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Abstract

Tench (Tinca tinca L.) has great economic potential due to its high rate of fecundity and

long-life span. Population genetic studies based on allozymes, microsatellites, PCR-RFLP

and sequence analysis of genes and DNA fragments have revealed the presence of Eastern

and Western phylogroups. However, the lack of genomic resources for this species has

complicated the development of genetic markers. In this study, the tench transcriptome and

genome were sequenced by high-throughput sequencing. A total of 60,414 putative SNPs

were identified in the tench transcriptome using a computational pipeline. A set of 96 SNPs

was selected for validation and a total of 92 SNPs was validated, resulting in the highest

conversion and validation rate for a non-model species obtained to date (95.83%). The vali-

dated SNPs were used to genotype 140 individuals belonging to two tench breeds (Tabor

and Hungarian), showing low (FST = 0.0450) but significant (<0.0001) genetic differentiation

between the two tench breeds. This implies that set of validated SNPs array can be used to

distinguish the tench breeds and that it might be useful for studying a range of associations

between DNA sequence and traits of importance. These genomic resources created for the

tench will provide insight into population genetics, conservation fish stock management, and

aquaculture.

Introduction

Tench (Tinca tinca L.) is a freshwater fish species within the Cyprinidae family that spawns

and grows ideally at water temperatures of 20–29˚C [1, 2]. Its native distribution is Eurasia;

however, due to human-mediated movement, tench can also be found in temperate and tropic

freshwater regions across the globe [3]. Due to its attractive appearance and specific meat fla-

vour, tench has relevant economic importance and is commonly used in aquaculture and
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sport fishing [4]. For example, tench farming is a common aquaculture activity in Europe and

has recently expanded to China [5]. All of these facts motivate the increase of its annual global

aquaculture production [6] of about 1400 tons [7].

Tench has very interesting features that set the species apart from other members of the

Cyprinidae and that have popularized tench as an experimental model [8]. These include: an

unequivocal body colour, normally green to brown-green, with golden, blue and albinotic phe-

notypes also existing [9]; small and hardly visible scales deeply embedded into the dermis;

obvious sexual dimorphism in pelvic fins [4], specific reproductive biology [1]; low incidence

of viral and bacterial diseases but high susceptibility to some chemical compounds [10]; and

monophyletic origin (all descendants of a common ancestor) within Tinca genus [11]. Genet-

ics studies have also shown that tench is still a diploid species (2n = 48) [12], which is advanta-

geous for some genetic studies, compared to many cyprinids that are polyploid species [13].

Genetic studies on tench have until now been based on allozymes [14, 15], microsatellites

[16, 17], PCR-RFLP [18, 19] and sequence polymorphism of genes and DNA fragments [20–

22]. These studies have revealed the existence of Western and Eastern phylogroups [6, 19].

Individuals from both phylogroups have undergone natural and human-aided hybridization

and this has produced hybrids that appear in natural water bodies as well as in cultured stocks

along Europe.

The rapid development and application of sequencing technologies is now permitting

researchers to discover thousands of SNPs at relatively low cost compared to the traditional

Sanger sequencing method [23]. Transcriptome sequencing is considered a cost-effective strat-

egy for discovering SNPs in non-model species. In fact, as a transcriptome is directly associated

with functional regions in a genome, transcriptome-derived SNPs can be informative for adap-

tive variation [24–26] and they can be used not only for assessing population genetic structure,

but also for genomic selection for traits of interest to aquaculture such as growth, sex determi-

nation or disease resistance (e.g. [27–29]). Given these advantages, SNPs derived from tran-

scriptomes have been widely discovered and studied in many fish species [29–42].

The aim of this study was: to discover and validate transcriptome-derived SNPs in T. tinca,

based on the strategy designed by Montes et al. and successfully applied in other fish species

[38, 43]. The SNPs array was then used to disentangle the population genetic structure of two

cultured tench breeds (Tabor and Hungarian), previously identified as stocks representing

mixture of haplotypes out of both phylogroups [22].

Materials and methods

Ethics statement

The handling and usage of experimental fish in this study was done in accordance with the

Czech Act. No 256/1992 Coll. as amended under supervision of the Institutional Animal Care

and Use Committee (IACUC) of the University of South Bohemia (USB), Faculty of Fisheries

and Protection of Waters (FFPW) in Vodňany. The USB FFPW has approval of the Ministry

of Agriculture of the Czech Republic for handling and usage of experimental animal’s ref. no.

16OZ15759/2013-17214. The presented study was included in the planned activities dealing

with study of biodiversity, genetic, physiological and reproductive variability and performance

of selected freshwater fish species. The experimental stock was reared under the common

semi-intensive pond management conditions. The fish sacrificed for the study were euthanized

in accordance with the Ordinance no. 419/2012 Coll. as amended. The fish were euthanized by

blow into the head using a blunt object and bleeding. One of the co-authors was present during

handling and processing the fish owned the certificate (no. 0135/2000-V3) which allows him

to conduct and manage experiments involving animals according to the above mentioned act.
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Sample collection

In the methodology followed for SNP discovery, two samplings (corresponding to the two

sequencing approaches) were performed; one for transcriptome sequencing, and another for

genome sequencing.

For transcriptome sequencing, 4 tench individuals (2 males and 2 females) were sampled.

The sampled individuals belonged to two metabolic activities (summer season with 20˚C

water temperature, and winter season with 4˚C water temperature) and two breeds (Hungar-

ian and Tabor) cultured in Vodňany, Czech Republic since 1990’s [44] (present Faculty of

Fisheries and Production of Waters, University of South Bohemia in České Budějovice). The

Tabor breed was established by collecting fish from ponds of a Czech county, and the Hungar-

ian breed by introducing the tench from Hungary. To increase the homozygosity, inbreeding

and gynogenesis within each breed were applied. Both breeds, containing approximately 120

adult individuals, have been maintained to date by intra-linear mating only for 6 generations.

Previous studies on these fish have shown that both breeds have gene pools mixed of both

Western and Eastern phylogroups [22, 45]. The transcriptome changes according to genes

expressed. Expression of various genes depends on many inner and outer factors (e.g. fish age,

health status, phase of reproductive cycle, weather, season—growing or wintering etc.). That is

why we sampled fish in winter (no-growing season) and summer (growing season) in order to

cover different genes expressed in mature 4-year old fish. Each fish was humanely sacrificed

and two different tissues were collected- whole brain (without pituitary) and back muscle

(approx. 1 g) and immediately frozen in liquid nitrogen, and stored at -80˚C until RNA extrac-

tion was performed. We had eight initial tissue samples, though two (brain in both cases) were

not suitable for sequencing due to RIN values below 8. The remaining six samples (two of

them in duplicate) were used for library construction and Illumina sequencing (S1 Table).

For genome sequencing, a total of ten tench individuals from six different locations were

collected (S2 Table) in order to cover maximal available genetic diversity, including phy-

logroup origin of tench species. Samples were taken from the tench tissue collection of Leibniz

Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany and they represented

populations throughout Neighbor-joining trees inferred from studies focused on genetic

diversity of the growth hormone (GH) gene [22], microsatellites [17] and mitochondrial DNA

[18].

RNA and DNA extraction

Total RNA was isolated using Qiazol lysis reagent (Qiagen). The isolated RNA was quantified

with a Nanodrop 2000 (Thermo Scientific) and integrity of RNA (RIN) was determined using

an Agilent 2100 Bioanalyzer (Agilent Technologies). Samples with RIN values above 8 were

used for RNA sequencing, and used for library construction and Illumina sequencing. Accord-

ing to the RNA quality standards, six samples were sequenced (S1 Table).

Genomic DNA was isolated from muscle, fin or blood samples using the peqGOLD Tissue

DNA Mini Kit (Peqlab Biotechnologie) following manufacturer instructions. The quantity and

quality of DNA was measured with Qubit 2.0 Fluorometer and 0.8% agarose gel electrophore-

sis. The DNA samples with concentrations� 50 ng/μl, 260/280 ratios of 1.8–2.0 and clear high

molecular weight bands on the gel were used for genome sequencing. An equimolar amount

of total DNA was then pooled for the library preparation.

Library construction and Illumina sequencing

A multiplex sequencing library was prepared by labeling each sample (six RNA samples, two

of them replicated; and two DNA pools) with specific 10-mer barcoding oligonucleotides.
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Transcriptomic and genomic libraries were sequenced in a single lane of Illumina HiSeq2000

and HiSeq2500 platforms, respectively. Sequencing reactions were performed separately for

transcriptome and genome with paired-end 101 bp and 126 bp reads, respectively. Sequencing

was performed at CNAG- Centre Nacional d’Anàlisi Genòmica, Barcelona, Spain. All

sequence data have been submitted to NCBI’s submission portal under the BioProject acces-

sion number PRJNA414567.

Genome size estimation

We estimated the genome size of Tinca tinca by means of the frequencies of the kmers in the

DNA reads. Reads were processed with Jellyfish 2.2.10 [46] using the count subcommand with

a kmer size of 25. The frequencies were computed using the histo subcommand. Finally, the

genomic haploid length, along with the repetitive and unique contents and rate of heterozygos-

ity, was computed using the GenomeScope web service [47].

Transcriptome de novo assembly and annotation

Raw RNA reads were processed in a strict four-step procedure in order to obtain a high-quality

reference. First, adaptors and low-quality reads were removed with Trimmomatic v0.33 [48] by

deleting the first 13 nucleotides of the read. Removal of adapters was done with the ILLUMINA-

CLIP:TruSeq3-PE-2.fa:2:30:10 parameters by setting a minimum mean PHRED quality value of

10, trailing bases with quality value at least 20, and a minimum read length of 31 bases. Second,

contaminants indicated by the UniVec database were removed with SeqClean (https://

sourceforge.net/projects/seqclean/). Third, Trimmomatic was run on Single End mode to

remove low quality and excessively short reads with the following parameters: minlen:31 avgq-

ual:10 minlen:31 trailing:19 minlen:31 tophred33. Finally, the paired-end structure of the reads

was recovered with a custom script written in Python with help of the Biopython package [49].

After the transcriptome reads were trimmed, paired and unpaired high-quality reads (all

RNASeq data) were assembled into contigs using Trinity v2.0.6 [50]. The resulting transcrip-

tome was uploaded to NCBI Transcriptome Shotgun Assembly Sequence Database and it is

available at GenBank with accession number GFZX00000000.1. Full implementation of assem-

bly procedure is available at https://github.com/GenomicResources/ttin_assembly.

To measure the quality of the assembled transcriptome, we used a two-fold approach. First

we backmapped (with Bowtie2) the trimmed reads against the generated reference to measure

the fidelity of the assembly with respect to the reads. According to the authors of Trinity, tran-

scriptomes with mapping rates above 80% are considered good assemblies. Second, we used

BUSCO v3.0.2 [51, 52] to assess the quality of the assembly by searching for Actynopterygii Sin-

gle Copy Orthologs (SCOs). The program searches the homology between our transcriptome

and a set of precomputed proteins that are known to be conserved across the evolution of a

large set of species, classifying them as SCOs, conserved but duplicated, fragmented, or

missing.

Finally, TransDecoder v2.0.1 (https://transdecoder.github.io/) and Trinotate (http://

trinotate.github.io/) were used for transcriptome annotation and generation of a tench prote-

ome. Transdecoder is a pipeline that extracts the possible open reading frames (ORFs) from a

raw transcriptome to predict if it has homology with BLAST [53] against a protein reference

database like Swiss-Prot [54] (downloaded on August 2015), UniRef90 [55] (accessed on

August 2015), or homology via Hidden Markov Models with HMMER [56] (retrieved on

August 2015) by querying the Protein Families database (Pfam, [57]. Once ORFs are called

and possible homologies to elements in the different databases are hypothesized, a proteome is

generated.
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The next step in the procedure is the annotation of both the transcriptome and the pre-

dicted proteome developed as described above with Trinotate. It consists of homology

searches, as done in the TransDecoder step, with help of BLASTX, BLASTP and HMMER, to

then make use of a database (downloaded on August 2015) containing annotations from Gene

Ontology (The Gene Ontology Consortium, 2000), KEGG [58], and eggnog [59].

Chimeras and duplicated regions were filtered out from the assembled transcriptome with

stringent filters. First, contigs were quantified with Kallisto [60] and those with zero counts

were removed with help of the Sleuth R package [61]. Additionally, according to the generated

proteome, contigs with no coding potential were removed. Finally, genes that produce two or

more isoforms were deleted. These procedures were performed using custom scripts in

Python, R (R Core Team 2016), SAMtools [62] and Snakemake [63]. Implementation of the

annotation procedure is available online at https://github.com/GenomicResources/ttin_

trinotate. The resulting filtered transcriptome was used in the following steps of intron-exon

boundary (IEB) prediction and SNP discovery.

SNP calling and IEB prediction

Tench SNP calling was performed as described by [38]. Two parallel SNP calling approaches

were performed by aligning transcriptome (T2T) and genome (G2T) trimmed reads to the fil-

tered transcriptome. This alignment was performed with Bowtie2 in local mode [64]. In this

pipeline, PCR duplicates from both transcriptome and genome reads were removed using the

SAMtools rmdup command [62]. Subsequently, variants were called with SAMtools mpileup
command [62]. In order to avoid false SNPs, a maximum contig depth of 200x was set to avoid

both repetitive sequences and false positive local alignments; the minimum contig depth

allowed for T2T variants was 8x and 20x in the case of G2T variants in order to remove tran-

scripts with low coverage that could bias the SNP calling procedure; the minimum variant

count allowed for T2T variants was 2 high quality (HQ) bases (i.e., the alternative base appears

at least twice), and 3 HQ bases for G2T variants. This last filtering step requires the SNPs to

have higher MAFs when coverage is lower. After applying all of these filters, only common var-

iants present in both T2T and G2T SNP discovery approaches were considered as putative

SNPs. The implementation of the transcriptome filtering and SNP calling procedures is avail-

able online at https://github.com/GenomicResources/ttin_snps.

It is well known that genotyping procedures (for PCR based technology like fluidigm) will

fail if primers are spanning or otherwise close to intron-exon boundaries [65]. Therefore, the

filtered transcriptome reference was in silico assessed to detect IEBs as described by [66]. This

is done by mapping genomic reads to the transcriptome, and computing p-values for change
points. These are locations in the transcriptome where one or more genomic reads do not map

throughout their whole length but rather the mapping is initiated or terminated internally to

the read. Locations with low p-values represent a surprising number of change points at that

location, hence a likely IEB. Predicted IEBs are annotated and avoided during genotyping

primer design.

SNP genotyping and validation

A total of 140 tench samples belonging to two breeds (Tabor, N = 66 and Hungarian, N = 74)

were genotyped for selected subset of 96 candidate SNPs. Only one SNP per contig was chosen

and selection was not biased to any gene family. As growth-related traits are of main impor-

tance in most cultured fish species and growth hormone (GH) gene might be associated with

growth [6], the SNP array was within each breed also associated with GH gene genotype distin-

guishing alleles of Eastern or Western phylogroup haplotype. Assignment of an individual to

Transcriptome-derived SNPs array for tench

PLOS ONE | https://doi.org/10.1371/journal.pone.0213992 March 19, 2019 5 / 18

https://github.com/GenomicResources/ttin_trinotate
https://github.com/GenomicResources/ttin_trinotate
https://github.com/GenomicResources/ttin_snps
https://doi.org/10.1371/journal.pone.0213992


Eastern (E) only, Western (W) only or hybrid (H) GH gene genotype was performed using the

sequence analysis of GH gene [22]. In the pure Western GH gene genotype the first GH gene

fragment including polymorphic side 1 (PS1) and the second GH gene fragment including

PS7 were 344 bp and 451 bp long, respectively, while the individuals of pure Eastern GH gene

genotype had fragments of 341 bp and 455 bp in length, respectively. In hybrids, haplotypes of

both phylogroups were observed (i.e. 341 and 344 for PS1 and 451 and 455 for PS7). Flanking

sequences of a subset of SNPs selected for validation were used for primers and probe design

according to Fluidigm Genotyping System requirements. After genotyping, SNPs were catego-

rized as no signal (unamplified SNPs), disperse (call rate < 80%), monomorphic (minor allele

frequency, MAF < 0.01) and psv (paralogous sequence variant; all individuals are heterozy-

gotes). For the conversion rate (proportion of all genotyped SNPs showing polymorphism), no
signal and disperse SNPs were discarded, while only polymorphic SNPs (no monomorphic, nei-

ther psv) were used for the estimating the validation rate (proportion of polymorphic SNPs

reliably scored in a sample of individuals). Polymorphic SNPs were uploaded to EBI’s Euro-

pean Variation Archive under the study accession number PRJEB23783.

Population genetic structure

For each polymorphic SNP, minor allele frequency, and expected and observed heterozygosi-

ties (He and Ho, respectively) were estimated using the software package GeneClass2 [67].

Deviations from Hardy-Weinberg equilibrium (HWE) were evaluated for each locus using

Fisher’s exact test implemented in GENEPOP 4.0 [68] with 10,000 dememorizations, 100 batches

and 5,000 iterations per batch.

To determine the genetic structure of tench individuals, genotype data were analyzed with

STRUCTURE 2.3.4 software [69]. The number of clusters k was determined by comparing log-

likelihood ratios in 10 runs for values of k between 1 and 10. Each run started with a burn-in

period of 10,000 steps followed by 100,000 MCMC replicates. The optimal k was estimated as

proposed by [69] and [70] and bar plots were generated using POPHELPER v1.0.7 [71].

Based on this initial structure, the Bayesian likelihood method implemented in BAYESCAN

2.1 [72] was used to detect loci under natural selection (outlier loci). BAYESCAN was run with

twenty pilot runs of 5,000 iterations, an additional burn-in of 50,000 iterations and prior odds

of 10 for neutral model. Critical values were adjusted with a false discovery rate (FDR) proce-

dure (q<0.1) [73]. Results of the outlier test were used to partition the SNP dataset into neutral

and outlier loci; i.e., markers presumably under natural selection. Those loci resulting as out-

lier were removed from prospective analysis, regarding neutral variation, and annotations of

the genomic regions including those loci were re-inspected.

Finally, neutral genetic differentiation and inbreeding were assessed. Neutral genetic differ-

entiation was estimated with unbiased FST (distance matrix: pairwise difference) [74] using

ARLEQUIN v3.5 [75]. Inbreeding was estimated with FIS [74] statistic using FSTAT software [76].

The statistical significance of FST and FIS was tested by 1,000 permutations for each pairwise

comparison. In all cases with multiple comparisons, error rates were corrected using the

sequential Bonferroni procedure [77].

Results

Transcriptome and genome sequencing

In total 32 million paired-end transcriptomic reads, with an average length of 101 bp, were

sequenced (S3 Table). In the case of genome, 316 million genomic reads with a read length of

126 bp were generated, encompassing 154 million reads generated for Western pool (19.6

Gbp), and 162 million reads for Eastern pool (20.4 Gbp). GenomeScope estimated that the
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Tinca tinca has a maximum genome size of 778,555,248 base pairs, where 599,234,146 base

pairs (76.97%) constitute unique regions (S4 Table; S1 Fig). Overall, genome sequences consti-

tuted an estimated 51.58x coverage of the tench genome.

Transcriptome de novo assembly and annotation

Trimming of raw transcriptome reads did not result in a significant removal of reads, but 16%

of nucleotides were discarded (S5 Table). The transcriptome de novo assembly consisted of

267,058 contigs (294.7 Mbp), which are the result of potentially 174,378 genes. The length of

the assembled contigs ranged from 224 bp to 23,703 bp with an average length of 1,103 bp (S2

Fig).

Given the high number of sequences that Trinity yielded, we assessed the quality of our

transcriptome by read mapping and by the contents of Single Copy Orthologs. On the one

hand, the backmapping method achieved mapping success rates between 96.54% and 99.38%

(S6 Table), suggesting therefore a good reconstruction of the Tinca tinca transcriptome. On

the other hand, BUSCO reported that the transcriptome contains 85.9% of the Actinopterygii

BUSCOs (where 40.4% are single copies), 6.7% are fragmented, and only 7.4% are completely

missing (S7 Table). We conclude that given that even though we only sampled two tissues

(muscle and brain) of Tinca tinca, this assembly is a good representation of the transcriptome.

According to the gene-isoform distribution in S3 Fig the distribution is skewed towards

genes composed by one transcript. There are 10,705 genes of that composition (out of 174,378

genes, 86.42%, and out of 267,058 isoforms, 56.43%). The mean of the distribution is 1.53 tran-

scripts per gene. As an extreme value, there is a gene (possibly a gene family) composed of 55

transcripts.

Regarding annotation, 89,832 transcripts were annotated (33.63%) as 126,187 proteins and

32,619 genes. From these, 64,676 transcripts (105,812 proteins and 9,295 genes) had a positive

match to the UniRef90 database with blastp (S8 Table); similarly, 101,606 contigs (39,169

genes) were positively mapped with blastx (S9 Table). In both cases, top reference transcripts

belonged to the same species: Danio rerio, Astyanax mexicanus, Oncorhynchus mykiss, Oreo-
chromis niloticus, and Ictalurus punctatus (S4 and S5 Figs; S10 Table).

Overall, 67,953 contigs (77,626 proteins and 22,996 genes) were positively matched to 5,054

different protein domains according to the Pfam database (S6 Fig). The five most popular

domains were: C2H2-type zinc finger (6.19%), Immunoglobulin domain (4.02%), Ankyrin

repeat (3.22%), Leucine rich repeat (3.06%), and Zinc finger, C2H2 type (2.58%; S11 and S12

Tables).

According to the EggNOG database, 43,291 contigs (43,366 proteins and 14,714 genes) had

a match against 3,338 different elements of the EggNOG database, including Serine Threonine

protein kinase (7.63%), repeat-containing protein (3.03%), Zinc finger protein (2.95%),

Ankyrin repeat (2.47%) and GTP-binding protein (1.27%) (S7 Fig and S13 Table).

Finally, Gene Ontology (GO) analysis showed 88,031 contigs (89,014 proteins and 30,345

genes). The highest number of GO terms was assigned to biological processes (48.63%) fol-

lowed by molecular functions (29.66%) while cellular component has the least assigned terms

(21.70%; S8 Fig). The three most commonly assigned GO terms in biological process category

were genes involved in Transcription, DNA-templated (2.03%), Regulation of Transcription,

DNA-templated (1.38%) and Signal Transduction (0.73%). In the molecular function ontology,

ATP binding (5.77%), Metal ion binding (5.32%), Zinc ion binding (4.08%) and DNA binding
(4.06%) were the most represented terms. The three major assigned GO terms for cellular

component were nucleus (10.51%), cytoplasm (10.35%) and integral components of the mem-

brane (7.26%; S9–S12 Figs; S14 and S15 Tables).
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SNP discovery and validation

According to kallisto, a total of 262,801 contigs (out of 267,058) had an expression value above

zero transcripts per million (TPM). Therefore 98.41% of the original assembly remained valid

for further analysis. From those, 89,832 contigs were identified as having no coding potential

and were discarded. Finally, contigs representing more than one isoform were also removed.

After all these filters, the transcriptome was reduced to 18,479 contigs spanning 20.32 Mbp.

The filtered transcriptome was used as reference for mapping genome (G2T) and transcrip-

tome (T2T) trimmed reads. The trimming process did not significantly decrease the number

of transcriptome or genome reads (S16 and S17 Tables). The mapping process resulted in

19.51% of genomic reads and 22.63% of transcriptome reads assigned to the filtered transcrip-

tome (S18 Table). From these mappings, a total of 131,188 G2T SNPs were called in 15,593

transcripts (8.41 G2T SNPs/transcript; Table 1), and 98,869 T2T SNPs were called in 13,721

transcripts (7.21 T2T SNPs/transcript). Together, G2T and T2T called 169,643 SNPs in 16,263

transcripts, but only 60,414 SNPs in 11,769 transcripts (5.13 SNPs/transcript) were common

to both sets. These 60,414 SNPs represented the final set of putative SNPs discovered in the

tench transcriptome.

Regarding IEB avoidance, 4,091 transcripts out of 18,479 were signaled as not having multi-

mapped reads (those that map to more than one transcript); and a total of 2,937 transcripts

contained one or more predicted IEB. A total of 16,764 IEBs were predicted (on average 5.70

predicted IEB per transcript). These predicted IEBs were annotated and avoided during geno-

typing primer design.

A set of 96 SNPs was selected based on IEB prediction analysis for validation and genotyp-

ing on Fluidigm Genotyping System. From the 96 SNPs that were genotyped, 4 (4.17%) were

categorized as no signal, while the remaining 92 SNPs were polymorphic with >80% call rate.

Therefore, conversion and validation rates of 95.83% were achieved.

Population genetics

Mean Ho and He for the Hungarian breed were 0.508 and 0.460, respectively. Similar levels of

Ho (0.455) and He (0.458) were found in the Tabor breed. Tests of deviation from HWE for

each locus revealed no significant departure from HWE after sequential Bonferroni correction.

The STRUCTURE analysis evidenced population structure with K = 2 (Evanno method; Fig 1A),

and K = 3 (Pritchard method; Fig 1B) being the most likely number of clusters. The average of

the mean posterior probability (LnP(D)) estimated from 10 independent runs on K = 2 and

K = 3 was -16533.7 and -16176.1, respectively. These clusters clearly indicate the differences

between the two breeds, but not between the GH gene genotypes (Fig 1).

A total of six SNPs were detected as being under diversifying selection (positive alpha val-

ues); this is, they show extremely different allele frequencies in the two breeds. These outlier

Table 1. Descriptive statistics of G2T, T2T and common discovered SNPs.

G2T T2T Common

Contigs with SNPs 15,593 13,721 16,263

Number of contigs in filtered assembly 18,479 18,479 18,479

Transcripts with SNPs (%) 84.38 74.25 88.01

SNPs number 131,188 98,869 169,643

Assembly size (bp) 20,316,163 20,316,163 20,316,164

Mean mutation rate (SNPs/bp) 0.006 0.005 0.008

SNPs per transcript 8.41 0.14 0.10

https://doi.org/10.1371/journal.pone.0213992.t001
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SNPs were located in the following genes: MRPL32 (39S ribosomal protein L32, mitochon-

drial), CENPF (Centromere Protein F), GRM1 (Glutamate Metabotropic Receptor 1), SPRY4

(Protein sprouty homolog 4), TRIP4 (Thyroid Hormone Receptor Interactor 4) and CN080

(Uncharacterized protein C14orf80 homolog) (Table 2). Of these six SNPs, all were found to

be synonymous mutations, except interestingly for the SNP within Activating signal cointegra-
tor 1 (see Table 2) which encodes for either a Val (hydrophobic amino acid) or a Ser (polar

Fig 1. Results from STRUCTURE analysis for K = 2 (a) and K = 3 (b). Individuals corresponding to each breed

(Hungarian, Tabor) and GH gene phylogroup genotype (H: Hybrid; W: Western; E: Eastern) are separated with

vertical white bars.

https://doi.org/10.1371/journal.pone.0213992.g001

Table 2. Annotation of selected loci based top BLAST hit and GO ontology.

Locus ID Genomic BLAST Hit GO ID e-

value

Gene function

TR107177|

c0_g1_i1

Sprouty homolog 4-like GO:001602 GO:0021594GO:0030097GO:0040037GO:004874

GO:0070373

0.0E0 P: Negative regulation of fibroblast growth factor

receptor signaling pathway; P: Rhombomere

formation; P: Skeletal muscle fiber development;

P: Hemopoiesis; P: Negative regulation of ERK1

and ERK2 cascade; C: Membrane

TR57930|

c0_g1_i1

Centromere F GO:0008134GO:0042803GO:0045502 0.0E0 F: Protein homodimerization activity; F:

Transcription factor binding; F: Dynein binding

TR48380|

c0_g1_i1

39S ribosomal L32,

mitochondrial

GO:0005743GO:0005762GO:0003735GO:0016787GO:0006412 2.2 E-

105

F: Structural constituent of ribosome; C:

Mitochondrial large ribosomal subunit; C:

Mitochondrial inner membrane; F: Hydrolase

activity; P: Translation

TR71953|

c0_g1_i1

Metabotropic glutamate

receptor 1-like isoform

X1

GO:0016020GO:0004871GO:0007165 1.1E-

153

P: Signal transduction; C: Membrane; F: Signal

transducer activity

TR96558|

c0_g1_i2

Activating signal

cointegrator 1

GO:0005634GO:0003713GO:0008270GO:0006366GO:0045893 0.0E0 C: Nucleus; F: Zinc ion binding; F: Transcription

coactivator activity; P: Positive regulation of

transcription, DNA-templated; P: Transcription

from RNA polymerase II promoter

TR56671|

c0_g1_i1

Uncharacterized protein

C14orf80 homolog

isoform X1

- 0.0E0 -

https://doi.org/10.1371/journal.pone.0213992.t002
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amino acid). Since this substitutes a polar amino acid for a hydrophobic one, this SNP may

lead to a change in protein function and should be further explored. Functional annotation

revealed that most of these genes encoded proteins involved in transcription and translational

regulation and structural organization of ribosome and mitochondria. Apart from these, the

annotated gene Sprouty homolog 4-like was found to be involved in regulation of fibroblast

growth and skeletal muscle fiber development, suggesting that the studied tench breeds might

be adapted to different environments that affect growth related genes.

After removing the 6 outlier SNPs, a set composed of 86 SNP markers was used for studying

neutral genetic differentiation and inbreeding. Pairwise FST estimates, within each breed,

among E and W phylogroups and EW hybrid (H) were not significant; in contrast, all FST val-

ues were significant when pairwise comparisons between the two breeds were tested (Table 3).

Overall, FST value between the two breeds was low but significant (FST = 0.0450, p-value <

0.0001). Additionally, FIS within each breed was not significant, indicating homogeneity

within breeds. In summary, individuals within breeds show homogeneous allele frequencies

without regard to GH gene genotype, whereas individuals of the two breeds (even if they both

are a mixture of E and W phylogroup haplotypes) are genetically different. Genotyping results

of all 92 SNPs markers have also been included in the S19 Table.

Discussion

The major challenge of transcriptome-derived SNPs is marker “drop-out” during the valida-

tion step; the most significant factor is if a SNP spans an IEB. For instance, 64% of genotyping

failures have been reported in EST-derived SNPs in catfish due to the proximity of SNPs to

IEB [65]. The most evident cause for such genotyping failure is the presence of priming site at

SNPs loci leading to non-base pairing of primers or expected amplification product is too

large for amplification due to presence of intron between priming sites. Therefore, the key for

successful SNP validation is avoidance of IEBs. In this study, the approach devised by [66] and

applied successfully to European anchovy [38] was used to avoid the problem related to IEBs.

In this method, the assembled transcript sequences were aligned to genome sequences of

tench to identify the IEB. By selecting the SNPs not spanning an IEB, we obtained the highest

conversion and validation rates of transcriptome-derived SNPs obtained to date for a non-

model species.

In this study, using the validated SNPs we have demonstrated that the two tench breeds

show low but significant genetic differentiation, even with their similar genetic structure con-

cerning their phylogroup based gene pool. The ancestral populations that formed the two

tench phylogroups separated about 0.064 to 1.6 million years ago as revealed from 1.6%

sequence divergence of cytochrome b mitochondrial gene [21]. The western (W) and Eastern

Table 3. Pairwise FST (below diagonal) and p-values (above diagonal) among tench breeds (Hungarian, Tabor) and GH gene phylogroups genotype (H: Hybrid; W:

Western; E: Eastern).

Hungarian -H Hungarian -W Hungarian -E Tabor-H Tabor-W Tabor-E

Hungarian-H - 0.2022 0.1592 0.0000 0.0000 0.0000

Hungarian -W 0.0012 - 0.0429 0.0379 0.0000 0.0000

Hungarian -E 0.0025 0.0083 - 0.0787 0.0504 0.0000

Tabor-H 0.0619� 0.0000 0.0000 - 0.1973 0.3936

Tabor-W 0.0399� 0.0274� 0.0000 0.00538 - 0.0049

Tabor-E 0.0579� 0.0318� 0.0687� 0.00150 0.0218 -

� significant value

https://doi.org/10.1371/journal.pone.0213992.t003
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(E) phylogroup significantly differs also in sequences of nuclear DNA e.g. the second intron of

the actin gene, an intron of the gene coding for the ATP synthase β subunit, the first intron of

the gene coding for the S7 ribosomal protein [21] and GH gene [6]. Due to the long history of

tench phylogroup separation and individual evolution it is expected that the phylogroups

would differ significantly also in physiological and biological functions resulting from nucleo-

tide polymorphisms of functional genes. Therefore, our transcriptome-derived SNP array

could be used for screening tench populations that still contain haplotypes of pure Western

and pure Eastern phylogroup or F1 hybrid generation between pure W and E tench popula-

tions. Unfortunately, tench populations that bear pure Western haplotypes are very scarce or

even absent [21] and we did not have such population in our collection. The Hungarian and

Tabor breeds are, after several generations of mating fish with haplotypes of both phylogroups,

a mosaic of both phylogroups due to free combination of chromosomes, crossing overs

between homologous chromosomes and other possible processes that appear during formation

of gametes. Based on FST values inferred from 86 SNPs it can be indirectly assumed that the

SNPs genotypes were not significantly different for fish having Eastern, Western or hybrid GH

gene genotype [22] within both Tabor and Hungarian breed. If the rate of phylogroup intro-

gression within breeds were low, the degree of differentiation among fish displaying different

GH gene genotype would be expected due to previously mentioned divergence between phy-

logroups in other genetic markers. On the other hand, significantly different FST values were

observed between the two breeds with no matter to what GH gene genotype the fish belonged.

The within-breed gene flow is corroborated by previous studies that show no negative fitness

consequences derived from two phylogroup-mixed tench populations under cultured condi-

tions [78]. In summary, six generations of within-breed isolated reproduction under cultured

conditions allowed breed identity determination using the transcriptome-derived SNP array.

Moreover, apart from neutral levels of genetic differentiation, the SNPs in this study are

transcriptome-derived markers and their variation in genes is informative for differential selec-

tion or adaptation in each breed. In this study, high allelic differentiation between both breeds

was observed in growth-related genes, which might point to differential natural and human-

affected selection, breeding and evolutionary history of Hungarian and Tabor tench breeds

and/or stocks they were established from. Taking into account that the sequence of the GH

(growth hormone) gene has 0.8% divergence in both tench phylogroups [6], we propose the fol-

lowing hypothesis: adaptive differences between breeds arise from differential composition of

individuals from each phylogroup in each breed, giving to Hungarian and Tabor breeds differ-

ent weight to their adaptation affecting growth related genes. However, further studies with pro-

tein sequencing of genes under selection are needed to corroborate the hypothesis presented

here, as most of the SNPs found in the genes under selection have arisen due to synonymous

mutations and will not lead to a change in the protein configuration. Insignificant association

between GH gene genotype and SNP array also indicates that there is no linkage between our

SNPs and the GH gene. However, this result does not say anything about association of these

two markers to growth-related traits. It seems that effects of SNP array and GH gene genotype

polymorphism on the growth-related traits will be (if any) independent of each other.

This study represents the first large-scale sequencing effort for SNP discovery and valida-

tion in tench. Although restriction-site associated DNA sequencing (RADseq) or double digest

RADseq (ddRADseq) can generate large data set, SNPs derived from these approaches mostly

fall into non-coding or unknown regions. Transcriptome derived SNPs are directly associated

with functional regions in the genome and can give more information for 92 SNPs in coding

region than hundreds or thousands of SNPs derived from non-coding or (not identified)

regions. The validated SNPs can be used in further genetic studies for finding genes and/or

DNA sequences associated with trait of importance.
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Conclusions

The SNP discovery approach followed in the present study was developed for transcriptome-

derived SNP discovery in European anchovy [38], and Atlantic mackerel [43] with successful

conversion and validation rates. This approach can be used to discover large number of tran-

scriptome-derived SNPs in any non-model species. In addition, our approach identifies SNPs

in the transcriptome: these SNPs can be annotated and in some cases, as evidenced here, they

are under natural selection. We showed that the SNPs array in tench is strong enough to dis-

tinguish tench breeds and that it might be useful for studies focused on searching the range of

associations between DNA sequence and traits of importance. Overall, it was verified that tran-

scriptome-derived SNPs may informs us not only about neutral genetic differentiation and

population genetic structure (e.g. [37, 39]), but also about the functional role of the differences

observed between populations or ecotypes
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