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ABSTRACT
Background: Dependent variables in health psychology are often
counts, for example, of a behaviour or number of engagements
with an intervention. These counts can be very strongly skewed,
and/or contain large numbers of zeros as well as extreme outliers.
For example, ‘How many cigarettes do you smoke on an average
day?’ The modal answer may be zero but may range from 0 to
40+. The same can be true for minutes of moderate-to-vigorous
physical activity. For some people, this may be near zero, but
take on extreme values for someone training for a marathon.
Typical analytical strategies for this data involve explicit (or
implied) transformations (smoker v. non-smoker, log
transformations). However, these data types are ‘counts’ (i.e. non-
negative whole numbers) or quasi-counts (time is ratio but
discrete minutes of activity could be analysed as a count), and
can be modelled using count distributions – including the
Poisson and negative binomial distribution (and their zero-
inflated and hurdle extensions, which alloweven more zeros).
Methods: In this tutorial paper I demonstrate (in R, Jamovi, and
SPSS) the easy application of these models to health psychology
data, and their advantages over alternative ways of analysing this
type of data using two datasets – one highly dispersed
dependent variable (number of views on YouTube, and another
with a large number of zeros (number of days on which
symptoms were reported over a month).
Results: The negative binomial distribution had the best fit for the
overdispersed number of views on YouTube. Negative binomial,
and zero-inflated negative binomial were both good fits for the
symptom data with over-abundant zeros.
Conclusions: In both cases, count distributions provided not just a
better fit but would lead to different conclusions compared to the
poorly fitting traditional regression/linear models.
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Many measurements of health behaviours (and indeed, behaviour in general), are the
number of times a person engages in that behaviour or the time spent on it. These
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numbers are counts – they are non-negative whole numbers (values below zero are not
possible). This type of data is often not normal, very heavily skewed, and can have a few
extremely high values that look like outliers but might still be credible values. And some-
times, but not always, there may be a lot of zeros. Some real examples are depicted in
Figure 1.

These dependent variables are easily and accurately analysed with a class of models
described as ‘count regressions’. These assume that rather than the dependent variable
fitting a normal distribution – the bell curve – that the dependent variable fits a
different class of distributions, all of which start at zero, and only take on whole
integer values.

However, looking at the published literature, there are several less optimal approaches
taken to dealing with this type of data. One common strategy is to dichotomise the data,
especially where there are many zeros (Xie, Tao, McHugo, & Drake, 2013). The depen-
dent variable then becomes those who engage in the behaviour (at least once) and those
who do not. This can then be analysed with logistic regression, chi-square etc. For
example, van Dongen, Ruiter, Abraham, and Veldhuizen (2014) looked at whether
people continued to donate blood (Yes/No), based on the number of blood donations
in the follow-up period – zero is No and any positive number is Yes. Similarly in a
related study, Veldhuizen, Atsma, van Dongen, and Kort (2012) looked at stopping
blood donation (Yes/No). I have also looked at whether people in Pakistan visited a
health professional over a month (visited/did no visit), when it would have been possible
to analyse the number of visits across the month (histogram of visits displayed in the
second panel of Figure 1; Anwar, Green, Norris, & Bukhari, 2017). In these three
studies, logistic regression was used.

In data where there are not large numbers of zeros, winsorizing (where extreme values
are re-coded to a lower limit) is a method that can be used for dealing with extreme out-
lying values (e.g. Keller et al., 2020). Skewness can be dealt with either by log or Box–Cox
transformations. A key disadvantage of both log and Box–Cox transformations is that
they do not handle zeros naturally (i.e. log(0) =∞), whereas count distributions clearly
do.1 There are workarounds for dealing with zero values, but no transformation will
spread out a stack of zeros (Atkins & Gallop, 2007). For data that are naturally count
data, using count distributions also makes more sense than transformation.

Figure 1. Histograms of real count data. Left panel is the number of views on YouTube of videos about
scoliosis (Staunton et al., 2015). Right panel is the number of days on which participants sought help
from a health professional over 30 days (Anwar et al., 2017).
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Another solution is to switch to non-parametric analyses (e.g. treating the data as
ordinal and using Mann–Whitney instead of a t-test, or a Spearman instead of
Pearson correlation). However, non-parametric analyses are more limited in their
ability to model data. For example, of the classic non-parametric tests, there are none
that can account for covariates or nested data. Secondly, the issue here is not that the
data is not parametric, but that it is not accurately parameterised in terms of the
normal (Gaussian/bell curve) distribution – described by the parameters mean and stan-
dard deviation. Instead, there are other distributions – described by different parameters
– that produce appropriate analyses. By moving to one of these (count) distributions,
essentially any data structure that can be analysed with normally distributed data can
be analysed. Finally, this advantage is not merely academic. Not appropriately modelling
count data as count data can obscure true relationships. In the Staunton et al. YouTube
data discussed here, there are no effects found using linear regression.

In the next section, we will discuss distributions of count variables – non-
negative integers. Count variables, though discrete, should not be confused with
ordinal variables – counts are an absolute ratio scale (see Williams, 2019 for a useful dis-
cussion). That is, they have a meaningful zero value, and eight is meaningfully twice as
many as four, for example. This information is also lost changing to classic non-para-
metric tests. In the discussion, I note that Gamma regression may be used for positive
dependent variables with decimals. Especially with self-report, some continuous variables
may resemble count variables. For example, ‘minutes of moderate-to-vigorous’ physical
activity is often rounded to whole minutes. However, in common with a true discrete
count, negative values are not possible.

Count distributions

The Poisson and negative binomial are discrete probability distributions, both with a lower
bound at 0. This property is important, as for most of the dependent variables we are
attempting to model here, negative values are not possible – in contrast to classic linear
models like regression, where the outcome variable can easily have negative values. A
person cannot smoke minus three cigarettes in a day or visit the gym less than no times
in a week. Formally, negative binomial is the count of the number of trials in a series of
independent and identically distributed binary trials until a specified number of successes
(or failures) occurs, and the Poisson is the count of times an event occurs in a period of
time. Both distributions assume each event is independent; however, because people
change their behaviour based on recent experiences, this may not always be true (Hassan
& Bilal, 2008). For example, a person’s preference for choosing to exercise might change
based on recent experience. In practice, it may be hard to determine whether observations
are truly independent, and this is not further considered in many published applications.
The ‘quasi’ distributions discussed later in this section are free of this assumption.

The Poisson distribution has a single parameter λ, in place of the Gaussian distri-
bution’s μ (mean) and σ (standard deviation). λ is the mean of the distribution. As can
be seen in Figure 2, at small values of λ, high numbers of zeros are expected, but with
a somewhat long tail to higher numbers. Counter-intuitively, for those of us who have
always lived and breathed the normal/Gaussian’s mean and standard deviation, the var-
iance of the Poisson distribution is equal to the mean and shares the same parameter λ.
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As just noted, the tail towards higher numbers is not all that long, so the Poisson dis-
tribution might model the number of blood donations in a year, but performmore poorly
with the number of cigarettes smoked in a day. This long-tailed property can be caused
by over-dispersion, where the spread of values is greater than expected by the distri-
bution. There are several alternative ways to model count data that deal with
overdispersion.

The quasi-Poisson model de-links the variance and expected value. The expected value
continues to be λ, but an additional parameter ϕ changing the variance (analogous to the
standard deviation in the normal distribution) is then estimated from the data, which can
produce larger or smaller amounts of dispersion.

The negative binomial distribution also models greater dispersion than Poisson. Like
the quasi-Poisson, it has two parameters, allowing it to accommodate a wider range of
distribution shapes than Poisson. It can be parameterised in terms of a mean μ and
shape parameter θ, where larger values of θ indicate greater dispersion.2 As can be
seen in the right-hand panel of Figure 2, this can better resemble the shape of some of
our example variables. While Poisson and negative binomials are both good for model-
ling highly skewed data, as their parameters increase, the distribution becomes more
similar to the symmetrical normal distribution. For Poisson, this happens when λ is
around 10 (left panel of Figure 2). The Poisson distribution can also be considered a
specific instance of the negative binomial, when the dispersion parameter is equal to
one(meaning that the mean and variance are equal).

There is also a quasi-negative binomial – but this is only implemented in SAS (in
NLMIXED). This is a pity, as the distribution has the type of properties we would be
interested in. Specifically, where there are not an oversupply of zeros it can often
produce a good fit for more highly skewed data as it has a ‘fat tail’ – more extreme
high values3 (Hassan & Bilal, 2008; Li, Yang, Famoye, Lee, & Black, 2011).

As a final4 distribution for modelling skewed data, the quasi-binomial5 (Consul, 1990)
can also be useful. It does not model excess zeros, however, but the zero-inflated quasi-
binomial can. Similar to the quasi-negative binomial, the quasi-binomial does not
assume that the probability of success is constant between trials.

Figure 2. Left panel shows the shape of the Poisson distribution (number of events on the x-axis;
probability of observing that number of events on the y-axis) for various values of λ. Right panel
shows the shape of the negative binomial distribution for various values of μ and θ.
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Zero-inflation and hurdle models

Despite the intuitive appeal inherent in the name ‘zero-inflation’ (e.g. zero-inflated
Poisson), the Poisson and negative binomial families can still deal with large numbers
of values being zero (Warton, 2005; Xie et al., 2013). However, this is contingent on
the mean being relatively low. As an extreme example, in Figure 3 below (which could
be standard drinks consumed in an evening, or cigarettes smoked), there is both a
peak at zero, and a second peak above zero.

Both zero-inflation and hurdle models are two-step models. They use a first step to
model additional zeros – either engaging in the behaviour or not. And then a second
Poisson or negative binomial model for modelling the level of engaging in the behaviour.
The key difference between zero-inflation and hurdle models, is that in a zero-inflated
model, there are two reasons for a participant to score zeros. One is that they don’t
engage in the behaviour ever (i.e. a non-drinker), and the second is that a participant
didn’t drink in the time period. In contrast, a hurdle model assumes that zeros have a
separate cause (e.g. perhaps being a non-smoker), but that if you are a smoker, you
won’t have a day where you forget to smoke a cigarette. Social smokers cloud this
issue, however, and for this type of reason, it is perhaps unlikely that hurdle models
make sense for health psychology. A person that usually engages in vigorous physical
activity may have the flu or be busy at work, and therefore score zero, overlapping
with people who have routinely sedentary patterns.

Example use of count distributions

Poisson and negative binomial models have been used across a wide range of fields. Some
of the earliest modelling and development was looking at whether some factory workers (in
high explosive shell factories!) were more prone to having multiple accidents (Greenwood
& Yule, 1920). They are widely used in econometrics, including applications to health (see
e.g. Cameron & Trivedi, 2005) and in ecology (see e.g. Vincent & Haworth, 1983).

Figure 3. Hypothetical data with a clear bi-modal distribution, with the first peak at zero.
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There are numerous specific examples in the broader field of health. For example, the
negative binomial model has been used to examine the effect of different medicines on
the number of incontinence episodes over three days (Martina, Kay, van Maanen, &
Ridder, 2015). Length of hospital stay is another outcome variable that has been success-
fully modelled with the negative binomial, which outperformed Poisson (Carter & Potts,
2014). Quasi-binomial was used to test the association between smoking and periodon-
titis (Zeng et al., 2014). In professional rugby players, coping related to eliciting support
was linked to minutes played at a professional level five years later using zero-inflated
binomial regression (Rumbold, Fletcher, & Daniels, 2020).

Within health psychology, count models are most often used for modelling longitudinal
daily data. For example, Inauen, Shrout, Bolger, Stadler, and Scholz (2016) used negative
binomial to model snack consumption within three hour reporting periods (snack counts
ranging from zero to four) with generalised estimating equation (GEE) methods. Similarly,
Lüscher, Hohl, Knoll, and Scholz (2019) modelled daily number of cigarettes smoked with
the negative binomial and zero-inflation within a generalised linear mixed model.

Poisson and negative binomial regression

The types of analyses we will be examining next are generalised linear models (Nelder &
Wedderburn, 1972), extensions of the general linear model (regression, ANOVA etc.) –
and seem very much like (linear) regression. In R, they are constructed almost identically
to a standard regression model; whereas in SPSS they are accessed through a separate
menu that functions quite differently.6

A potential key ingredient in any of these regression models is what is described as an
exposure variable – the time, space or area in which the counts are recorded. If all the
counts have the same exposure window (e.g. number of cigarettes for each participant in
the last week), then there is no need to control for exposure, but in some designs, it may
be necessary. In the first example analysis, each video on YouTube has been ‘exposed’
for viewing for the time since it was published. A video that was published two years
ago will, all else being equal, have been viewed more times than one published three
months ago. Or if the unit of analysis was a family unit, then family size might function
in the same way. In ecological examples, it is often the size of the hive/colony/breeding site.

Model fit – determining which count distribution to use – can be assessed in a number
of ways. Most commonly, fit metrics, particularly AIC are used. AIC balances how well
the model fits with the simplicity of the model, with lower values indicating a better
model.7 Because models with more predictors will tend to provide a better fit, AIC pena-
lises models with more predictors. However, following Buja et al. (2009) and David
Fletcher (personal communication, 2015), visual inspection can be a powerful model
diagnostic here, in the same way, that visual inspection of a funnel plot often works
better than formal tests in meta-analysis (Higgins et al., 2019). To do this, I have
written a small R-package (simfit), linked in the supplementary materials (https://osf.
io/4mjhq/), which shows whether simulating data from the fitted model produces data
that resembles the original data. It is possible to see whether too many or too few
zeros are produced, relative to the original. Similarly, for the more extreme values, are
they extreme enough or too extreme?

HEALTH PSYCHOLOGY AND BEHAVIORAL MEDICINE 441

https://osf.io/4mjhq/
https://osf.io/4mjhq/


In Figure 4, for example, the simulated data plotted in red have approximately half the
maximum value of the original data, plotted in black. And close to the x-axis, the red points
do not go as close to the axis, suggesting there are insufficient low/zero scores. As a model
diagnostic, this would then suggest a poor fit.If confirmed in further simulations, different
models should be considered, until the distribution of points more similarly map onto each
other.

Unfortunately, it is not currently possible to simulate data for all count models. In
addition to using AIC, another visual assessment of fit which is available for some
models is Tukey’s (1977) Rootogram,8 which is implemented in the package countreg
(Kleiber & Zeileis, 2016). The expected values for the model are plotted as a red line,
and the observed frequencies are plotted as bars, hanging under the curve for the
expected values. This hanging style was preferred by Tukey to highlight the deviations
along the x-axis. The y-axis is plotted as the square-root of frequencies, to highlight devi-
ations for small observed/expected frequencies. Where the bar goes under the x-axis, the
model underpredicts that value, and where the bar does not meet the x-axis, the model
overpredicts. In terms of assessing fit, Kleiber and Zeileis highlight two key elements to
note. The first is to assess whether the expected number of zeros matches the observed
data. The second is the extent to which there are ‘runs’ of successive bars missing the
x-axis. Two example rootograms are depicted in Figure 5. On the left, the Poisson
model clearly underpredicts zeros (hanging all the way down to 4), and there is a run
of over overprediction at values 1–4 (peaking at 2). In contrast, the hurdle negative bino-
mial is a better fit, showing little expected/observed discrepancies for the number of
zeros, and no clear ‘runs’, with much smaller under and overs along the axis.

A final technical note on count regressions. The models return coefficients that can be
interpreted in the same way as a linear model (i.e. y = b0 + b1X1, etc.), except that the pre-
dicted values are returned as their natural log (i.e. ln(m̂) = b0 + b1X1, etc.). This is similar

Figure 4. Scoliosis-specific score against number of YouTube views controlling for age. Original data
in black, data simulated with a Poisson model in red. Upper and lower ellipses highlight original data
points outside the simulated range. Note that Figures from the sim.plot function automatically ‘jitter’
data points a little bit so that points that might otherwise be on top of each other are slightly offset.

442 J. A. GREEN



to how logistic regression returns log odds, which are then transformed (exponentiated)
into Odds Ratios. The intercept in untransformed values is eb0, and the multiplicative
effect of a one-step increase in X1 is eb1. A more detailed explanation is available in
Coxe, West, and Aiken (2009). Practical worked examples are provided later.

Software choice

Provided in the supplementary materials (https://osf.io/4mjhq/) are the R scripts for all the
analyses and figures in this paper, written in R (R Core Team, 2020) inmarkdown intended
for RStudio (RStudio Team, 2020). There are also scripts/demonstrations of all the similar
analyses in JAMOVI (The jamovi project, 2021) using the GAMLjmodule (Gallucci, 2019),
and for SPSS (V26, IBM Corp., 2019). Not all are available in those packages (see Table 1),
and frommy experience, the model diagnostics and comparisons are better in R. However,
for a person unfamiliar with R, they may still present a good option for modelling count
data.

Ethics statement

The data from Staunton et al. (2015) did not involve human participants but was based
on publicly available data. For Anwar et al. (2017) ethical approval was received from the
University of the Punjab (HEC/UCP/1916A) in Pakistan, and we also received approval
from the University of Otago Human Ethics Committee (F12/008).

Analysis walk-through

Example of highly skewed data

For this analysis walk-through, we will use some data from a project that I was previously
involved in, which looked at the popularity versus accuracy of YouTube videos for sco-
liosis (Staunton, Baker, Green, & Devitt, 2015). The data, and R-code, as well as parallel
analyses in Jamovi and SPSS are available at https://osf.io/4mjhq/. The primary outcome

Figure 5. Two example rootograms from the countreg package. The left shows a model fit with a
Poisson, and the right, a hurdle negative binomial model. Purple arrows on the left highlight a sub-
stantial underprediction of zeros in the Poisson, and then a ‘run’ of over-predictions at one through
five. In contrast, the hurdle negative binomial accurately predicts the right number of zeros, and there
are only a number of minor deviations (purple arrows), but they are not consecutive.
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is the number of views on Youtube: some of the very popular videos have hundreds of
thousands views, whereas some have been viewed by only a handful. This particular
dataset does not have a large number of zeros – in fact there are no zeros – but it is a
true count distribution, and clearly skewed (see left panel of Figure 1).

In this simple dataset, we will focus on the number of views for each video. As noted
earlier, the age of the video serves as an exposure variable, which we essentially control
for, in not too dissimilar to the way that, for example, socio-economic status or age might
be controlled for in a linear regression. The predictors are quality assessments of the
videos; the one focussed on here is an ordinal measure of quality, the scoliosis-specific score.

Firstly, to illustrate why choosing a count model is appropriate, we will fit a traditional
linear regression model. The covariate video age is significant, indicating that (shock-
ingly) videos that were uploaded longer ago have more views, but the scoliosis-specific
quality score is unrelated to the number of views. More interesting is to look at the
data simulated fromthe model (Figure 6). Firstly, it doesn’t match the distribution
wellin terms of anticipating very high scores, but more importantly, the linear model pre-
dicts several quite large values for negative views, and obviously, a video cannot be viewed
−200,000 times. Count models can never predict values below zero, and certainly not
such wildly erroneous ones.

We next fit a Poisson regression to the same data. This time, not only is the video age
covariate significant, but there is a relationship between the scoliosis-specific quality
score and the number of views of the video (Figure 7) – unfortunately, the more accurate
the information in the video, the fewer views. So here we immediately see the potential
benefit of fitting a more accurate model. We have been able to detect a likely true effect
that was not found in the linear model. The AIC for the Poisson model is 2,761,005.9

Looking at the simulated versus original data in Figure 7, it is obvious compared to
Figure 6 that there are no simulated values for the number of views below zero. The
shape of the simulated data is broadly correct but is not sufficiently dispersed – not
enough high values, and not enough low values.To be clear, Poisson is a better choice
than linear regression because of fit and appropriateness, not because of predictor
significance.

Table 1. Availability of different analyses for count data in different software packages.
R SPSS Jamovi

Poisson glm(family = ‘poisson’) Generalised Linear Models (Type of Model = Poisson
loglinear)

Yes

Quasi-Poisson glm(family = ‘quasi-poisson’) Yesa Yes
Negative binomial glm.nb Generalised Linear Models (Type of Model = Customb) Yes
Quasi-binomial glm(family = ‘quasi-

binomial’)
No No

Plot-based
diagnostics

Yes No No

Zero-inflated Models zeroinfl (dist = ‘poisson’/
’negbin’)

Noc No

Hurdle Models hurdle(dist = ’poisson’/
‘negbin’)

No No

aYou can achieve something similar by changing the ‘Scale Parameter Method’ from 1 (i.e. mean and variance are con-
strained to being the same) to (Pearson chi-square).

bDo not select ‘Negative binomial with log link’(!).
cTechnically you can, but by using R within SPSS, after installing R and integrating it with SPSS. I have done this pre-
viously, and found it to be probably more difficult than familiarising yourself with R. Since then R has become
easier to use, including an ability to seamlessly read in SPSS data with the haven package (Wickham & Miller, 2020).
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We next fit the quasi-Poisson, which relaxes the constraint that the variance must
equal the mean. It is difficult to directly compare quasi-Poisson fit, as neither data simu-
lation, AIC nor rootogram are implemented. However, we can compare the dispersion
parameters – set at 1 for the standard Poisson (i.e. mean = variance) and at 71,372 for
the quasi-Poisson. The freely varying estimate is not close to 1 (at all!), so it seems
that this is likely a much better fit. The fit curve is identical, but the confidence interval
estimates are different to the Poisson (Figure 8).

Next, we move to the negative binomial model. Again, both the age covariate, and the
scoliosis-specific score are significant. This time we can compare the AIC for the negative

Figure 6. Scoliosis-specific score against number of YouTube views controlling for age. Original data
in black, data simulated with a linear model in red. Ellipses highlight where the simulated data does
not overlap with the original data.

Figure 7. Scoliosis-specific score against number of YouTube views controlling for age. Original data
in black, data simulated with a Poisson model in red.

HEALTH PSYCHOLOGY AND BEHAVIORAL MEDICINE 445



binomial with the Poisson, and it is improved to 1205. And as can be seen in the panels of
Figure 9, the simulated data in red better approximates the real data, with more low
scores close to the x-axis, and more over-dispersion. However, these four panels also
clearly illustrate that the simulated data are based on a random process. These are
four consecutive runs of the function and produce quite different simulated datasets.
Therefore, simulating multiple datasets and comparing them to the observed data is
more robust than a single simulation. In future versions of simfit, I plan to implement
multiple simulations of data automatically. Currently, this can be achieved by either
setting the random number seed to different values, or re-running the sim.plot function
several times. Rootograms appear not to work with count data with such large values (see
tutorial files for uninterpretable rootograms).

Finally, because there are no zeros in this dataset, neither zero-inflation or
hurdle models make sense. To recap then, the fit and estimates are summarised in
Table 2. Both AIC and the simulated data suggest that the negative binomial model is
best. The estimated coefficients for the intercept, video age, and scoliosis score
are similar for all three count models (the standard linear regression looks
different because it is not predicting natural log values). The fitted negative binomial
then is:

ln(m̂) = 8.79+ 0.0011(days old)+−0.106(scoliosis score)

The average age of the videos was 2383 (about 6.5 years), and the average scoliosis-
specific score 5.38. Substituting those values into the equation (8.79 + 0.0011*2383 +
−0.106*5.38) yields a predicted value of 10.84, which exponentiated (e10.84) is 51,021
views (the average views for a video of average age and score). To understand the multi-
plicative effect of the coefficient for the scoliosis score (or any other predictor) is to expo-
nentiate the coefficient (here e−0.106 = 0.90). So for each one-point increase in video
quality, as assessed by the scoliosis-specific score, views decrease by 0.90 times (or
decrease by 10%).

Figure 8. Fit curve for quasi-Poisson (estimated fit in red, 95% CI in blue).
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Figure 9. Scoliosis-specific score against number of YouTube views controlling for age. Original data
in black, data simulated with a negative binomial model in red. The top-left panel has the random
seed set to 45. The subsequent three panels are re-running the same function immediately afterwards,
and demonstrates the importance of running multiple simulations.

Table 2. Regression coefficients and model fit for different distribution models.
Standard linear
regression

Poisson
regression

Quasi-Poisson
regression

Negative binomial
regression

Intercept −85051.90 9.22 9.22 8.79
Standard
error

57755.15 0.003 0.692 0.656

p value 0.147 <0.001 <0.001 <0.001
Age of video 77.58 0.000977 0.000977 0.00115
Standard
error

21.21 <0.001 0.0002 0.037

p value <0.001 <0.001 <0.001 <0.001
Scoliosis score −4428.20 −0.102 −0.102 −0.106
Standard
error

3185.31 0.001 0.049 0.0002

p value 0.171 <0.001 0.045 0.004
AIC [not comparable] 2761005 NA 1205

Note: Coefficients for linear regression are in number of views. For the count distribution, they are natural logs of the
number of views.
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Example with a large number of zeros

Because the most common use of count models is to deal with data with large numbers of
zeros, the second example has a more ‘usual’ count distribution (right panel of Figure 1),
with a clear spike at zero, and a very strong right skew. The maximum count observed is
much smaller, here only ten, which is again, more common in many examples of count
outcomes.

This data comes from Anwar et al. (2017) with the outcome variable (number of visits to
a health professional in 30 days) originally dichotomised into visited or not visited, and
modelled with logistic regression. Instead here, we will treat it as the count variable it is.
The key predictor is the number of days on which symptoms were reported across the
30 days. This was positively associated with visiting a healthcare professional in the pub-
lished study. This was a much larger project (mostly unpublished), and so that the demon-
stration models have some additional predictors, I have included two previously
unanalysed measures from the dataset10: adapted (and translated) for Pakistan versions
of the Beliefs about Medicines Questionnaire General and Specific sub-scales (Horne,
Weinman, & Hankins, 1999) and the short form of the Barratt Impulsiveness Scale (Spi-
nella, 2007).

The data simulated from the linear model (Figure 10) predicts a large number of nega-
tive values for visits to a health professional. Further, there is too much dispersion with
low numbers of symptom days, and insufficient at a higher number of symptom days.

However, the simulated data from the Poisson model is more accurate, although there
is less variability in the simulated data (left panel, Figure 11), and as the rootgram shows,
there are also too few zeros expected in the Poisson compared to the data (the under
hanging value for 0, right panel Figure 11), and a ‘run’ of overprediction for 1–3.

The negative binomial shows a much better fit on the rootogram (right panel of Figure
12), but the simulated data shows that the negative binomial fits a handful of

Figure 10. Number of days on which participants reported symptoms as a predictor of days on which
participants visited a healthcare professional. Original data in black, Data simulated from a linear
model in red.
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unrealistically extreme values. This pattern was largely repeated across several simu-
lations (see tutorial files).

Because both these models appear like they could be improved upon, and especially
because the Poisson is struggling with the number of zeros in the data, trying zero-
inflation and hurdle models makes sense here. Simulation is not available for these
models, but we can use the rootogram and AIC to compare their fit. Looking at the roo-
tograms across all six models (Figure 13), none of these models seem bad, especially com-
pared to the examples from the countreg package (Figure 5). As noted earlier, the Poisson
is weak, and probably the weakest, but there is not a lot between the remainder. Based on
AIC (Table 3), the zero-inflated negative binomial performs slightly better than the nega-
tive binomial. Ultimately, theoretical considerations, and the examination of the predic-
tors for the zero-inflated logistic regression might guide the ultimate model choice.11

For the zero-inflated and hurdle models, it is also not necessary to have the same pre-
dictors for the two steps. For example, in the tutorial walk-through, there is a model with
only number of symptom days for the zero-inflated/hurdle step, and then a larger model

Figure 11. Simulated versus original data with Poisson fit on a scatterplot (left) and rootogram (right).
Circle size is used to illustrate the number of overplotted points.

Figure 12. Simulated versus original data with negative binomial fit on a scatterplot (left) and rooto-
gram (right).
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for the count distribution. This simplification actually increases the AIC, so those specific
models did not work in this instance, but could be worth exploring for a different dataset.

Discussion

In this tutorial, two example analyses were presented, one analysing an outcome variable
with a large number of zeros and high skewness/dispersion; the second involving high
skewness/dispersion. In both cases, using a count distribution to model the outcome
variable was clearly more successful than conventional linear models. Further, especially
in the implementation in R, using models such as Poisson or negative binomial are
clearly analogous to conventional regression models, both in terms of how they are
specified, and how the results are presented, so they do not present a challenging shift
in terms of learning new analyses. In the second example, it was also clear that models
without zero-inflation can still perform well modelling quite substantial numbers of
zeros, but there are also times when zero-inflation or a hurdle model might produce a
better fit.

The methods presented here are necessarily a subset of the available methods, but
should be suitable for a wide range of designs, and are adaptable to the most common
‘standard’ designs. That is, they can easily replace the general linear model: t-tests,
ANOVA, regression, and ANCOVA. For those looking for a more technical, but still
accessible, account of generalised linear models implementing Poisson and negative
binomial, consider Coxe et al. (2009).

As noted earlier, it is also possible to extend generalised linear models into even more
complex designs such as longitudinal Ecological Momentary Assessment (EMA)/Experi-
ence Sampling Method (ESM) data with generalised linear mixed models (GLMMs) and
generalised estimating equations (GEEs). However, while incorporating count distri-
butions into these methods represents some improvement, some recent work suggests
that these do not adequately model EMA/ESM data (Hasselman & Bosman, 2020).
Repeated observations over time within an individual are clearly not independent, but tra-
ditional linear methods tend to model influence only from the previous observation (a lag
of 1 in autoregression), whereas human memory can provide influences from weeks or

Table 3. Regression coefficients and model fit for different distribution models.

Poisson
regression

Negative
binomial
regression

Zero-inflated
Poisson

Zero-inflated
negative binomial

Hurdle
Poisson

Hurdle
negative
binomial

Intercept −1.17 −1.18 0.13 −1.01 0.16 −0.04
Std. error 0.35 0.54 0.39 0.50 0.40 0.59
p value <0.001 0.03 0.7 0.046 0.7 0.9

Symptom
days

0.092 0.104 0.069 0.107 0.067 0.077

Std. Error 0.007 0.014 0.009 0.014 0.009 0.015
p value <0.001 <0.001 <0.001 0.017 <0.001 <0.001

Impulsivity −.012 −.014 −0.015 −0.017 −0.015 −0.019
Std. Error 0.004 0.007 0.004 0.006 0.005 0.007
p value 0.006 0.053 <0.001 0.009 <0.001 0.004

AIC 514 458 467 454 467 459

Notes: Estimates are omitted for the zero-inflated and hurdle step of the model for simplicity. These are included in the
tutorial files.
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months ago (Hasselman & Bosman, 2020; Olthof, Hasselman, & Lichtwarck-Aschoff,
2020). Similarly, for behaviour change, we would expect to see potentially marked
abrupt change, change in variability, and other phenomena not modelled within linear
methods. For a health psychology-based expositionof this see Heino, Knittle, Noone, Has-
selman, and Hankonen (2020) and accompanying supplementary materials.

Cameron and Trivedi (2013) cover more alternative models for count data, including
for longitudinal data. It is also possible to use Bayesian estimation, which may have par-
ticular benefits in more complex models with multiple levels of nesting (personal com-
munication, David Fletcher, Matthew Schofield, 2015). I have not touched on truncated
Poisson/negative binomial regression. These fit distributions that have no zeros, but other-
wise display count properties. The most obvious examples are where a sample is recruited
in a place where people are actively engaging in the behaviour being measured (last 30-day
gym visits in a sample of people recruited at the gym, last 12-month blood donations

Figure 13. Rootograms for various count models for the number of days on which a health pro-
fessional was visited.
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recruited at blood donation sites, or length of hospital stay), or where the exclusion criteria
exclude zero values (number of standard drinks consumed at the last party attended, and
data from those not drinking is excluded). The svyglm function in the survey package in R
(Lumley, 2020) facilitates survey weighting for some types of count regression. Atkins and
Gallop (2007) also describe how dyadic data can be modelled with counts.

For continuous, skewed dependent variables, treating them as a quasi-count is not the
only or best option. The Gamma distribution, also within the generalised linear model
family, has a similar shape to Poisson andnegative binomial but is naturally continuous
(Ng & Cribbie, 2017). Gamma regression is implemented in R in a very similar way to
count regression.

Limitations of count regression include the need to transform coefficients to make
them interpretable. However, this is also a feature of alternate transformations such as
log and box-cox. The implementation of different distributions and analyses is not con-
sistent across software packages, and my preferred visual inspection for fit is not available
for every type of analysis here. There is also a risk of overfitting. This can occur by putting
too much weight on a single or small number of simulations for the visual inspection
method. However, there is a wider risk of overfitting, in that the observed data is a
single sample, and that tailoring the model too closely to the observed data risks
fitting to random variation rather than the underlying process.

Count distributions successfully model discrete outcome variables that have either a
large number of zeros and/or are strongly skewed. Moreover, for true count variables,
these distributions are more technically accurate, with models never predicting values
below zero, which would never be possible for the outcome variable. Further, relative
to the common alternatives, such as using non-parametric tests, modelling the outcomes
using these distributions is more powerful and flexible.

Notes

1. Although I am discussing count distributions here, it is also worth noting that very small
values just above 0 (e.g., 0.001) become very large and influential values when logged. So
logging a continuous variable with very small values will also not perform well.

2. The negative binomial is a distribution developed to model a series of independent and
identically distributed trials with a binary outcome, with a probability of success (p),
before a set number of failures (r) occurs. Here, I have described an alternative parameter-
isation which better describes the shape of the distribution, rather than its underlying mech-
anism. It also is more obviously analogous with the normal and Poisson distribution
described as μ and θ.

3. Student’s t-distribution is probably the most well-known fat-tailed distribution. As the
sample size/degrees of freedom increases, the distribution converges tothe normal distri-
bution. But with smaller samples, the tails fatten, meaning that the value of t required to
reject the null hypothesis increases well above 1.96, making the t-test more conservative
as the sample size decreases.

4. There are of course, more distributions (e.g. the beta-binomial), but in practice, Poisson and
negative binomial are the most commonly reported and compared (Zeng et al., 2014).

5. You might note that I have not discussed the binomial distribution, but am jumping straight
to the quasi-binomial. The binomial distribution does not have the shape we are interested
in here, but the quasi-binomial can sometimes be useful.

6. This includes NOT selecting the ‘negative binomial’ option to conduct a negative binomial
regression.
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7. AIC estimates how much ‘information’ a model loses, so lower values are indicate better fit.
8. Named, apparently, because the y-axis is the square-root of the frequency.
9. AIC is available for linear regression, but the values are not comparable.
10. I have no strong justification, theoretical or otherwise for the choice of these variables. The

original design choices would have been that people with more negative attitudes towards
medicines might be less likely to seek conventional medical treatment.

11. As this particular example was constructed for this tutorial, I don’t have a clear choice here.

Acknowledgements

I would like to thank David Fisher, for introducing me to count models. Many of the ideas pre-
sented in this paper are based on his, though any errors are mine. Luke Danagher, David Fletcher
and two anonymous reviewers provided helpful feedback.

Disclosure statement

No potential conflict of interest was reported by the author.

ORCID

James A. Green http://orcid.org/0000-0002-7309-0751

References

Anwar, M., Green, J. A., Norris, P., & Bukhari, N. I. (2017). Prospective daily diary study reporting
of any and all symptoms in healthy adults in Pakistan: Prevalence and response. BMJ Open, 7
(11), e014998. doi:10.1136/bmjopen-2016-014998

Atkins, D. C., & Gallop, R. J. (2007). Rethinking how family researchers model infrequent out-
comes: A tutorial on count regression and zero-inflated models. Journal of Family
Psychology : JFP : Journal of the Division of Family Psychology of the American Psychological
Association (Division 43), 21(4), 726–735. doi:10.1037/0893-3200.21.4.726

Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E.-K., Swayne, D. F., & Wickham, H. (2009).
Statistical inference for exploratory data analysis and model diagnostics. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367
(1906), 4361–4383. doi:10.1098/rsta.2009.0120

Cameron, A. C., & Trivedi, P. K. (2005).Microeconometrics: Methods and applications. New York:
Cambridge University Press.

Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data (2nd ed.). Cambridge,
UK: Cambridge University Press.

Carter, E. M., & Potts, H. W. (2014). Predicting length of stay from an electronic patient record
system: A primary total knee replacement example. BMC Medical Informatics and Decision
Making, 14, 26. doi:10.1186/1472-6947-14-26

Consul, P. C. (1990). On some properties and applications of quasi-binomial distribution.
Communications in Statistics - Theory and Methods, 19(2), 477–504. doi:10.1080/
03610929008830214

Coxe, S., West, S. G., & Aiken, L. S. (2009). The analysis of count data: A gentle introduction to
Poisson regression and its alternatives. Journal of Personality Assessment, 91(2), 121–136. doi:10.
1080/00223890802634175

Gallucci, M. (2019). GAMLj: General analyses for linear models [jamovi module]. https://gamlj.
github.io

Greenwood, M., & Yule, G. U. (1920). An inquiry into the nature of frequency distributions repre-
sentative of multiple happenings with particular reference to the occurrence of multiple attacks

HEALTH PSYCHOLOGY AND BEHAVIORAL MEDICINE 453

http://orcid.org/0000-0002-7309-0751
https://doi.org/10.1136/bmjopen-2016-014998
https://doi.org/10.1037/0893-3200.21.4.726
https://doi.org/10.1098/rsta.2009.0120
https://doi.org/10.1186/1472-6947-14-26
https://doi.org/10.1080/03610929008830214
https://doi.org/10.1080/03610929008830214
https://doi.org/10.1080/00223890802634175
https://doi.org/10.1080/00223890802634175
https://gamlj.github.io
https://gamlj.github.io


of disease or of repeated accidents. Journal of the Royal Statistical Society, 83(2), 255–279. doi:10.
2307/2341080

Hassan, A., & Bilal, S. (2008). On some properties of quasi-negative-binomial distribution and its
applications. Journal of Modern Applied Statistical Methods, 7(2), 616–631. doi:10.22237/
jmasm/1225513500

Hasselman, F., & Bosman, A. M. T. (2020). Studying complex adaptive systems with internal states:
A recurrence network approach to the analysis of multivariate time-series data representing
self-reports of human experience. Frontiers in Applied Mathematics and Statistics, 6, doi:10.
3389/fams.2020.00009

Heino, M. T. J., Knittle, K. P., Noone, C., Hasselman, F., & Hankonen, N. (2020). Studying behav-
iour change mechanisms under complexity [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/
fxgw4

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J.,…Welch, V. A. (2019).
Cochrane handbook for systematic reviews of interventions. Hoboken, NJ: John Wiley & Sons.

Horne, R., Weinman, J., & Hankins, M. (1999). The beliefs about medicines questionnaire: The
development and evaluation of a new method for assessing the cognitive representation of
medication. Psychology & Health, 14(1), 1–24. doi:10.1080/08870449908407311

Inauen, J., Shrout, P. E., Bolger, N., Stadler, G., & Scholz, U. (2016). Mind the gap? An intensive
longitudinal study of between-person and within-person intention-behavior relations. Annals of
Behavioral Medicine, 50(4), 516–522. doi:10.1007/s12160-016-9776-x

The jamovi project. (2021). Jamovi (1.6) [Computer software]. https://www.jamovi.org
Keller, J., Hohl, D. H., Hosoya, G., Heuse, S., Scholz, U., Luszczynska, A., & Knoll, N. (2020). Long-

term effects of a dyadic planning intervention with couples motivated to increase physical
activity. Psychology of Sport and Exercise, 49, 101710. doi:10.1016/j.psychsport.2020.101710

Kleiber, C., & Zeileis, A. (2016). Visualizing count data regressions using rootograms. The
American Statistician, 70(3), 296–303. doi:10.1080/00031305.2016.1173590

Li, S., Yang, F., Famoye, F., Lee, C., & Black, D. (2011). Quasi-negative binomial distribution:
Properties and applications. Computational Statistics & Data Analysis, 55(7), 2363–2371.
doi:10.1016/j.csda.2011.02.003

Lumley, T. (2020). Package ‘survey’. http://Cran. r
Lüscher, J., Hohl, D. H., Knoll, N., & Scholz, U. (2019). Invisible social support and invisible social

control in dual-smoker couple’s everyday life: A dyadic perspective. Annals of Behavioral
Medicine, 53(6), 527–540. doi:10.1093/abm/kay062

Martina, R., Kay, R., van Maanen, R., & Ridder, A. (2015). The analysis of incontinence episodes
and other count data in patients with overactive bladder by Poisson and negative binomial
regression. Pharmaceutical Statistics, 14(2), 151–160. doi:10.1002/pst.1664

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal
Statistical Society: Series A (General), 135(3), 370–384. doi:10.2307/2344614

Ng, V. K. Y., & Cribbie, R. A. (2017). Using the gamma generalized linear model for modeling
continuous, skewed and heteroscedastic outcomes in psychology. Current Psychology, 36(2),
225–235. doi:10.1007/s12144-015-9404-0

Olthof, M., Hasselman, F., & Lichtwarck-Aschoff, A. (2020). Complexity in psychological self-
ratings: Implications for research and practice. BMC Medicine, 18(1), 317. doi:10.1186/
s12916-020-01727-2

R Core Team. (2020). R: A language and environment for statistical computing [Manual]. https://
www.R-project.org/

RStudio Team. (2020). RStudio: Integrated development environment for r [Manual]. http://www.
rstudio.com/

Rumbold, J., Fletcher, D., & Daniels, K. (2020). An experience sampling study of organizational
stress processes and future playing time in professional sport. Journal of Sports Sciences, 38
(5), 559–567. doi:10.1080/02640414.2020.1717302

Spinella, M. (2007). Normative data and a short form of the Barratt impulsiveness scale.
International Journal of Neuroscience, 117(3), 359–368. doi:10.1080/00207450600588881

454 J. A. GREEN

https://doi.org/10.2307/2341080
https://doi.org/10.2307/2341080
https://doi.org/10.22237/jmasm/1225513500
https://doi.org/10.22237/jmasm/1225513500
https://doi.org/10.3389/fams.2020.00009
https://doi.org/10.3389/fams.2020.00009
https://doi.org/10.31234/osf.io/fxgw4
https://doi.org/10.31234/osf.io/fxgw4
https://doi.org/10.1080/08870449908407311
https://doi.org/10.1007/s12160-016-9776-x
https://www.jamovi.org
https://doi.org/10.1016/j.psychsport.2020.101710
https://doi.org/10.1080/00031305.2016.1173590
https://doi.org/10.1016/j.csda.2011.02.003
http://Cran
https://doi.org/10.1093/abm/kay062
https://doi.org/10.1002/pst.1664
https://doi.org/10.2307/2344614
https://doi.org/10.1007/s12144-015-9404-0
https://doi.org/10.1186/s12916-020-01727-2
https://doi.org/10.1186/s12916-020-01727-2
https://www.R-project.org/
https://www.R-project.org/
http://www.rstudio.com/
http://www.rstudio.com/
https://doi.org/10.1080/02640414.2020.1717302
https://doi.org/10.1080/00207450600588881


Staunton, P. F., Baker, J. F., Green, J., & Devitt, A. (2015). Online curves: A quality analysis of sco-
liosis videos on YouTube. Spine, 40(23), 1857–1861. doi:10.1097/BRS.0000000000001137

Tukey, J. W. (1977). Exploratory data analysis: Vol. 2. Reading, MA: Addison-Wesley.
van Dongen, A., Ruiter, R., Abraham, C., & Veldhuizen, I. (2014). Predicting blood donation

maintenance: The importance of planning future donations. Transfusion, 54(3pt2), 821–827.
doi:10.1111/trf.12397

Veldhuizen, I., Atsma, F., van Dongen, A., & Kort, W. d. (2012). Adverse reactions, psychological
factors, and their effect on donor retention in men and women. Transfusion, 52(9), 1871–1879.
doi:10.1111/j.1537-2995.2011.03551.x

Vincent, P. J.-L., & Haworth, J. M. (1983). Poisson regression models of species abundance. https://
doi.org/10/bdkfrr

Warton, D. I. (2005). Many zeros does not mean zero inflation: Comparing the goodness-of-fit of
parametric models to multivariate abundance data. Envionmetrics, 16(3), 275–289. doi:10.1002/
env.702

Wickham, H., Miller, E., & RStudio (2020). haven: Import and export ‘SPSS’, ‘Stata’ and ‘SAS’ files
(2.3.1) [Computer software]. https://CRAN.R-project.org/package=haven

Williams, M. (2019). Scales of measurement and statistical analyses [Preprint]. PsyArXiv. https://
doi.org/10.31234/osf.io/c5278

Xie, H., Tao, J., McHugo, G. J., & Drake, R. E. (2013). Comparing statistical methods for analyzing
skewed longitudinal count data with many zeros: An example of smoking cessation. Journal of
Substance Abuse Treatment, 45(1), 99–108. doi:10.1016/j.jsat.2013.01.005

Zeng, J., Williams, S. M., Fletcher, D. J., Cameron, C. M., Broadbent, J. M., Shearer, D. M., &
Thomson, W. M. (2014). Reexamining the association between smoking and periodontitis in
the Dunedin study with an enhanced analytical approach. Journal of Periodontology, 85(10),
1390–1397. doi:10/f6mt6p

HEALTH PSYCHOLOGY AND BEHAVIORAL MEDICINE 455

https://doi.org/10.1097/BRS.0000000000001137
https://doi.org/10.1111/trf.12397
https://doi.org/10.1111/j.1537-2995.2011.03551.x
https://doi.org/10/bdkfrr
https://doi.org/10/bdkfrr
https://doi.org/10.1002/env.702
https://doi.org/10.1002/env.702
https://CRAN.R-project.org/package=haven
https://doi.org/10.31234/osf.io/c5278
https://doi.org/10.31234/osf.io/c5278
https://doi.org/10.1016/j.jsat.2013.01.005
https://doi.org/10/f6mt6p

	Abstract
	Count distributions
	Zero-inflation and hurdle models
	Example use of count distributions
	Poisson and negative binomial regression
	Software choice
	Ethics statement
	Analysis walk-through
	Example of highly skewed data
	Example with a large number of zeros

	Discussion
	Notes
	Acknowledgements
	Disclosure statement
	ORCID
	References

