:p < 0.05, **:p < 0.01, and ***:p < 0.001).

FIGURE 6 | Differential expression of 23 transcription factor activities in KIRC based on cluster analysis. Based on the previous cluster analysis, the KIRC samples
were divided into three clusters according to active sphingolipid genes, inactive sphingolipid genes, and normal sphingolipid genes. By analyzing the expression of 23
transcription factors in the three clusters, it is evident that significant differences exist between the three clusters.
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with the C1 cluster may be related to the overexpression of tumor
suppressor genes, and the activation of tumor suppressor genes in
C1 may be more important than the activation of oncogenes. In
addition, the expression of VHL, CTNNB1, BRAF, PTEN, AKT1,
KRAS, MTOR, and PIK3CA increased significantly, and the
expression of HRAS, MYC, STAT3, and TP53 decreased
significantly in C3, the sphingolipid genes normal expression
group. The expression of oncogenes and tumor suppressor genes
in C3 was both increased and decreased. The prognosis of C3 was
better than that of C1 and C2. This result indicates that the
influence of sphingolipid genes, oncogenes, and tumor

suppressor genes on prognosis is a comprehensive result, and
further exploration is needed in the future.

Many studies have shown that SIRTs play an important role in
tumorigenesis. Recent studies have shown that the absence of
SIRT1 can cause sphingomyelin to accumulate in cells, and in
different cancer types or under different experimental conditions,
SIRT can act as an oncogene or a tumor suppressor gene. Our
study showed that the expression levels of SIRT2, SIRT6, and
SIRT7 in the sphingolipid pathway gene-inactive group were
remarkably higher than those in the sphingolipid pathway gene-
active group. In contrast, the expression levels of SIRT1, SIRT3,

FIGURE 7 | The relationship between drug sensitivity and the sphingolipid clusters. The box plots of the estimated IC50 for 12 drugs are shown in (A–L) for Cluster
1 (yellow), Cluster 2 (blue), and Cluster 3 (red). The 12 types of chemotherapeutic agents are pazopanib, sorafenib, sunitinib, nilotinib, vorinostat, axitinib, gefitinib,
temsirolimus, lapatinib, metformin, bosutinib, and tipifarnib. The asterisk above represents the p-value; p < 0.05 was considered statistically significant (N:0.05 < p *:0.01
< p < 0.05, **:0.001 < p < 0.01, and ***:p < 0.001). The box plots indicate that drug sensitivities among the sphingolipid clusters were different.
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and SIRT5 in the sphingolipid pathway gene-inactive group were
remarkably reduced (Figure 9B). Wei et al. analyzed mouse stem
cells lacking SIRT1, and demonstrated that SIRT1 can influence
sphingolipid metabolism via deacetylation of the c-Myc
transcription factor. In brief, these results indicate that SIRTs
are closely associated with the sphingolipid pathway and may
play a synergistic role in promoting or inhibiting several
processes in the progression of KIRC.

HDAC catalyzes the removal of acetyl groups from histone
and non-histone lysine residues, and regulates gene transcription.
This type of event is closely associated with tumorigenesis and M.
HDAC inhibitors have been shown to inhibit tumor
development. We noticed that the expression levels of
HDAC1, HDAC5, HDAC7, HDAC8, and HDAC10 in the
sphingolipid pathway gene-inactive group were significantly
higher than those in the sphingolipid pathway gene-active
group. On the other hand, the expression levels of HDAC2,
HDAC3, and HDAC9 in the sphingolipid pathway gene-inactive
group were reduced (Figure 9C). As HDAC10 is almost
exclusively expressed in the sphingolipid pathway gene-
inactive group, the use of HDAC10 inhibitors may be more
useful for patients with inactive sphingolipid pathway genes.
These results can provide new directions and ideas for
precision treatment of tumors in the future.

The role of the tumor microenvironment (TME) in cancer
progression cannot be ignored. Immune cells can infiltrate
tumors or affect the whole-body environment to limit tumor
cell metastasis or play a role in promoting tumor growth.
Sphingolipids and related bioactive lipids are inextricably
linked to changes in the TME. To study the correlation

between the sphingolipid production pathway and immunity
in patients with KIRC, we analyzed the correlation between
sphingolipid score and immune cell infiltration (Figure 9D).
We discovered that the infiltration of type II IFN-responsive cells,
mast cells, and HLA were positively correlated, whereas
infiltration of CD8 cells was negatively correlated. Based on
the correlation between the sphingolipid score and type II
IFN-responsive cells, we also drew a scatter plot, and the
results were consistent with previous studies, i.e., there was a
strong positive correlation among them (Figure 9E).

Construction of a Risk Model Using the
Least Absolute Shrinkage and Selection
Operator Cox Regression Analysis
To avoid selection bias, we initially analyzed the hazard ratios of
29 sphingolipid-related genes, and presented the results in a forest
map (Figure 10A). To determine whether sphingolipid-related
genes can be used to construct a model for estimating the survival
rate of patients with KIRC, we applied LASSO Cox regression
analysis to test the 29 genes and eventually selected seven genes to
construct a risk-scoring model (Figures 10B,C). Patients were
divided into high-risk and low-risk groups according to their RS
values. The OS rate of patients in the high-risk group was
significantly lower than that of the low-risk group
(Figure 10D). ROC curve analysis was used to test the
predictive effect of the new survival model on the prognosis of
these patients. The following are the areas under the ROC curves
for the survival models: the 3-year survival rate prediction was
0.723; the 5-year survival rate prediction was 0.739; the 7-year

FIGURE 8 | The correlations between the mRNA expression of sphingolipid genes and the drug sensitivity of GDSC and CTRP. (A) The correlation between mRNA
expression and GDSC drug sensitivity. The solid spheres represent p < 0.05, and the dotted spheres represent no statistical significance. The larger the sphere, the
higher the correlation. In the color bar on the right side, red represents increased mRNA expression, and blue represents decreased mRNA expression. (B) The
correlation between mRNA expression and CTRP drug sensitivity. The solid sphere represents p < 0.05, and the dotted sphere represents no statistical
significance. The larger the sphere, the higher the correlation. In the color bar on the right side, red represents increased mRNA expression, and blue represents
decreased mRNA expression.
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survival rate prediction was 0.732; and the 10-year survival rate
prediction was 0.757. The AUC values were all greater than 0.7,
thereby indicating that our model had a high predictive value
(Figures 10E–H). Next, we performed further statistical tests on
the differences between the risk subgroups and created a heat
map to visualize the correlation between RS and clinical data
(Figure 10I). The results showed that our risk model was related
to tumor M, T, stage, grade, and fustat. Patients in the high-risk
group often have advanced histological grades and are in
advanced clinical stages.

Predicting the Outcome of Patients With
Kidney Renal Clear Cell Carcinoma Using a
Nomogram
Based on previous HR analysis results, we selected 16 genes with
statistical significance. We obtained immunohistochemical
information from the HPA website and certified their gene
expression results at the protein level (Figures 11A–F). We
performed univariate Cox regression analysis of RS and other
clinicopathological characteristics (Figure 11G). The resulting
forest plot indicates the relationship between the
clinicopathological characteristics and the OS rate of the
patient. Patient age, tumor grade, stage and T, M, and RS
were all included. Multivariate Cox regression analyses showed

that these clinicopathological characteristics were independent
risk factors related to OS (Figure 11H). Based on the nomogram
of the risk model (Figure 11I), the second to eighth rows
represent patient age, tumor grade, tumor stage, RS, total
score, and 5-year, 7-year, and 10-year survival rates,
respectively. The total score in the sixth row is the sum of the
scores of the items in the first through fifth rows. The 5-year, 7-
year, and 10-year survival rates were predicted on the basis of the
total score. For example, if the total score was 80, the 5-year
survival rate was approximately 0.5.

In Vitro Cell Experiments to Explore the
Biological Function of Sphingomyelin
Synthase 2 in Kidney Renal Clear Cell
Carcinoma
To assess the expression of SGMS2 in KIRC, we used
clinicopathological tissue for probing. The results of RT-PCR
showed us that the expression of SGMS2 in KIRC tissues was
significantly lower than that in normal kidney tissues
(Figure 12A). To further explore the biological role of SGMS2
in KIRC, we established 786-O and ACHN cell lines
overexpressing SGMS2 using plasmid transfection technology,
and verified the plasmid transfection efficiency by RT-PCR
(Figure 12B). The results confirm that we have completed this

FIGURE 9 | The correlations between the sphingolipid score and the classical cancer-related genes or immune cell infiltration. (A–C) The heatmap shows the
sphingolipid score is associated with other signaling pathways in KIRC. (A) The interrelation with oncogenes and tumor suppressor genes. (B) The interrelation with
sirtuin family genes. (C) The interrelation with histone deacetylase (HDAC) family genes. The statistical method used in (A–C) is “ANOVA” (*p < 0.05, **p < 0.01, ***p <
0.005, and ****p < 0.001). (D) The plot shows the correlation between the sphingolipid score and immune cell infiltration. On the right side of the plot, the area of the
sphere represents the degree of abs (correlation) and the color indicates the p-value. (E) The scatter diagram shows the correlation between the sphingolipid score and
type II IFN response cells. The sphingolipid score is positively correlated with the infiltration of type II IFN response cells.

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 88149012

Sun et al. Sphingolipid Pathway and KIRC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


step. Subsequently, the results of CCK8 experiments showed that
overexpression of SGMS2 could significantly inhibit the
proliferation of 786-O and ACHN cell lines (Figures 12C,D).
The Transwell cell migration assay results showed that
overexpression of SGMS2 could significantly inhibit the
migration of 786-O and ACHN cell lines (Figures 12E,F).
This suggests that SGMS2 acts as a tumor suppressor gene in
KIRC progression. Finally, to show the readers the sphingolipid-
related genes involved in this study more clearly, we especially
draw a schematic diagram reflecting the biological roles of
sphingolipid-related genes (Figure 13).

DISCUSSION

Sphingolipids play an important role in maintaining membrane
barrier function and fluidity (Gault et al., 2010), and affect cell
signal transduction by acting as secondary messengers and
regulating various biological processes (Dressler et al., 1992).
In the past few years, many researchers have identified and cloned
almost all the major metabolic enzymes that regulate the relative
abundance of sphingolipids. As the activities of these enzymes
fluctuate, cancer progression changes accordingly, affecting
treatment (Snider et al., 2019). Scientists have discovered that
sphingolipids play an important role in many diseases including

kidney disease (Abou Daher et al., 2017), diabetes (Boon et al.,
2013), and cancer.

Sphingolipids include two central biologically active lipids that
have opposite effects on regulating the death and survival of
cancer cells, ceramide (Cer) and sphingosine 1-phosphate (S1P).
In 1993, ceramide-induced apoptosis was confirmed in leukemia
cells for the first time (Obeid et al., 1993). Subsequent studies
showed that ceramides could promote cell death in many
different ways, such as by inducing apoptosis, inducing
necroptosis, inducing autophagy, causing endoplasmic
reticulum stress, and causing cell cycle arrest (Ogretmen,
2018). Two enzymes of the diacylglycerol kinase family,
SPHK1 and SPHK2, mediate the production of S1P from
ceramide. Endogenous S1P regulates cancer cell signal
transduction through S1P receptor (S1PR)-dependent and
non-S1PR-dependent pathways, and mediates cancer growth
and metastasis. SPHK1 and SPHK2 have opposing effects on
the regulation of cell survival. SPHK1 is involved in anti-
apoptosis and promotion of angiogenesis (Wang et al., 2020),
whereas SPHK2 has pro-apoptotic effects (Liu et al., 2003).

The mechanism by which the sphingolipid pathway regulates
cancer is more complicated. The subcellular localization and
downstream targets of sphingolipids, especially ceramide and
S1P, determine their unique anti-cancer and cancer-promoting
functions. The specific functions also depend on the environment

FIGURE 10 | Construction of a risk model using least absolute shrinkage and selection operator (LASSO) Cox regression analysis. (A) The forest plot shows the
resulting hazard ratios of 29 sphingolipid pathway genes in KIRC. (B) The LASSO coefficient profiles of sphingolipid pathway genes in KIRC. (C) The distribution and
median value of the risk scores, using LASSO Cox regression analysis to screen out seven genes. (D) Survival curve drawn according to the model. The overall survival
rate of patients in the high-risk group was significantly lower than that of patients in the low-risk group. Red represents the high-risk group, blue represents the low-
risk group. (E–H) ROC curves associated with 3, 5, 7, and 10 years (I)Correlation heatmap of risk scores and clinicopathological characteristics. The red bar represents
gene upregulation, and the green bar represents gene downregulation (***p < 0.001).
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and cell type. For instance, mitochondrial accumulation of
ceramide promotes cancer cell death by inducing autophagy.
The S1P protein produced by SPHK2 binds to receptors on the
cell membrane to achieve allosteric-mimicking protein
phosphorylation, which increases the stability and function of
telomerase, thereby producing a protective effect in cancer cells
(Panneer Selvam et al., 2015). In our research, we found that most
of the sphingolipid pathway genes in KIRC exist as protective
genes, in contrast to their roles in other types of cancers. We also
observed that three genes, PLPP1, KDSR, and GBA, are protective
factors for KIRC, but their expression levels are upregulated,
which appears contradictory. Possible reasons for this
observation include: 1) The tumor is heterogeneous, and the
expression of the same gene is different in different types of
tumors; 2) These protective genes are not tumor suppressors and
cannot directly inhibit tumor growth, because these protective
genes may function by regulating other genes; and 3) We studied
the mRNA expression of related genes, but it is the proteins
encoded by these genes that ultimately play a role. Many factors,
such as post-translational modifications, epigenetics, and
negative-feedback mechanisms, may lead to inconsistent
mRNA and protein expression levels. Consequently, we
decided to study the role of sphingolipid pathway genes in
KIRC further.

DNA methylation is a common form of epigenetic
modification. Changes in DNA methylation can affect
clinicopathological characteristics and have an impact on
patient survival. Also, increased or decreased methylation of
two different genes could lead to the same outcome,
depending on the particular genes. A study in August 2020
showed that a low methylation level of LAG3 was associated
with a lower OS in KIRC (Klumper et al., 2020). The results of
another study in September 2020 showed that enhanced Hugl-2
DNA methylation could reduce related mRNA expression and
protein content, ultimately promoting the progression of KIRC
and reducing the OS of patients with KIRC (Miao et al., 2020).
Our research showed that sphingolipid gene methylation is
widespread in cancer. Sphingolipid gene methylation affects
the expression of cancer mRNA and ultimately has a positive
effect on the survival of patients with KIRC. Our research only
presents the ultimate result and therefore significantly more work
is still required to investigate the entire process, from the
beginning of DNA transcription to the final function of the
protein. In future research, sphingolipid-related genes should
be further studied and verified. Our results may provide new ideas
for other related gene methylation and cancer research studies.

In this study, sphingolipid genes were scored based on their
mRNA expression levels. KIRC samples were divided into three

FIGURE 11 | Predicting the outcomes of patients with KIRC using a nomogram. (A–F) Immunohistochemistry of pathological tissue sections. “N” stands for normal
tissue morphology, “T” stands for KIRC tumor morphology. (G) Univariate Cox regression analysis of the correlation with risk scores (RSs), clinicopathological
parameters (age, grade, stage, T, and M), and overall survival (OS) of patients with KIRC. The forest plot shows that the age, tumor grade, stage, T, M, and RS are
correlated with the OS of the patients (p < 0.05). (H) Multivariate Cox regression analysis of the correlation with RS, clinicopathological parameters, and the OS of
patients with KIRC. The forest plot reveals that patient age, grade, stage, and RS are independent risk factors correlated with OS (p < 0.05). (I) The nomogram
incorporates RS, age, grade, and stage, which can be used to predict the outcome of patients with KIRC. The first to fifth lines represent the points, patient age, tumor
grade, tumor stage, and RS. The total score in the sixth row is the sum of the scores for each item from the first to fifth lines. The 5-, 7-, and 10-year survival rates are
predicated based on the total score.
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clusters based on their sphingolipid scores to facilitate subsequent
experiments. The survival curves of the three clusters showed that
the survival rate associated with inactive clusters was significantly
lower than that of active clusters, confirming our previous finding
that sphingolipid genes had a protective effect in KIRC. A
previous report in April 2020 showed that the MBOAT7 gene
could be restricted to reduce the content of arachidonic acid-
containing phosphatidylinositol pools in KIRC by altering the
lipid metabolism of tumor cells, thereby producing a therapeutic
effect (Neumann et al., 2020). However, different opinions exist
regarding the effects of renal lipid metabolism on tumor cells. In
our study, the survival rate associated with inactive clusters of
sphingolipid pathway genes was decreased, appearing to
contradict research results showing that HIF2α regulates lipid
metabolism, increases lipid storage to maintain endoplasmic
reticulum homeostasis, and promotes tumor cell survival (Qiu
et al., 2015). This observation may be related to the involvement
of sphingolipid-related genes in regulating lipid metabolism of

cell membranes, and determining which regulation method has a
greater impact on tumor cells will require future research.

The progression of KIRC is closely associated with VHL
gene mutations (Nyhan et al., 2008). Studying the levels of
transcription factors enables the understanding of
pathogenesis more deeply. At present, based on research on
transcription factors, some progress in the molecular
classification of tumors has occurred (Cancer Genome Atlas
Research Network, 2013; Robertson et al., 2017). However,
owing to the complexity of cancer genomes, there is no single-
molecule method that can pinpoint or describe the driving
mechanism of carcinogenesis. Therefore, huge prospects for
transcription factor-related aspects worthy of further study
exist. Our research shows that there is a correlation between
the activity of sphingolipid-related genes and the activity of
transcription factors; however, the specific connection
between the two requires further research to be accurately
described.

FIGURE 12 | Laboratory experiments explored the expression and biological role of SGMS2 in KIRC. (A) The histogram of the data of RT-PCR assay detecting
SGMS2 mRNA expression in six pairs of KIRC pathological tissues. (B) The histogram was obtained by RT-PCR experiment to detect the transfection efficiency data of
SGMS2 plasmid. (C,D) Line graphs based on CCK8 cell proliferation assay data after overexpression of SGMS2 in 786-O and ACHN cell lines. (E,F) Light microscopy
images of Transwell cell migration assays after overexpression of SGMS2 in 786-O and ACHN cell lines, and a corresponding histogram. **p < 0.01, ***p < 0.001,
****p < 0.0001.
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Monoclonal antibodies against S1P have been developed, and
a recent study showed that targeted therapy delayed the growth of
RCC tumors, reduced tumor blood flow, and slowed the growth
of sunitinib-resistant tumors (Zhang et al., 2015). We studied the
differences in tumor sensitivity to some universally applied
targeted drugs used in the treatment of KIRC in three
sphingolipid gene clusters associated with different activities.
Our results showed that the three clusters exhibited
appreciably different drug sensitivities, indicating that patients
could be provided with more personalized treatment plans based
on their sphingolipid-related gene expression patterns. According
to our results, sunitinib may be more effective for patients with
inactive sphingolipid genes, whereas axitinib may be more
beneficial for patients with active sphingolipid genes. Tumors
are often accompanied by the infiltration of surrounding
inflammatory cells. Initially, scientists thought that these
immune cells helped the body resist tumors. Later, it was
found that most tumors are not regarded as foreign bodies by
the immune system, and that inflammatory immune cell
infiltration promotes tumor growth and metastasis. Current
studies have confirmed the role of sphingolipid family
members in specific inflammatory processes including: 1)
participating in the migration of immune cells, 2) aiding in
the identification of exogenous factors, and 3) participating in
the activation/differentiation of immune cells (Grosch et al.,
2018). By observing the growth of CMS4-met-derived soft

tissue sarcoma tumors in a mouse model, ceramide was found
to inhibit the function of myeloid-derived suppressor cells,
leading to the weakening of autophagy and the induction of
endoplasmic reticulum stress, thereby enhancing the function of
cytotoxic T lymphocytes and producing an antitumor effect (Liu
et al., 2016). In this study, we explored the correlation between
factors related to immune cell infiltration and sphingolipid-
related genes. We analyzed the correlation between the
sphingolipid pathway score and immune cell infiltration and
found that the sphingolipid correlation score was positively
correlated with the infiltration of type II IFN-responsive cells
andmast cells, and negatively correlated with HLA and CD8 cells.
Interferon-γ (IFN-γ) has been widely studied for its role in
regulating immune status and antitumor immunity. Mast cells
can mediate tumor growth via the immune pathway.
Downregulation of HLA genes may lead to reduced antigen
presentation, thereby promoting immune evasion and
ultimately resulting in a series of undesirable consequences,
including cancer-promoting effects (Campoli and Ferrone,
2008; Mehta et al., 2008). CD8 cells play a critical role in the
antitumor immune response as they can directly kill tumor cells,
and immunotherapy for metastatic KIRC is still used as the first-
line treatment at present. Currently, targeted therapy for the
sphingolipid pathway has a significant effect on delaying tumor
growth (Visentin et al., 2006; Venant et al., 2015), and has
received increasing attention. Our research provides new

FIGURE 13 | The schematic diagram shows the biological mechanism of the sphingolipid-related genes involved in this study in human cells.
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avenues for KIRC immunotherapy through analysis of these
immune-related factors.

Abnormal expression of HDAC is closely associated with
cancer (Barneda-Zahonero and Parra, 2012). HDAC inhibitors
can improve the ability of immune cells to recognize tumors,
which may indirectly promote antitumor activity (Zhao and
Zhang, 2019). The results of our research indicated that most
oncogenes, tumor suppressor genes, and HDACs were related to
the sphingolipid pathway. Therefore, HDAC inhibitors could be
used to treat tumors specifically, and our research results could
provide a reference for future treatments. For example, the
expression level of HDAC10 in the sphingolipid gene-inactive
group was significantly higher than that in the sphingolipid gene-
active group, suggesting that the use of HDAC10 inhibitors may
be more helpful in the former group of patients.

We used LASSO Cox regression analysis to build a model that
could predict the survival rate of patients with KIRC, and the area
under the ROC curves derived from the model indicated that it
had high predictive value. Finally, we included RS, patient age,
tumor grade, and stage into a nomogram to predict the 5-, 7-, and
10-year survival rates of patients with KIRC. Currently, KIRC has
other risk and survival predictors based on different mechanisms
(Xu et al., 2020; Wu et al., 2021). For example, constructed an
immune prognosis prediction model based on 14 immune-
related groups, and proved that the model could be effectively
and efficiently used to predict the survival outcome and
immunotherapy response of patients with KIRC Feng et al.
(2021). Overall, our sphingolipid prognostic features have a
higher predictive accuracy for patients with KIRC than the
abovementioned prognostic features.

Our study had some limitations. First, the research was purely
bioinformatic, and the scientific hypothesis was not confirmed by
biological experiments. Second, the sample size of the sequencing
data was limited. Third, the lack of further studies on biological
samples of metastatic sites, such as lungs, bones, and brain, make
this research incomplete. Finally, the limitations of a single omics
analysis are also inherent limitations of this study.

In conclusion, our research found that sphingolipid genes are
mostly protective genes in KIRC. Sphingolipid gene methylation
has a positive effect on the prognosis of KIRC, and the activity of
sphingolipid genes and transcription factors, drug sensitivity,

immune cell infiltration, classic cancer genes, and histone
modifications are closely related. Our current model enriches
existing prognostic models and may provide more
comprehensive and useful recommendations for the
development of personalized treatments for patients with KIRC.
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GLOSSARY

KIRC Kidney renal clear cell carcinoma
CNV Copy number variation

SNV Single nucleotide variation

TCGA The cancer genome atlas

LASSO Least absolute shrinkage and selection operator

ROC Receiver operating characteristic

RS Risk score

AUC Area under the curve

OS overall survival

PFS Progression-free survival

DFS Disease-free survival

HDAC Histone deacetylases

SIRT Sirtuin
GCS Glucosylceramide synthase

Cer Ceramide

S1P Sphingosine 1-phosphate

TME Tumor microenvironment

SPHK1 Sphingosine Kinase 1

CERS5 Ceramide synthase 5

PLPP1 Phospholipid phosphatase 1

SGMS1 Sphingomyelin synthase 1

SGMS2 Sphingomyelin synthase 2

SERINC1 Serine incorporator 1

KDSR 3-Ketodihydrosphingosine reductase

ccRCC clear cell renal cell carcinoma

GSEA Gene set enrichment analysis

BRCA Breast cancer

PRAD Prostate adenocarcinoma

LUAD Lung adenocarcinoma

DFI Disease-free interval

DSS Disease special survival

GDSC Genomics of drug sensitivity in cancer

CTRP Cancer therapeutics response portal

IFN Interferon

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma

SKCM Skin cutaneous melanoma

UCEC Uterine corpus endometrial carcinoma

THCA Thyroid carcinoma

HR Hazard ratio

GBA Glucosylceramidase beta

GAL3ST1 Galactose-3-O-sulfotransferase 1

SPTLC3 Serine palmitoyltransferase long chain base subunit 3

SPTLC2 Serine palmitoyltransferase long chain base subunit 2

UGCG UDP-Glucose ceramide glucosyltransferase

CERS6 Ceramide synthase six

ASAH1 N-acylsphingosine amidohydrolase 1

UGT8 UDP glycosyltransferase eight

SPTLC1 Serine palmitoyltransferase long chain base subunit 1

SGPP2 Sphingosine-1-phosphate phosphatase 2

PPP2CA Protein phosphatase 2 catalytic subunit alpha

ERBB3 Erb-B2 receptor tyrosine kinase 3

FGFR3 Fibroblast growth factor receptor 3

PPARG Peroxisome proliferator activated receptor gamma

ESR1 Estrogen receptor 1

STAT3 Signal transducer and activator of transcription 3Signal transducer
and activator of transcription 3

AR Androgen receptor

RARB Retinoic acid receptor beta

EGFR Epidermal growth factor receptor

KLF4 Kruppel like factor 4

RXRA Retinoid X receptor alpha

FOXM1 Forkhead box M1

RARA Retinoic acid receptor alpha

FGFR1 Fibroblast growth factor receptor 1

RARG Retinoic acid receptor gamma

TP63 Tumor protein P63

RXRB Retinoid X receptor beta

FOXA1 Forkhead box A1

GATA6 GATA binding protein six

ESR2 Estrogen receptor 2

GATA3 GATA binding protein 3

ERBB2 Erb-B2 receptor tyrosine kinase 2

HIF1A Hypoxia inducible factor 1 subunit alpha

PGR Progesterone receptor

CCND1 Cyclin D1

BRAF B-raf proto-oncogene, serine/Threonine kinase

AKT1 AKT serine/Threonine kinase 1

MYC MYC proto-oncogene, BHLH transcription factor

KRAS KRAS proto-oncogene, GTPase

MTOR Mechanistic target of rapamycin kinase

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

VEGFA Vascular endothelial growth factor A

PTEN Phosphatase and tensin homolog

VHL Von hippel-lindau tumor suppressor

CTNNB1 Catenin beta 1

HRAS HRas proto-oncogene, GTPase

STAT3 Signal transducer and activator of transcription 3Signal transducer
and activator of transcription 3

TP53 Tumor protein P53
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