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Abstract: Over the past decade, perovskite-based nanomaterials have gained notoriety within the
scientific community and have been used for a variety of viable applications. The unique structural
properties of these materials, namely good direct bandgap, low density of defects, large absorption
coefficient, high sensitivity, long charge carrier lifetime, good selectivity, acceptable stability at room
temperature, and good diffusion length have prompted researchers to explore their potential applica-
tions in photovoltaics, light-emitting devices, transistors, sensors, and other areas. Perovskite-based
devices have shown very excellent sensing performances to numerous chemical and biological com-
pounds in both solid and liquid mediums. When used in sensing devices, Perovskite nanomaterials
are for the most part able to detect O2, NO2, CO2, H2O, and other smaller molecules. This review
article looks at the use of lead-free halide perovskite materials for humidity sensing. A complete
description of the underlying mechanisms and charge transport characteristics that are necessary for a
thorough comprehension of the sensing performance will be provided. An overview of considerations
and potential recommendations for the creation of new lead-free perovskite nanostructure-based
sensors is presented.

Keywords: halide perovskite; lead-free; nanomaterials; humidity sensors; capacitive/resistive sensor;
fabrication technologies; real-time application

1. Introduction

The active materials of humidity sensors can be categorized into metal oxides, with
perovskites being a subpart [1], carbon materials [2], and polymer composite [3]. Among
metal oxides, compounds such as ZnO [4], Al2O3 [5], and In2O3 [6] have been the most
commonly used materials for humidity sensors, and they also fall within a class of com-
pounds named ceramics. The high thermal, chemical, and mechanical stability of these
ceramic compounds makes them suitable for humidity sensing applications. Additionally,
a recent study demonstrated that the introduction of conductive indium tin oxide and
dielectric aluminum oxide inks allows for a larger sensing range of humidity (5–95%)
and the potential of increasing the detection surface area [6]. Regarding carbon materials,
Graphene oxide (GO) and nanofibrillated cellulose (NFC) have also been extensively used
in humidity sensing applications. The advantages that GO and NFC offer are that they
both have a rather large specific area with hydrophilic groups (such as hydroxyl (-OH)
and carboxyl(-COOH)) allowing the presence of a significant number of active sites for
the absorption of water molecules. Despite this, the interesting physical properties offered
by both metal oxides and carbon materials do not make up for the inherent brittleness
and potential undesired morphological structures (inhomogeneous dispersal of pores with
inadequate porosity supplements). A possible way to deal with these physical anomalies is
through the addition of elastomers and polymers to help enhance their flexibility [7,8]. On
the other hand, polymers used in humidity sensors offer the advantage of having a con-
trolled structural formation, a simple solution processing, and can be prepared in batches;
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they show great potential in medicine, notably for tissue engineering [9] or respiration
monitoring [10].

In recent years, lead halide perovskites with a general formula of APbX3 (with A = Cs,
Rb, {CH3NH3}+(MA) or {HC9NH2)2}+(FA) and X = Cl, Br or I) have experienced an expo-
nential rise in their use as multifunctional materials with considerable attention placed
on their optoelectronic applications [11]. Due to their amazing optical absorption, low
exciton binding energy, low trap state density, extended charge carrier lifetime, and tunable
bandgap, lead halide perovskites have had significant success as active materials in devices
such as solar cells [12–15]. However, despite their remarkable properties, performance, and
various applications, there have been concerns over the toxicity and intrinsic instability
of lead halide perovskite materials [16,17]. The toxic lead content of the various devices
made from lead halide perovskites constitutes the key concern that hinders their large-scale
commercialization. An additional major issue is the chemical instability of the lead halide
perovskite structure (i.e., they are prone to decomposition into their original precursors)
when exposed to external factors such as heat, oxygen, moisture, and even light illumi-
nation [18]. Hence, there is a need for the development of new mitigation strategies for
designing lead-free, stable, and non-toxic perovskite materials.

A certain number of studies looking to remediate the issue of lead toxicity have been
done by researchers over the past few years. One way in which they were able to minimize
the incidence of lead poisoning or its presence was through the replacement of Pb atoms
with other suitable non-toxic, low-cost, and environmentally friendly divalent, trivalent,
or tetravalent metal cations (such as Sn2+, Ge2+, Sb3+ or Bi3+) [19–24]. However, while
lead-free perovskites have yet to achieve high competitive power conversion efficiencies
in solar cells, they on the other hand do show promise as a transducer material in sensor
systems [25].

Lead-free halide perovskites have also been chosen as possible material for use in
humidity sensors; this is one of their much lesser-known application, hence the need
to investigate these materials to further exploit their very promising capabilities in this
field. The environmental friendliness, stability, and adjustable optoelectronic capabilities of
lead-free double perovskite materials have made these types of perovskites very attractive
within the research community. Among them, Cs2AgBiBr6 is a double perovskite with
exceptional optoelectronic characteristics and higher environmental stability. Most double
perovskites have greater decomposition energies and stability than equivalent lead-based
hybrid perovskites, particularly with Ag-Bi. When compared to ABX3 perovskites, they
have a much larger excitation binding energy [26]. Humidity sensors with lead-free per-
ovskites as the sensing material are starting to draw a tremendous amount of interest,
primarily owing to their various possible applications in environmental control and in-
dustrial processing [27]. Their utilization could potentially be more frequent and diverse,
especially in intelligent systems used to regulate the weather forecast and measure soil
moisture levels during irrigation, and in medical instruments or civil engineering [27].
Various studies were done on lead-free halide perovskite materials and their mechanisms
for use in humidity sensors [28–31]. These studies focused on developing humidity sensing
materials with high sensitivity, short response/recovery time, great linearity, and mini-
mal hysteresis. Parameters such as sensitivity and response/recovery times are the key
parameters to consider when it comes to humidity sensing device evaluation and research
as a whole [32,33]. However, these sensors should maintain their long-term stability and
durability, especially in high-humidity conditions.

2. Lead-Free Halide Perovskites: Structure, Stability, and Characteristics

From the traditional structure of cubic symmetry, perovskites present a multitude of
crystalline variations [34], all depending on their composition, stoichiometry, and synthetic
conditions. Perovskites ceramics such as PbTiO3, CaTiO3, ZnSnO3, and NaTaO3 have
proven to be interesting materials for humidity sensing applications owing to their chemical,
thermal stability, and high sensitivity [27,35]. Their response and recovery times, on the
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other hand, are significantly longer (generally 10 s or more), which limits their application
in real-time humidity monitoring [36]. Particularly in the medical field, where monitoring
one’s breathing, for example, necessitates the application of short response and recovery
humidity sensors (e.g.: sensors in medical ventilators which help convey some warm air
and wet air). Among perovskite materials, lead-free halide perovskites have also shown
very promising humidity-sensing capabilities. State of the art studies demonstrated that
two main structures are good candidates for humidity sensor application: 3D structure-
based lead-free halide perovskites such as Cs2BX6 (B = Ag, Bi, Sn, Te, Ti, Pd and X = Br, Cl or
I) [37] or Cs2B′B′′ X6 (B′ = Sb3+, Bi3+; B′′ = Cu+, Ag+, Au+ and X2= Br, Cl or I)) [38] and low-
dimensional based perovskites such as A2InX5.H2O (A = K, Rb, Cs, and X = Br, Cl or I) [39]
have shown very promising properties which have sparked significant research interest.

2.1. Vacancy Ordered and Double Perovskite Compounds

The typical cesium double perovskites (Cs2B′B′′X6) [40–45] and the vacancy-ordered
cesium double perovskites (Cs2BX6) [46–50] have also been successfully prepared via
either a simple Pb2+ substitution from CsPbX3 with paired monovalent and trivalent
metal cations or Pb2+ substitution by tetravalent cations and one vacancy site. This newly
found perovskite family which has the chemical formula Cs2B′B′′X6, (B′ = Sb3+, Bi3+;
B′′ = Cu+, Ag+, Au+) may give a potential range of materials for sensors that are both
environmentally benign and stable [38] as well as other optoelectronic applications [51–54].
Hence, halide perovskites from the Cs2BX6 (or Cs2BX2′X4) and Cs2B′B′′X6 family containing
less toxic metals have been proposed notably with Cs2AgBiBr6, Cs2BiAgCl6, Cs2SnI6,
Cs2TeI6, Cs2TiBr6, Cs2PdBr6, etc. [47,51–56].

The lead halide perovskite (APbX3) typically has a three-dimensional network of
corner-sharing [PbX6]4 octahedra, with Pb2+ ions in the core and A+ ions occupying the
wide cavity between neighboring octahedra (Figure 1a) [57]. A heterovalent substitution is
used to replace the toxic lead atoms while keeping the three-dimensional perovskite con-
nectivity and its advantageous optoelectronic characteristics [58]. As indicated in Figure 1a,
the unit cell would normally be duplicated, and a pair of lead ions (Pb2+) is substituted by
combining one monovalent (B+) and one trivalent (B3+) ion (b). Double perovskite is the
resultant substance, having the formula A2B′B′′X6 and the cubic space group Fm3 m [59].
The geometrical tolerance factor (t) and specific octahedral factor (µ) are key parameters
to be taken into account while designing stable double perovskites [60]. The theoretical
parameters for a stable double perovskite structure are µ > 0.41 and 0.75 < t < 1.017, re-
spectively. The ion radius is also essential in the construction of a double perovskite. The
octahedral factor prevents bulkier anions, such as iodide, from being used in Cs2AgBiX6.
With Cl and Br in Cs2AgBiX6, being the only double perovskites structures that can be
formed [58]. Lead-free double perovskites possess several favorable properties, including
low defects, excellent optical absorption, suitable bandgap, and ultra-high stability.

Many candidates for this design have been synthesized successfully, including Cs2BiAgCl6,
Cs2BiAgBr6, Cs2SbAgCl6, and Cs2SbAgBr6 [61]. Because of its exceptional photoelectric
characteristics, Cs2BiAgBr6 has been hailed as a potential semiconducting material [62].
Cs2BiAgBr6 has a bandgap of 2.19 eV [54] and a carrier mobility of 0.3 cm2 V−1s−1 [63],
indicating that it is a potential lead-free optoelectronics material. As a result, it was initially
developed into a lead-free halide double perovskite solar cell with a PCE of more than
2.5 percent [64], as well as a stunning performance as an X-ray detector [65]. The excellent
environmental stability of Cs2BiAgBr6 is one of its unique characteristics [66]. Furthermore,
given the exceptional humidity-dependent electrical characteristics of Cs2BiAgBr6, the lead-
free Cs2BiAgBr6 perovskites’ potential as a humidity sensor should be studied even further.
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with permission from Ref. [67]. Copyright © 2022, American Chemical Society. and Ref. [37]. Cop-
yright ©2020, Royal Society of Chemistry. 
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fines the CsBX3 perovskite structure (Figure 1a, top). The B-X bond lengths in the Cs2BX6 
molecule are shorter as a result of this structural shift, which has been linked to its in-
creased chemical stability. Figure 1a—down) depicts the cubic and tetragonal crystal 
structures of A2BX6 (in this case Cs2BX6) compounds. Among the various Cs2BX6 com-
pounds, Cs2SnI6 recently discovered by Snaith et al. showed that in general compounds 
A2BX6 exhibit long-lived photoluminescence with an optical bandgap of about 1.6 eV and 
are extremely moisture resistant [68].  

Cs2PdBr6 and other members of the Cs2BX6 perovskite family are molecular salts ra-
ther than true perovskites. Cs2PdBr6 is a soluble perovskite that eliminates many of the 
limitations of the CsBX3 type of perovskite. Compounds such as Cs2PdBr6 possess a cubic 
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from the Pb substitution, the presence of non-toxic metals in these types of compounds 
also solves the environmental instability of perovskites. Cs2PdBr6 was used as a humidity 
sensor by Ye et al. for the detection of fruit waxing [37]. 

For the synthesis of Cs2B’B”X6 Compounds such as Cs2BiAgBr6 [38], it is done via the 
temperature lowering crystallization method. This technique involves the dissolution of 
solid BiBr3 and CsBr (1:2 mol %) into 12 mL of 48% HBr. The mixture is heated to 140 °C 
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Figure 1. (a) Crystal structures of ABX3 (top left) and A2BX6 (top right), and A2BX6 compound in
cubic phase (down left) and tetragonal phase (down right) of polymorphs viewed from various angles.
(b) XRD pattern of Cs2PdBr6 powders. (c) SEM image of Cs2PdBr6 powders. Reprinted/adapted with
permission from Ref. [67]. Copyright ©2022, American Chemical Society. and Ref. [37]. Copyright
©2020, Royal Society of Chemistry.

Cs2BX6 compounds on the other hand have proven to have enhanced stability in
ambient environments, correlating with their ability to host a metal such as Sn, Ge, etc.,
in their 4+ oxidation state which is much more stable. The BX6 octahedra of the Cs2BX6
structure are also found to be isolated, in contrast to the corner-sharing arrangement that
defines the CsBX3 perovskite structure (Figure 1a, top). The B-X bond lengths in the Cs2BX6
molecule are shorter as a result of this structural shift, which has been linked to its increased
chemical stability. Figure 1a—down) depicts the cubic and tetragonal crystal structures of
A2BX6 (in this case Cs2BX6) compounds. Among the various Cs2BX6 compounds, Cs2SnI6
recently discovered by Snaith et al. showed that in general compounds A2BX6 exhibit
long-lived photoluminescence with an optical bandgap of about 1.6 eV and are extremely
moisture resistant [68].

Cs2PdBr6 and other members of the Cs2BX6 perovskite family are molecular salts
rather than true perovskites. Cs2PdBr6 is a soluble perovskite that eliminates many of the
limitations of the CsBX3 type of perovskite. Compounds such as Cs2PdBr6 possess a cubic
shape (Figure 1b,c) with great symmetry and exceptional air and moisture stability. Aside
from the Pb substitution, the presence of non-toxic metals in these types of compounds
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also solves the environmental instability of perovskites. Cs2PdBr6 was used as a humidity
sensor by Ye et al. for the detection of fruit waxing [37].

For the synthesis of Cs2B′B′′X6 Compounds such as Cs2BiAgBr6 [38], it is done via the
temperature lowering crystallization method. This technique involves the dissolution of
solid BiBr3 and CsBr (1:2 mol %) into 12 mL of 48% HBr. The mixture is heated to 140 ◦C
and stirred on an oil bath magnetic mixer to speed up the dissolution process. Solid AgBr
(1 mol %) is then added to the solution. After that, the mixture is kept stirring on the oil bath
magnetic mixer to dissolve all the residual precipitation. The solution is held at 140 ◦C for
3 h, and then very slowly cooled to room temperature by 2 ◦C per hour. The red crystals are
obtained after about two days. Larger crystals are obtained by controlling the cooling rate
at 1 ◦C per hour. The synthesis of Cs2BX6 compounds such as Cs2PdBr6 [37] on the other
hand, is done via the preparation of a mixture of CsBr and PdBr2 (2:1 mol %) dissolved
in a mixture of HBr and DMSO. After the heating and stirring process, the precipitated
Cs2PdBr6 is filtered, washed, and left to dry, resulting in a high-quality crystalline powder
(see Figure 1c) and octahedral microcrystals with a 3 µm diameter. This perovskite material
is highly resistant to moisture, light, and heat which allows them to exhibit good long-term
structural stability.

2.2. A2InX5·H2O Perovskite Compounds

The low dimensional indium-based perovskite, which is considered to have superior
luminous capabilities in terms of quantum confinement, is another interesting prospect
for humidity sensing applications. However, very little research on the synthesis of the
A2InX5·H2O (A = K, Rb, Cs) has been published [69,70].

Taking the example of Cs2InBr5·H2O which is one of the most prevalent members of
the A2InX5·H2O perovskite family of materials, the single crystals of Cs2InBr5·H2O are
prepared by temperature-lowering crystallization method [39]. The single crystal obtained
from this method adopts an orthorhombic type of configuration and is isomorphous. The
In, O, and three Br atoms are positioned on the mirror plane. Figure 2a,b give a detailed
overview of the crystal structure of Cs2InBr5·H2O, in which the presence of Cs+ allows for
the InBr5O octahedron to be spatially isolated and form a 0D structure. A very important
aspect of this structure is that to completely exclude any form of interactions between
the InBr5O octahedrons, the two adjacent In ions are separated by a distance of 7.1 Å. As
opposed to the conventional PbBr6

4− lead halide octahedron which is made up of the same
type of anions, the InBr5O octahedron is composed of different atoms, that is to say, five
Br atoms along with an O atom coming from the H2O as seen in Figure 2c. The InBr5O
octahedron is structurally stabilized by the significant coordinating effect O and In have.

Additionally, these indium-based materials have been found to have coupled water
processes with reversible release/uptake and as a result of the switchable dual emission,
they make excellent PL water sensors in humidity and organic solvents (Figure 2c). They
are characterized by a unique 0D structure and exhibit broad emission (~695 nm) with a
high PLQY of 33%. These luminescent lead-free perovskite bulk materials may help pave
the way for metal halide perovskite to be used in water detection.

Novel A2InX5.H2O perovskite molecules such as Cs2InBr5·H2O are synthesized via
the temperature-lowering crystallization method [39]. This method allows for the slow
formation of the Cs2InBr5·H2O perovskite crystals, that are of the orthorhombic type of
configuration. As can be seen from the XRD pattern of the single crystal in Figure 2b, the
single-crystal data correlates with the powder X-ray diffraction (PXRD) pattern.
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from Ref. [39]. Copyright © 2022 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

2.3. Factors That Make Lead-Free Inorganic Perovskite Materials Suitable for Humidity Sensing

After several years of focused investigation, researchers have gained a good grasp of
the lead-free perovskite system. The substitution of the Pb element lies at the heart of re-
search toward lead-free perovskite materials. Through theoretical calculations, researchers
have ruled out several elements that can potentially replace Pb (Figure 3). Stability and
desired bandgap were two concurrent conditions for good candidates for lead-free per-
ovskites, according to Filip et al. [71]. They investigated the stability of potential lead-free
perovskites using randomly shifted structures (atom locations and lattice characteristics).
The crystal structure keeps the perovskite geometry following the relaxation of the dis-
rupted configurations, and the relativistic bandgap is less than 2.0 eV, making the stability
and required predicted bandgap two concurrent criteria. Cu, Ag, Bi, and Sb have proven to
be good enough to replace Pb in the formation of perovskites in later studies [54,62–65].
Using the first-principles computation, it has been demonstrated that it is also feasible
to employ valence state substitution to choose acceptable non-toxic elements [72]. We
may usually substitute the Pb element with homovalent elements like Sn, Ge, and Cu, or
heterovalent elements like Sb and Bi, as illustrated in Figure 3. The heterovalent replace-
ment can be separated into three subcategories to preserve charge neutrality, namely cation
splitting, mixed-valence anion, and ordered vacancy [72]. However, among these three
sub-categories, mixed-valence anion (double perovskites) and vacancy ordered perovskite
have proven to be the most stable.
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By dividing Pb into a mixture of monovalent and trivalent cations, a double perovskite
structure with the chemical formula A2B(I)B(III)X3 is formed. When a single valence cation
but two valence anions are introduced, the general chemical formula becomes AB(Ch, X)3,
where Ch represents a chalcogen element and X represents a halogen element. By creating
ordered vacancies, the perovskite may retain electrical neutrality. These substitutions are
further classified into two types: B(III) compounds with the formula A3B(III)X9 and B(IV)
compounds with the formula A2�B(IV)X6. Vacancies are indicated by the symbol � in this
case. The creation of vacancies, on the other hand, transforms the original 3D perovskite
structure into a low-dimensional crystal structure, lowering the electrical dimension and
thereby affecting optoelectronic performance [73].

Previous research has shown that tetravalent B(IV) replacements may be used to
replace Pb in lead halide perovskites. To accommodate these heterovalent replacements,
the chemical formula must be changed to A2BX6, which is obtained by removing half
of the B-site cations from the ABX3 perovskite structure. The A2BX6 perovskite form is
frequently referred to as the A2B�X6-type vacancy ordered double perovskite because of
the huge charge difference between them [67,74–76]. In the A2BX6 perovskite structure,
the B-site vacancies (designated as �) and the remaining B-site cations are arranged in
a rock salt pattern. The A2BX6 perovskite variations are essentially 0D non-perovskites
due to the lack of connection between the [BX6] octahedra, even though researchers would
want to name them, perovskites. Due to the isolated [BX6] octahedra in A2BX6 compounds,
the optoelectronic properties of A2BX6-type perovskites deviate from those of 3D ABX3
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(B = Pb, Sn, and Ge) perovskites. A2SnI6 (A = Cs, MA) [77,78] and Cs2TiBr6 [76,77] have
been explored for photovoltaic applications among the A2BX6 compounds [47,77–79].

Cs2BiAgBr6 and Cs2PdBr6 are both recently developed lead-free perovskite with good
photoelectric properties and high stability. Zhan Yiqiang et al. and Ye et al. both found that
these materials reported humidity-dependent electrical properties and good stability and
therefore giving them excellent humidity sensitivity [37,38]. By analyzing the humidity
response of the material at different temperatures and relative humidity levels, they were
able to establish that the adsorption effect of water molecules on the surface of these
perovskites is the main cause of the humidity-sensitive mechanism.

3. Applications
3.1. Humidity measurement

There are two types of humidity measurements, i.e., absolute humidity, and relative
humidity related to qualitative assessment. The proportion of vapor (moisture) in a unit
volume of air, independent of temperature, is referred to as absolute humidity. The propor-
tion of water vapor present in a unit volume of air is also referred to as relative humidity,
but this time in connection to the temperature of the air.

Most humidity sensors work by measuring the change in capacitance or resistance
of a certain conductive substance as a function of relative humidity. Several fundamental
parameters determine the good functioning of a humidity sensor. The proper operation of
a humidity sensor is determined by several essential parameters. The key parameters to
consider when it comes to evaluating the functioning of a humidity sensor are sensitivity,
accuracy, and response/recovery time.

3.2. Classification of Humidity Sensors

Humidity sensors are categorized into several classes of sensors. These groups include
electrical, mechanical, optical, and integrated sensors. Electrical sensors are types of
sensors whose functioning is based on impedance and capacitance (Table 1), strain and
mass-loading effects are at the heart of mechanical sensors’ operation. One of the more
common types of sensors is an optical sensor, which works by transmitting, reflecting, and
quenching electromagnetic waves. Lastly, integrated types of sensors comprise electronic
parts for linearization, calibration, transmission, etc. [80]. There are, however, many
drawbacks to the use of electrical and mechanical sensors. Distance between sensor
and signaling circuit for example is a considerable issue that hinders the functioning of
capacitive sensors. Exposure to certain external factors such as chemical vapors, oil mist,
etc., reduces the long-term stability of resistive sensors and very often causes premature
failure. These types of sensors tend to malfunction in the presence of water-soluble coatings.
Gases such as nitrogen, which have thermal properties, may disrupt the functioning of
thermal conductivity humidity sensors and therefore, negatively impact the selectivity of
the sensor [81].

Table 1. Types of humidity sensors.

Advantages Disadvantages Applications

Capacitive

• Near-linear output voltage
Long-term stability of results

• Helps to detect a wide range
of RH

• There is a short distance
between the sensor and
the signaling circuit.

• Refrigerators, Ovens,
and Dryers

• HVAC Systems
• Printers and Fax

Machines
• Automobiles
• Food
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Table 1. Cont.

Advantages Disadvantages Applications

Resistive

• Low cost
• Small size
• There can be a significant

distance between the sensor and
the signal circuit. Highly
interchangeable

• Chemical vapors and
other contaminants
make them
hypersensitive. When
using water-soluble
products, the output
measurements may vary.

• There is a variety of
industrial, household,
residential, as well as
commercial uses.

Thermal conductivity

• Appropriate for
high-temperature environments
and high corrosive situations

• Very durable
• When compared to other

varieties, it has a
higher resolution.

• Any gas with differing
thermal characteristics
than Nitrogen may alter
the reading
measurement.

• Pharmaceutical plants
• Ovens
• Clothes dryers and

drying machines
• Food dehydration
• Drying kilns

3.3. Humidity Sensing Mechanism of Perovskites

The general humidity sensing mechanism of ceramic oxides or perovskites as a whole
relies on the superficial water vapor absorption from chemisorption, physisorption, and
capillary condensation process as can be seen in Figure 4 [5,38]. As a result of the water
absorption occurring on the sensing material surface, electric properties change and affect,
consequently, the resistance or capacitance of the sensing material.
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In general, the adsorption of water molecules on the sensor surface during the hu-
midity sensing process is divided into different phases, chemisorption, and physisorp-
tion [82,83], as illustrated in Figure 4 with the example of the Cs2BiAgBr6 humidity sensor.
When there are no water molecules adsorbed on the film surface, the conductivity comes
from the carriers inside the p-type Cs2BiAgBr6 material, which may principally be the Ag
vacancy [62]. Water molecules are adsorbed by chemisorption at low humidity [84]. Mean-
while, according to Anderson and Parks’ proton conductivity model [84,85], in addition
to the water molecules chemisorbed in low RH areas, protons are released as a result of
the dissociation of water molecules. When the dissociated bare H+ protons are transported
to nearby water molecules, H3O+ are generated. In the presence of external electric fields,
the protons can then be moved from one site to another across energy barriers. As a result,
when the humidity level is low, the sensor’s electrical conductivity rises.

When exposed to a higher RH environment, water molecules can create several
physisorbed layers on the surface of the Cs2BiAgBr6 thin film (see Figure 4) [86]. Many
water molecules, in particular, have the potential to bind to form a liquid-like network of



Materials 2022, 15, 4146 10 of 23

hydrogen-bonded water molecule layers. In liquid water, hydration of H3O+ is energetically
favorable. The proton-transfer process follows the formula H2O + H3O+ = H3O+ + H2O,
the proton transfer between neighboring H2O molecules inside a continuous layer of water,
as stated by the Grotthuss ion transfer mechanism [85]. As a result of the free mobility of
protons, the resistance of the Cs2BiAgBr6 thin film humidity sensor decreases significantly.

Finally, with such water multilayer (chemisorbed and physisorbed) on the flat (or
porous) surface, these different processes can be involved in explaining the resistance or
capacitance changes. Under applied voltage, singly bonded water vapor molecules, for
example, become mobile and capable of forming dipoles and electrolyte layers, leading
to an enhanced dielectric constant and bulk conductivity. As a result, the surface water
protonation, as well as protonic conduction mechanisms, might cause a minor fluctuation
in conductivity with humidity adsorption.

In terms of shape, dense and planar surfaces allow water molecules to volatilize during
the desorption process, allowing for speedy recovery periods. Porous surfaces of humidity
sensing materials, on the other hand, trap condensed water molecules in pores, decelerating
the evaporation process and resulting in substantially longer recovery durations than
response times [87]. The superior performance of Cs2AgBiX6 and Cs2InBr5H2O (Table 2), in
particular, may be explained by the weaker atomic connection between the surface of these
perovskite and water molecules as compared to metal-oxide-ceramic humidity sensors,
since the hydrogen bond H-X is weaker than the H-O bond. As a result, the initial layer of
water molecules on the perovskite surface can readily volatilize.

3.4. Sensing Applications of Lead-Free Halide Perovskites

One of the most important ways in which scientists have been able to improve not just
the structural characteristics of perovskite materials, but also their optical characteristics,
has been to modify their compositional structure. These modifications have proven to have
an impact on the material’s performance and stability in device applications. The capacity
that perovskite materials have, to tune their bandgap by using mixed-cation or mixed-
halide compositions, enables their optical absorption to be expanded spanning a broader
spectrum of wavelengths [88,89]. The Goldschmidt-factor of perovskite crystals (ABX3) in
their stable state ranges from t = 0.8 to t = 1 [60,90,91]. When left in the ABX3 configuration,
inorganic perovskites based on Cesium exhibit low t-factor values, indicating poor phase
stability. As can be observed from Table 2, a variety of metal oxide ceramics, polymers, and
organic-inorganic and Cs-based inorganic halide perovskites that have exhibited improved
device performance and structural stability in humidity sensors will be reviewed in this
section of the work.

Table 2. Metal oxides, organic polymers, oxygenated salt, and halide perovskite among which are
used as sensing materials in resistive and capacitive humidity sensors.

Compounds Sensor
Type

Coating
Method Morphology Humidity

Range (%)

Response and
Recovery Time

(tres/trec) (s)
Reference

ITO/alumina
(4 cm2) Capacitive Screen-printing Thin film 11–95 21.4/4.8 [6]

LiCl/ZnO Capacitive Screen-printing Thin film 11–95 3/6 [92]

GO Capacitive Sputtering Thin film 11–97 15/2.5 [93]

NFC/GO/PDMS 1 Capacitive
Drop-coating

Freeze
drying

Thin Film 11–97 57/2 [8]

CaTiO3 Capacitive Solid-state step
sintering NPs 33–95 14.5/34.27 [94]

PMDS/PPDS 2 Resistive Drop casting Thin film 33–95 0.29/0.47 [10]
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Table 2. Cont.

Compounds Sensor
Type

Coating
Method Morphology Humidity

Range (%)

Response and
Recovery Time

(tres/trec) (s)
Reference

PSDA-b-PEG 3 Resistive Electropolymerization Thin film 0–95 120/180 [95]

CsPbBr3 Resistive Dip-coating Thin film 30–95 2 or 3/not
measured [96]

PbTiO3 Resistive Screen-printing NPs 80–95 ———— [97]

ZnSnO3 Resistive Spin-coating Thin film 11–97 7/16 [98]

NaTaO3 Resistive Doctor-blading Thin film 33–95 3/32 [99]

Cs2PdBr6 Resistive Wet method Single crystals 11–95 0.7/1.7 [37]

CH3NH3PbI0.2Cl2.8 Resistive Dip-coating Thin film 30–90 24/24 [100]

Cs2BiAgBr6 Resistive Spin-coating Thin film 5–75 1.78/0.45 [38]

Cs2InBr5·H2O PL crystallization
method Single crystals 30–80 30/not

measured [39]

1 NFC: Nanofibrillated cellulose; 1 PDMS: Polydimethylsiloxane; 2 PMDS: Poly(mercaptopropyl polyhedral
oligomeric silsesquioxane-1,4-divinylbenzene-sodium p-styrene sulfonate hydrate); 2 PPDS: Poly(pentaerythritol
tetra(3-mercaptopropionate)-1,4-divinylbenzene-sodium p-styrene sulfonate hydrate); 3 PSDA-b-PEG: a diblock
copolymer consisting of poly (diphenylamine sulfonic acid) and poly (ethylene glycol).

Humidity sensors typically use two methods to measure humidity. One of those is
resistive sensing, in which water molecules affect the bulk material’s resistance due to
chemisorption or physisorption. The second is capacitive sensing, in which the sensor’s
capacitance changes when it interacts with water vapor [101]. The type of material utilized
to make the sensor usually determines the sensing mechanism; as a result, selecting an
appropriate material is critical. After exposure to the numerous chemical species anticipated
to be present in the ambient, the material to be utilized for studies should have good
sensitivity throughout the whole range of RH with characteristics that are stable over
time and heat cycling. Humidity sensors are generally made from three different types
of materials. Ceramic metal oxides are the first type, with semiconducting perovskite
structures being a prominent variant [102]. Another common material that monitors
humidity is organic polymer sheets, which change the impedance of a conducting polymer
or function into a dielectric for capacitive sensors [27]. Finally, porous inorganic/organic
materials have also proven to be highly effective over the years [103–108].

The various perovskite materials utilized in the production of the capacitive and
resistive sensors reported in Table 2 were synthesized and deposited in diverse ways.
Solid state-step sintering, hot injection, solid-state reaction, hydrothermal technique, basic
precipitation reaction, spin-coating, and temperature lowering crystallization are some of
the synthetic methods used. The bonding and densification of particles by the application
of heat below a material’s melting point is known as solid-state sintering [109]. The hot
injection method involves the injection of a cold stock solution containing the precursors
into a hot solution comprising a surfactant and a high-boiling point sol-vent [110]. Chemical
decomposition processes, in which a combination of solid reactants is heated to form a
new solid composition and gases [111], are used in the solid-state reaction method. The
hydrothermal method entails heating and pressurizing an aqueous solution as a reaction
system in a particular closed reaction vessel to establish a high-temperature, high-pressure
reaction environment [112]. When dissolved chemicals react to generate one (or more) solid
products, this is known as a precipitation reaction. Spin coating is a technique for depositing
thin, homogeneous coatings onto flat surfaces [113]. Temperature lowering crystallization
is a method in which crystal nucleation and development are kinetically limited since
crystallization is thermodynamically favored at low temperatures [114]. The reported
results from the lead-free perovskite-based humidity sensors prepared using the previously
mentioned techniques demonstrated significantly lower values of response and recovery
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times than those of existing conventional sensors. The sensor demonstrated highly reliable,
stable, and reproducible results in humidity ranges going from 5 to 97% humidity. Based
on these factors alone, it could be concluded that these sensors, with further development,
could be extremely promising for the creation of a viable humidity sensor.

3.4.1. Resistive Type Humidity Sensors

Typically, noble precious metal electrodes are fabricated on a glass or ceramic substrate
via thick film printing techniques. Ref. [115] or thin-film deposition [116]. Most resistive sen-
sors are designed with interdigitated (interdigital) electrodes [117], with humidity-sensitive
films put between them so that the two electrodes are in contact. Electrolytic conductive
polymers like salts and acids can be used to coat the platform substrate [118,119], doped
ceramic, or perovskites sensing films [35,39,92,120]. Film-based sensors are sometimes
constructed by using printing techniques including screen or inkjet printing together with
coating techniques like chemical vapor deposition (CVD) methods, spin coating, dip coat-
ing, vacuum physical vapor deposition (PVD) techniques, or thermal evaporation and cold
sputtering [121]. In hybrid systems, the thick film formed layer is usually the bottom layer.
Electrochemical deposition is perhaps the most extensively employed deposition method
when a small area has to be covered with prepared polymers. Nonetheless, different deposi-
tion techniques, such as spray approaches, are used in a few studies [122] or a combination
of spray pyrolysis and other methods [123]. Figure 5 shows an experimental schematic of a
planar thick/thin film humidity sensor based on an interdigitated structure with a porous
membrane, with some of the key design features highlighted.
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The key active materials used for the fabrication of humidity sensors include metal ox-
ides, with perovskites being a subpart [1], carbon materials [2], and polymer composite [3].

Polymer-Based Resistive Humidity Sensors

Studies conducted on polymeric humidity sensors have progressed and been incorpo-
rated into the industry over the past four decades. The majority of these sensors are made
from porous polymer thin films [124] and employ metal oxide ceramic sensors as a model
for detecting. The functioning of the sensors is based on the physical and chemical water
absorption of the films, as well as condensation in the presence of capillary holes, which
causes a change to the physical and electrical properties of the transducer. Structural char-
acteristics dictate the extent of variations in bulk conductivity and dielectric permittivity.

Organic polymer thin film humidity sensors with their applications, on the other hand,
have a lower degree of satisfaction and significance when compared to metal-oxide thick
or thin-film ceramic sensors [125], yet, their production and development have progressed



Materials 2022, 15, 4146 13 of 23

considerably, especially in laboratory studies [126]. Resistive elements [127,128] based on
two main types of polyelectrolyte polymers [10] and copolymers [95], namely PMDS/PPDS
and PSDA-b-PEG have been designed to detect humidity.

Ceramic Based Resistive Humidity Sensors

Electroceramic materials having single/polycrystalline structures, as single species
or composites, could be great contenders for humidity sensing applications. The use of
these innovative materials with novel humidity sensing properties is being investigated to
overcome some of the limitations of many of the conventional materials, such as insufficient
sensitivity or selectivity, low catalytic grade, insufficiency of cavities, surface degradation
due to harsh contaminants in extreme conditions, and failure to operate in extremely dry
or moistened environments. The addition of suitable nanomaterials with variable particle
sizes/morphologies, hybridization of materials by replacement or doping of new atoms in
the lattice, and particle size reduction to sub-nano scales can all be used to overcome most
of the flaws.

With techniques such as thick film screen printing, porous ceramic or nanorod-based
ceramic humidity sensors have also been manufactured and produced [129,130], whereby
thin plasma or vacuum vapor films based on semiconducting metal oxides are formed onto
an insulating substrate, conductive and nonconductive pastes are coated onto an insulating
substrate [131,132], but also anodized films, which are typically used for aluminum oxide
(Al2O3) [133]. In this kind of thick film product, dopant agents have been introduced as
reaction catalysts to pre-react powders as part of the synthesis process to accelerate the
dissociation of water molecules into functional groups containing hydrogen and hydroxyl
ions. The film thickness is generally larger than 10 µm because of their semiconducting
nature, thin films made from vacuum vapor or plasma sputter deposited on various types
of substrates such as silicon will also act as resistive type devices, operating mostly on
ionic-electronic conduction. The film resistivity is mostly reduced by the surface hydroxyl
ions, which changes the impedance.

Ionic and electrical conduction sensors, as indicated previously, are two types of re-
sistive sensors. Surface chemisorption and physisorption are used by ionic conduction
types of humidity sensors to measure ambient air relative humidity, and they include
MgCr2O4-TiO2 [134], ZnCr2O4-LiZnVO4 [135], TiO2-K2Ti6O3 [136], (Al, Fe)2O4-TiO2 [137],
MgFe2O4 [5], ZnO, TiO2 [138], and some are of the nano nanoscale size. Nitta et al.
developed a MgCr2O4-TiO2 porous ceramic humidity sensor for microwave oven applica-
tions [139]. This material was powered by water molecules’ chemisorption and physisorp-
tion, as well as ionic protonic conduction.

Perovskites and Perovskite-Type Ceramics-Based Resistive Humidity Sensors

The research and analysis of perovskite films and bulk materials’ humidity sensing
behavior and morphological structure continue to generate unique preliminary and novel
findings [140–142]. The humidity sensing process of perovskite-type materials with an
empirical formula of ABX3 was reported to be based on electron transfer from water vapor
molecules. Gas sensors have long employed perovskite-type materials with a composition
of ABX3 (where X is a halogen or oxygen). [143], and for other applications as well. As can
be seen from Table 1, some perovskite-type materials, such as PbTiO3 [97], ZnSnO3 [98],
and NaTaO3 [99], were claimed to be utilized in the production of humidity sensors with
fast reaction times, long-term stability, and prospective uses.

Zhang et al. [99] were able to hydrothermally synthesize NaTaO3 nanocrystalline films
with great sensitivity, strong linearity with impedance values ranging in more than three
times the normal magnitude, limited hysteresis, and quick response time at 100 Hz, AC
1 V from 33 to 95 percent relative humidity. The complex impedance was also used to
investigate the humidity sensing mechanism. The findings suggested that NaTaO3 may
be used in humidity sensors. In the example of ZnSnO3, Bauskar et al. [98] conducted
research in which they were able to employ ZnSnO3 cubic crystallites produced using a
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hydrothermal technique to create a quick and stable humidity sensor. Linearity, rapid
response and recovery behavior, hysteresis within 3.5 percent, outstanding repeatability,
stability, and a wide range of operation (11–97% RH) were all excellent humidity sensing
properties of the sensor. Finally, Mahmoud et al. [97] were able to employ PbTiO3 powder
for moisture sensing measurements. The solid-state reaction approach was used to make
perovskite PbTiO3 (PT) powder and ceramics in a cost-effective manner. It made it possible
to create a perovskite tetragonal single phase. At an ambient temperature, however, pure
PbTiO3 did not demonstrate a satisfactory reaction to relative humidity.

Hu et al. [144] developed a new type of humidity-sensitive device based on CH3NH3PbI3-xClx
films and investigated its sensitivity in RH ranges of 32 to 97 percent with a recovery time
of 74 s. Xu et al. [145] have developed a CH3NH3PbBr3 humidity sensor with a quicker
response time (250 s) and quicker recovery (30–70 s) in a broader range of humidity de-
tection (7–98%). A CH3NH3PbI3-xClx-based humidity sensor with a reaction time of 21 s,
quicker than the quickest commonly available psychrometer on the market, was recently
produced by Ren et al. [100] with vertically oriented nanosheet arrays. Notwithstanding
the significant efforts to enhance the performance of perovskite-based humidity sensors,
humidity sensitive devices have proven to degrade over time due to the intrinsic chemical
and phase instability of organic/inorganic perovskites, which is linked to low formation
energy, high defect density, component separation, or phase separation [146–149]. Fur-
thermore, the toxicity of lead remains a significant barrier to their practical adoption. In
addition, structural variants devoid of Pb2+, such as double, triple and vacancy ordered
perovskites, have gotten a lot of interest because of their flexibility in photoelectric devices.
The produced metal-based halide perovskites such as (NH4)3Bi2I9 [150], Cs2AgBiBr6 [151],
and Cs3Bi2Br9 [151], Cs2PdBr6 [37] and Cs2InBr5·H2O [39] provide intriguing potentials in
a wide variety of optoelectronic applications due to the non-toxic, stability features of Bi3+

,
Pd2+, In+3 with a comparable electron configuration to Pb2+.

3.4.2. Capacitive Type Humidity Sensors

Capacitive humidity sensors are often designed with a layered structure with two
electrode interfaces, or as an interdigitated structure with comb electrodes, analogous to
resistive RH sensors, with the insulating polymer film sandwiched in between [101,127].
Several capacitive RH sensors have also been designed and fabricated employing this
platform, which uses printing deposition or coating processes to deposit organic polymer
thin films or porous ceramics such as alumina, perovskites, and porous silicon onto a
ceramic substrate [152,153]. In a parallel plate setup, two metal electrodes are put on the
substrate and coated with a thin film layer of a dielectric polymer or a porous ceramic metal
oxide. As an upper electrode, a small coating of evaporated gold is applied to the top of the
sensor surface to shield it from ambient pollution or dust and to assist in condensation. In
a sandwich design, the top porous electrode is always a water vapor permeable layer [152].
Humicape, a capacitive-type thin film humidity sensor developed by Vaisala in Finland,
has been extensively used in radiosonde applications and other humidity monitoring
devices [101]. The sensor design is shown in Figure 6.

Polymer-Based Capacitive Humidity Sensors

Polymeric capacitive humidity sensors have been widely employed in the industrial
and automation industries due to their simplicity in terms of coating, mass production, long-
term stability, and a wide variety of potential sensing polymers such as polyimides [154,155].
On-wafer silicon substrate parallel plate PI acid capacitor [156], capacitive sensors based
on interdigitated electrodes and heating elements [157], high-sensitivity MEMS-based
sensors [158], capacitive sensors that use doped ion-conducting polymers [159], and thin
film-based cross-linked polyimide capacitive-type humidity sensors [144,160] are just a
handful of good reports on capacitive sensors that have already been published.
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Variations in the sensing film dielectric constant as a result of water absorption have
a big impact on the capacitive RH sensors’ architecture, which alters the overall capaci-
tance of the system. Differences in capacitance can be used to detect humidity changes
because polymer dielectrics’ physical properties, such as permittivity, alter proportionally
with the high dipole moments of water molecules. At ambient temperature, capacitive
polymer sensors have a relative dielectric permittivity of roughly 5, whereas pure water
has a permittivity of about 80. The dielectric permittivity increases the magnitude of the
adsorption of water vapor by polymers (78.54), resulting in a sensitive linear change in
capacitance. Polyimides (PI) and cellulose acetates are examples of such polymers, with
relative dielectric permittivity values in the range from 3 to 6.

Based on established observations, the porosity of the humidity-sensitive polymer
sheet may be changed to boost sensor responses. In 1983, Delapierre et al. [108] proposed
the tensile-stressed fracture approach on thin films, which produces a large number of
fractures in the film and appeared to be a useful strategy at the time without reducing
conductivity or causing any damage. A porous chromium electrode was evaporated under
conditions that caused the sensitive film to be tensile strained, resulting in the emergence of
a significant number of fractures in the film, resulting in many orders of magnitude greater
water vapor permeability rates. A small capacitive sensor composed of multi-wall carbon
nanotubes (MWCNTs) may naturally generate porous nano-structures with greater sensing
resolution, according to Yeow et al. [161]. The enhanced performance was attributed to
the capillary condensation phenomenon. Dai et al. [10] investigated the responsiveness of
polyelectrolyte humidity sensors in research. The humidity-sensitive polyelectrolyte on the
substrate imprinted with interdigitated electrodes in situ was crosslinked using a thiol-ene
click reaction process. Capabilities for high water adsorption and desorption, high stability,
and repeatability were discovered in the polyelectrolyte humidity sensor. When altering
humidity between 33 percent and 95 percent, the sensor demonstrated an ultrafast reaction
and recovery (0.29 s/0.47 s), indicating that it might be used for breath monitoring and
touchless sensing.

Yang et al. [8] made a capacitive humidity sensor with excellent sensitivity built of
nano fibrillated cellulose (NFC), graphene oxide (GO), and polydimethylsiloxane (PDMS)
using a simple ultrasonic dispersion and freeze-drying procedure. NFC and GO with good
water molecule adherence were used as substrates to improve the capacitive responsiveness
of the humidity sensor. To avoid major fractures from occurring during the freeze-drying
process, anhydrous ethanol was added to the humidity sensor, culminating in a regular
network porous structure with a large number of conduction channels and active sites
for molecular water. Furthermore, the use of PDMS increased the porous structure’s
flexibility and stability. According to the findings, the humidity sensor with 30 wt% GO
showed high humidity sensitivity (6576.41 pF/ percent RH), incredible repeatability, low
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humidity hysteresis characteristic in 11–97 percent relative humidity (RH) at 25 ◦C and
short response/recovery times (57 s/2 s).

Bi et al. [93] developed a microscale capacitive humidity sensor that relied only on
graphene oxide (G-O) sheets as humidity sensing materials. If compared to conventional
capacitive humidity sensors, the G-O-based humidity sensor has a sensitivity of up to
37,800 percent, which is more than 10 times higher than the best conventional sensor for
15 percent to 95 percent relative humidity. This humidity sensor also has a fast reaction time
(less than 1/4 of a standard one) and recovery time (less than 1/2 of a standard one). As a
result, G-O has been identified as one of the best materials for manufacturing ultra-sensitive
humidity sensors for a variety of applications.

Ceramic-Based Capacitive Humidity Sensors

Aluminum oxide (Al2O3) with a microporous structure is the best material for these
types of sensors [162]. Al2O3 with a small pore radius is extremely prone to very low
humidity levels, according to the electron tunneling mechanism effect inside the compacted
immobile layers of water [162]. In humidity sensing applications, only the two phases Al2O3
(amorphous) and Al2O3 (corundum) are often used; however, the former is somewhat more
sensitive than the latter due to its higher porosity [27]. Anodization is a popular process
in preparing porous Al2O3 humidity sensors for their low cost and convenience of usage.
As per the electron tunneling mechanism effect within the condensed immobile layers of
water, Al2O3 with a tiny pore radius is particularly sensitive to very low humidity levels.
Aluminum oxide (Al2O3) with a porous structure is the most suited material for these
types of sensors. Only the two phases γ-Al2O3 (amorphous) and α-Al2O3 (corundum) are
typically utilized in humidity sensing applications; however, the former is more sensitive
than the latter due to its greater porosity [27]. Because of its low cost and ease of use,
anodization is a common step in the production of porous Al2O3 humidity sensors. McGhee
et al. [6] created a humidity detecting device utilizing sputter-coated indium–tin oxide
(ITO) and printed dielectric structures, which was tested for materials with sheet resistances
ranging from 10 to 50 /sq. The ITO/Polymer composite sensors were utilized to develop a
parallel-plate capacitive-based humidity sensor that can detect relative humidity in a test
range of 5% to 95%. Such sensors were reported to be extremely dependable, having a
linear response range of 5% to 75% relative humidity. The humidity sensors had an average
reaction time of 31.5 s and a recovery time of 31 s in capacitive mode.

Both resistance and capacitance changes may very well be measured in these materials
using a parallel plate or interdigitated structure, however, in this case, it is preferable to
measure capacitance fluctuations. The majority of these ceramics are deposited as thick
or thin films, then post-annealed to develop grains. Highly sensitive ZnO materials were
employed in the fabrication of humidity sensors, where they were doped with LiCl. Wang
et al. used carbon interdigital electrodes to screen-print pure ZnO nanofibers and LiCl-
doped ZnO composite fibers on ceramic substrates [92]. High humidity sensitivity, quick
reaction and recovery, minor hysteresis, great linearity, and good repeatability were all seen
in the LiCl-doped sample’s findings. The sensor’s resistance increased by more than four
orders of magnitude over the entire relative humidity (RH) range of 11 to 95 percent. The
sensor’s reaction and recovery times were measured to be around 3 and 6 s, respectively.
These findings demonstrated that this material might be a promising choice for making
high-performance humidity sensors once again.

On glass substrates, Gu et al. built ZnO/TiO2 core/shell nanorod capacitive thin-film
humidity sensors. Sol-gel processed anatase titanium oxide (TiO2) shells were placed over
hydrothermally generated zinc oxide (ZnO) nanorod cores. Per the morphological study,
the initial zinc oxide nanorods were coated by anatase titanium oxide shells as a second
layer. The ZnO/TiO2 nanocomposite (ZTNA) sensors have substantially better sensitivity
at 95 percent RH than separate ZnO and TiO2 sensors (31 and 1380 times greater than the
ZnO nanorod arrays and TiO2 thin films, respectively). Moreover, at ambient temperature,
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the capacitance of the core/shell arrays varied from 101 to 106 pF throughout the whole
humidity range of 11 to 95 percent RH [163].

4. Conclusions and Future Perspectives

The design configurations of impedance- (resistive) and capacitive-based humidity
sensors that have proven to be the best suited and most prevalent in advanced applications
such as laboratory research or automated industries were examined. An interesting fact to
note was that resistive sensors operate on the same principle as capacitive sensors, measur-
ing electrical changes to provide a relative humidity value. Although resistive sensors use
hygroscopic materials similar to capacitive sensors, the humidity measurement processes
in these systems differ. The distinction made was that the resistance change in the material
is measured instead of the capacitance, and capacitive measurement, which is based on
electrical capacitance, is used by a capacitive humidity sensor. In comparison to resistive
measurements, capacitive measurements are widely utilized in the literature because they
are more resilient and stable with temperature and humidity changes. Although both
capacitive and resistive sensors have the same goal, which is that of measuring humidity,
their methodologies are different. Capacitive sensors have also proven to be more accurate
and stable than resistive sensors while giving reproducible findings, making them more
ideal for medical applications where precision is critical. However, they are more expensive
than resistive sensors. The less expensive resistive sensors are more commonly utilized in
circumstances where frequent measurements are required but precision is not required.

The success of these configurations moreover is linked to their ability to address
common demands such as streamlined construction, free selection of sensing materials
from several accessible kinds, cost, circuit adaptability, ease of manufacture, and mea-
surement setup. Due to advantages such as low cost, proper gasketing, design flexibility,
and quick deposition rate, film-based humidity sensors are more frequently employed.
Semiconducting metal oxide and metal oxide/polymer-based sensors, which are primarily
manufactured using thick film and thin film deposition techniques, stand out among the
various types of humidity sensors due to their wide range of sensitive element options,
post-processing capabilities, and superior response characteristics.

Exploration of the synthesis and use of lead-free metal halide perovskites, such as
Cs2BX6 or Cs2B′′B′X6 and Cs2InX5.H2O, should be prioritized as a viable alternative to the
endless difficulties that plagued other metal halides and oxides perovskites with lower sta-
bilities and more efficient performances. Their nanoscale qualities may boost performance,
having a significant impact on accuracy, reliability, and cost. In the future, nanocrys-
talline lead-free perovskite composites with ceramics, polymers, or ceramics/polymers,
which are among the most promising materials for humidity sensors, may yield significant
improvements in terms of humidity sensing performances.
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