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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the motor nervous system. Despite the mechanism
underlying motor neuron death is not yet clarified, multiple pathogenic processes have been proposed to account for ALS.
Among these, inflammatory/immune responses have recently gained particular interest, although there are conflicting reports
on the role of these processes in ALS pathogenesis and treatment. This apparent discrepancy may be due to the absence of an
effective stratification of ALS patients into subgroups with markedly different clinical, biological, and molecular features. Our
research group recently described genome-wide characterization of motor cortex samples from sporadic ALS (SALS) patients,
revealing the existence of molecular and functional heterogeneity in SALS. Here, we reexamine data coming from our previous
work, focusing on transcriptomic changes of inflammatory-related genes, in order to investigate their potential contribution in
ALS. A total of 1573 inflammatory genes were identified as differentially expressed between SALS patients and controls,
characterizing distinct topological pathways and networks, suggestive of specific inflammatory molecular signatures for different
patient subgroups. Besides providing promising insights into the intricate relationship between inflammation and ALS, this
paper represents a starting point for the rationale design and development of novel and more effective diagnostic and
therapeutic applications.

1. Introduction

Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease,
is a fatal neurodegenerative disease characterized by progres-
sive and relatively selective degeneration of the upper and
lower motor neurons in the brainstem, spinal cord, and
motor cortex, resulting in paralysis and death usually within
3–5 years of diagnosis [1]. With an estimated incidence of
about 1–3 cases per 100,000 person-years and a projected
lifetime risk of 1/2000, ALS is considered one of the most
common motor neuron diseases [2]. ALS is essentially a
sporadic disorder (SALS), with 90–95% of the cases origi-
nating from an unknown cause, likely resulting from a
complex gene-gene and gene-environment interplay [3–6].
The remaining 5–10% of the cases are considered familial
(FALS) generally following an autosomal dominant inheri-
tance pattern [7] due to mutations in a number of seemingly

disparate genes, including SOD1 [8], ALS2 [9], SETX [10, 11],
SPG11 [12], FUS [13, 14], VAPB [15], ANG [16, 17],
TARDBP [18–20], FIG4 [21], OPTN [22], ATXN2 [23],
and C9ORF72 [24, 25]. Interestingly, mutations in many of
these genes were found in both forms, suggesting common
disease mechanisms and possibly common triggers [26].

Although the pathophysiological processes and precise
genetic causes underlying motor neuron death are still
elusive, genomic profiling and expression studies have
provided invaluable insights into the molecular mechanisms
involved in ALS, supporting a “multiple-hit” hypothesis of
neurodegeneration [27–35]. In this regard, a number of
converging disease mechanisms are known, including
oxidative damage, defective protein misfolding, mitochon-
drial degeneration, impaired axonal transport, neurotrophic
factor deficits, apoptosis, aberrant RNA/DNA regulation,
and neuroinflammation [36, 37].
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While ALS is not primarily considered an autoimmune
or immunodeficiency disease, mounting evidence suggests
that immune/inflammatory abnormalities and nonneuronal
cells play an important role in the disease onset and progres-
sion. Chronically activated microglia and astrocytes as well as
infiltrating immune cells represent prominent pathological
findings in affected CNS areas of patients and animal models
of ALS [38]. In addition, numerous anti- and proinflamma-
tory cytokines and growth factors, including VEGF, IFN-γ,
TNF-α, IL-1β, IL-6, and IL-10, seem to play a role in the
neuropathological changes that characterize ALS. Nonethe-
less, it remains to be clarified whether neuroinflammation
is a consequence of motor neuron injury or actively contrib-
utes to the development and progression of the disease.
Indeed, several studies have highlighted the existence of the
dual nature of inflammation in ALS, both neuroprotective
and neurotoxic, that appears to be mainly dependent on the
stage of disease progression. In particular, during periods of
slow disease progression, the immune system exerts a pro-
tective action by secreting anti-inflammatory factors that
rescue and repair damaged tissue. As the disease and
motor neuron injury accelerate, a shift occurs from the
beneficial immune response to a strong proinflammatory
and neurotoxic state [39]. As a consequence, inflammatory
mediators have received great attention as potential targets
for neuroprotection in ALS, and multiple anti-inflammatory
drugs (i.e., minocycline, thalidomide, celecoxib, and pioglita-
zone) have shown promising results in delaying disease
severity in ALS animal models. Unfortunately, none of these
compounds have been proved to be effective in clinical
testing for ALS [40]. Reasons responsible for this failure
include not only the lack of knowledge on the multiple
inflammation-related events underlying ALS but also
improper planning of clinical trial that does not take clinical,
biological, and molecular heterogeneity of the disease into
account [41]. Therefore, developing new targeted and strati-
fied treatments that, alone or in combinations, may cope with
the multiple inflammatory pathways, continue to be a
research priority.

In our previous work, for the first time, we character-
ized unrecognized molecular heterogeneity in SALS,
revealing new clues to the molecular pathogenesis and
enabling the identification of novel potential predictive
biomarkers and therapeutic targets that were not put in
evidence by considering SALS pathology as a single entity
[42, 43]. In particular, using a computational analysis of
whole genome expression profiles of 41 motor cortex
samples of control (10) and SALS patients (31), we were
able to differentiate SALS pathology from controls and
clearly distinguish the two SALS subtypes (SALS1 and
SALS2), each associated with differentially expressed genes
and pathways.

In the present paper, we have reexamined our gene
expression data and focused on genes and pathways that
are related to inflammation. The overall goal was to assess
the potential involvement of inflammatory/immunological
processes in two molecularly distinct SALS patient sub-
groups, providing a rationale for the specific use of potential
cluster-specific biomarkers and therapeutic targets.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. The transcriptomic
data were downloaded from the ArrayExpress repository
(http://www.ebi.ac.uk/arrayexpress/), with accession number
E-MTAB-2325 [42]. This dataset includes transcriptional
profiles of 41 postmortemmotor cortex samples (31 of which
were from patients with SALS and 10 were from control
individuals) hybridized on theWhole Human Genome Oligo
Expression Microarrays 4x44K (Agilent Technologies). The
detailed information regarding clinical, genetic, and pheno-
typic data of patient samples has been previously described
[42]. The original gene expression dataset was normalized
to the 50th percentile, followed by the median baseline of
all samples using GeneSpring GX v13.1 (Agilent Technolo-
gies, Italy). The resulting expression values were thresholded
to 1, log2 transformed, and fold changes (FCs) were calcu-
lated between the SALS patients and individual controls.
Probes not corresponding to an Entrez ID were removed.
In cases where several probes corresponded to one Entrez
ID, the probe showing the highest variance over all samples
was chosen for further analysis.

2.2. Gene List Filtering and Differential Expression Analysis.
The expression data were filtered to include only probes
targeting genes involved in neuroinflammation and immune
response. In particular, a set of inflammatory genes was
generated using inflammatory/immunology-related query
keywords in the Gene Ontology (GO) database (http://
www.geneontology.org/) [44]. Overall, 2637 genes were
selected from the Immune system process (GO: 0002376) bio-
logical process term. This initial gene list was subjected to
fold-change-based filtering and statistical analysis by using
GeneSpring GX v13.1 software package (Agilent Technolo-
gies). In particular, we performed a one-way analysis of
variance (ANOVA) followed by Tukey’s post hoc test to
identify differentially expressed genes (DEGs) between the
two predefined groups of SALS patients relative to controls.
Furthermore, the Benjamini-Hochberg false discovery rate
(FDR) correction procedure was used to minimize false-
positive cases. An absolute FC value greater than 1.5 and an
adjusted P value of < 0.05 were used as criteria for defining a
set of deregulated candidate genes for further exploration.

2.3. Construction and Topological Analysis of Protein-Protein
Interaction Network. To better clarify the interaction between
immune/inflammatory DEGs and emphasize their potential
contribution to ALS pathology, two extended protein-
protein interaction (PPI) networks were built by using
STRING database v.10.0 and visualized with the Cytoscape
v.3.4.0 software [45]. In particular, these extended networks
were constructed by using DEGs in both SALS patient
subgroups as seed molecules and setting a high level of
confidence between molecular interactions (high confidence
score of at least 0.8) and a maximum number of interactions
to 100. In both networks, nodes correspond to proteins
encoded by DEGs in SALS, whereas edges represent the
number of interactions between proteins. All interactions in
both networks were unweighted and undirected. Once
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extended networks were constructed, duplicated edges and
self-loops were removed. Subsequently, in a prefilter process,
we considered only nodes (genes) that were annotated with a
high confidence score to the central nervous system by using
the TISSUES web resource [46].

In order to identify the “hub” nodes, a network topology
analysis was performed by using the Cytoscape plug-in Net-
workAnalyzer based on topological parameters [47]. Node
(gene) centrality in both networks was also investigated
through the evaluation of “node degree.” This topological
parameter indicates the relevance of a gene (node) as func-
tionally capable of holding together the communicating
nodes in a biological network. Nodes with high degree (hub
genes) represented the genes having important biological
functions: the higher the value, the higher the relevance of
the gene in connecting regulatory molecules. The final PPI
networks were visualized based on node degree and edge
betweenness parameters. The relative importance of the
genes in each network was determined based on the node
centrality measure setting the topological parameter “node
degree” ≥10. Likewise, values of edge betweenness were
mapped with the edge size: high values of this parameter
correspond to a large edge size.

2.4. Functional Analysis and Selection of the Candidate
Pathways. To investigate the relevance of inflammatory-
related DEGs in determining specific molecular signatures
in SALS pathology, pathway analysis was performed with
Ingenuity Pathway Analysis (IPA®; http://www.ingenuity.
com/) and GeneGO MetaCore™ [48]. Both these programs
identify significantly enriched biological pathways and
signaling cascades that are associated with a given list of
genes by calculating the hypergeometric distribution. In
accordance with the purpose of this study, we focused on

predefined the “canonical pathways” commonly associated
with immune response/inflammation processes. Finally,
immune/inflammatory pathways with a P value of < 0.05
and a fold change of >1.5 were screened and analyzed.

In addition, to reduce potential errors due to the use of
preselected gene sets [49] and to increase the strength of
the functional analysis, we also performed a “control” path-
way enrichment analysis both on the entire list of differen-
tially expressed genes in SALS patients versus controls, both
without the assignment of SALS patients into the two cluster
groups (see Supplementary Tables 1 and 2 available online at
https://doi.org/10.1155/2017/7070469).

3. Results

3.1. Identification of Differentially Expressed Inflammatory
Genes. Our results indicate that 1573 out of 2637 inflamma-
tion genes (probes) were differentially expressed between
SALS patients and controls. In particular, a total of 390
immune/inflammation genes were found to be significantly
differentially expressed in SALS1 (302 upregulated and 88
downregulated), while SALS2 patients showed significant
changes of expression in 1255 genes (365 upregulated and
890 downregulated) (Figure 1; Supplementary Tables 3–5).
Although some of these genes (72) were differentially
expressed in both pairwise comparisons, the majority of
them were cluster-specific (Figure 1).

3.2. Network Analysis and Characterization of Hub Genes. To
gain further insights into the functional significance of
inflammatory-related DEGs in SALS and prioritize putative
genetic markers that might increase the susceptibility of
patients affected by SALS, we mapped these genes into PPI
networks for each SALS subgroup. Initially, the extended
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Figure 1: Venn diagrams of the total number of upregulated and downregulated inflammatory genes in the genes of SALS1 and SALS2 versus
controls. Detailed information for the lists of genes differentially expressed in SALS1 and SALS2 is provided in Supplementary Tables 3–5.
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PPI network for SALS1 contained 448 gene signatures
(nodes) with 25,512 interactions (edges), while the extended
PPI network associated with SALS2 had 1123 nodes and 8667
interactions. Identifying hub genes as the DEGs with the
highest node degree and ranking them for importance based
on the node centrality measure reduced the SALS1-PPI
network to 126 nodes connected through 1160 edges (with
high values of betweenness) and the SALS2-PPI network to
327 nodes connected through 4867 edges (Figure 2 and
Supplementary Tables 6 and 7). The information corre-
sponding to the centralities of the top 50 ranked genes in
both networks is represented in Figure 2.

Integrated analysis revealed that the two SALS-PPI
networks shared similar genetic nodes and interactions.
Although both, driving regulators and essential genes, are
profoundly different between SALS patient subgroups, they
are complementary and converge to similar immune/inflam-
matory signaling mechanisms within their respective sub-
types (Figure 2). In particular, it was observed that UBC
was the top-ranked gene within PPI networks for both SALS1
and SALS2 patients, with node degrees of 157 and 326,
respectively, and thus constituted a superhub gene with a
wide variety of cooperative partners. These data indicated
that UBC, together with other key nodes (hubs) displaying
the highest connectivity in both networks, such as AKT1
and TP53, may play a critical role in activating the neuroin-
flammatory state in SALS patients and thus may represent
potential genetic markers with direct or indirect involvement
in ALS pathogenesis.

3.3. Functional Enrichment Analysis of Inflammatory
DEGs in SALS Patient Subgroups. In order to better char-
acterize specific inflammatory molecular signatures for

SALS, we investigated whether DE inflammatory genes
in SALS patients were enriched for certain specific biological
functions and pathways, by using functional ontologies
represented in IPA and MetaCore repositories (see Materials
and Methods).

Comparison of both SALS patient subtypes with the total
control group revealed a total of 585 significantly deregulated
pathways, the majority of which were deregulated in the
opposite way in the two SALS subtypes (Figure 3 and
Supplementary Table 8). In particular, SALS1 was mainly
characterized by increased expression of genes involved in
the inflammatory response, including complement system
and antigen presentation pathway (P value = 1.082E−14),
chemokines and cell adhesion (P value = 2.649E−07), and
cytoskeletal remodeling (P value = 9.824E−07), as well as a
reduced expression of genes associated with the apoptotic
signaling (P value = 1.145E−02). SALS2 patients, instead,
showed an overall downregulation of inflammatory-
related pathways, such as HMGB1/RAGE signaling pathway
(P value = 1.203E−13) and B cell antigen receptor pathway
(P value = 5.132E−13) as well as alteration of oxidative
stress (P value = 2.133E−13). A detailed description of the
most significant variations implicated in the inflammatory
and immunological pathways affected in SALS is provided
in the Supplementary Information section (Supplementary
Discussion and Supplementary Figures 1–4).

4. Discussion

Inflammation and abnormal or hyperactive immune
responses play a pivotal role in the pathogenesis and pro-
gression of several neurodegenerative diseases, including
ALS. While the molecular basis of neuroinflammation in
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Figure 2: SALS-related PPI networks. (a) Graphical representation of the PPI network from inflammatory DEGs in SALS1. Nodes having a
high degree are the ones that formmost interactions with other nodes and were displayed as a big circle and dark colors. The right panel shows
the top 50 nodes in PPI network order by descending degree value. (b) Graphical representation of the PPI network from inflammatory DEGs
in SALS2. Nodes having a high degree are the ones that form most interactions with other nodes and were displayed as a big circle and dark
colors. The right panel shows the top 50 nodes in PPI network order by descending degree value.
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ALS are being defined, the tools and indicators for early
diagnosis and effective treatment options remain incom-
pletely characterized as well as their complex interplay
within the major signaling cascades occurring during
neuroinflammatory processes. Multiple anti-inflammatory
compounds have been evaluated preclinically for their
therapeutic potential in ALS showing promising results,
but none of these have been proved to be effective in
patients [40]. This failure may be mainly due to the
absence of an effective stratification of ALS patients into
subgroups with markedly different clinical, biological, and
molecular features [41].

In the current study, we reanalyzed our previous dataset
(E-MTAB-2325), consisting of whole genome expression
profiles of 41 motor cortex samples from SALS and control
patients, focusing on transcriptomic changes of multiple
genes involved in various aspects of inflammation and
immune responses, in order to investigate their potential
contribution in SALS etiopathogenesis.

Although the use of postmortem brain tissues impedes
deeper understanding of the pathophysiological processes
ongoing in the diseased brain, they represent a valuable
resource for human studies, providing valuable informa-
tion that cannot be obtained by using other approaches
on a living patient.

A total of 1573 inflammatory genes were differentially
expressed between SALS patients and controls, the majority
of which were cluster-specific, suggestive of a great diver-
gence of the two SALS subgroups at the molecular level
(Figure 1).

Components of inflammatory/immune responses are
very numerous and interact with each other across multiple
functional pathways, impeding the identification of genetic
risk factors that effectively contribute to the neuroinflamma-
tory process in ALS. To prioritize the identification of key
molecular candidates that could be used for the discovery
of therapeutic targets and diagnostic biomarkers, we per-
formed a network analysis on shortlists of inflammatory
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Figure 3: Functional enrichment analysis of inflammatory DEGs in SALS patients. (a) Representation of the top 20 most significantly
enriched (P value < 0.05) canonical pathway maps associated with the neuroinflammatory DEGs genes in both SALS patient subgroups
when compared to controls. A histogram of statistical significance (−log P value) is shown: the list is arranged in descending order with
the most significant pathways at the top. The analysis was performed using the MetaCore pathway analysis suite. (b) The heat map from
IPA of canonical signaling pathways (rows) most significantly enriched in neuroinflammatory genes is differentially expressed in the two
SALS patient subgroups (columns). The score magnitudes are shown in a gradient color, from light to bright orange, for induced, and
from light to bright blue, for suppressed pathway activity. Detailed information about pathway map enrichment analysis is described in
Supplementary Table 8.
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DEGs in SALS patients (Figure 2). This machine learning-
based approach revealed that, although profoundly different,
the two subtype-specific SALS networks were complementary
and converged to similar immune/inflammatory signaling
mechanisms and driving genes, suggesting that in each SALS
subtype, there is a “deterministic” path for aberrant immune/
inflammatory responses driven by genomic alterations, and
the networks could, therefore, provide “predictable” power
for selective genomic alterations. In particular, UBC was
identified as a superhub gene within both SALS-related PPI
networks (Figures 2(a) and 2(b)). These findings are in line
with the results of a previous network-based genomic analy-
sis on peripheral motor nerves of SALS patients, which
revealed a significant overrepresentation of pathways related
to ubiquitin-protein ligase activity and identified UBC as the
most relevant hub gene [50]. The functional significance and
contribution of ubiquitin in ALS pathology are also sup-
ported by the presence of low expression levels and cytoplas-
mic inclusions of this protein in the spinal cord motor
neurons of ALS patients, supporting its potential role as a
biomarker for the disease [51–54]. Despite pharmacologic
strategies, aimed to increase or replace the specific lost ubiq-
uitin activity, that have been demonstrated to be effective in
preventing abnormal protein accumulation in several human
disorders, the clinical use of these treatments has proved to
be particularly challenging due to their numerous potential
off-target effects [55]. Therefore, there is a need to design
therapies that selectively interfere with various components
of the ubiquitin-proteasome system, offering new therapeutic
perspectives for the treatment of various neurological dis-
eases, including ALS.

To investigate the combined effects of multiple immune/
inflammation dysregulations, we have searched for canonical
signaling pathways significantly enriched in inflammatory
DEGs and mapped them into IPA andMetaCore repositories
of signaling pathways (Figures 3(a) and 3(b)). Functional
classification of these DEGs showed that antigen processing
and presentation, complement system, and reactive oxygen
species production are the most significant immune/
inflammation pathways deregulated in SALS, suggesting
that these processes play a crucial role in the progressive
degeneration and loss of motor neurons (Figure 3(a)).
Scientific evidence about a pathogenic role for most of these
pathways is already available in the literature [41, 56–60];
however, the contribution of the single inflammatory cascade
to the distinct SALS subtypes still needs to be clarified. Nota-
bly, the majority of the identified signaling cascades were
deregulated in the opposite way in the two SALS subtypes,
supporting the existence of a specific molecular signature
associated with the immune/inflammatory status in SALS
patients (Figure 3(b)). In particular, SALS1 patients seem
to be associated with an increased inflammatory pheno-
type while SALS2 patients show reduced expression levels
in genes involved in immune response and inflammatory
signaling pathways.

Interestingly, the analysis of deregulated inflammatory
cascades reveals the involvement of a variety of genes that
have been implicated, up to date, in the causation and/or sus-
ceptibility of ALS (Supplementary Tables 3 and 4). Among

these, one of the striking observations is the differential
expression of numerous ALS-linked genes (i.e., ANG,
DCTN1, SQSTM1, and TBK1) involved in autophagy, a
highly conserved and tightly regulated cellular self-
degradative process whose alteration leads to an impaired
clearance of toxic protein aggregates and/or of damaged
mitochondria that represent some of the best characterized
hallmarks of both SALS and FALS [61]. In particular,
significantly reduced mRNA levels of TBK1, the most
recently identified ALS gene, were observed in SALS2,
confirming that reduced activity of this enzyme may
result in impaired autophagy and contribute to the accu-
mulation of protein aggregates in motor neurons and
ALS pathology [62]. Given the implication that TBK1
plays a key role in ALS and the observation that some
autophagy inducers, such as rapamycin, have been
already shown to be promising ALS drug candidates, it
seems worthwhile to explore TBK1 as a more defined
target as well as envisage the use of its pharmacological
activators for developing novel and targeted therapeutics
for patients.

Other than confirming the role of previously ALS-linked
genes, our analysis also identified novel potential candidate
genes that deserve further investigation and validation for
better establishing their role in ALS pathology. Among
these, we distinguish the deregulated expression of a series
of molecules implicated in antigen generation and/or
trimming, sustaining the involvement of a dysfunction in
protein turnover and ubiquitin-proteasome pathways in
ALS (Supplementary Figure 1). In particular, overexpression
of IMPAS-1 in SALS patients is supported by several studies
that correlate high levels of this protease with the aberrant
autophagic activity associated with numerous neurodegen-
erative diseases [63]. All together, these results suggest that
deciphering the complex actions of altered protein recy-
cling and degradation machinery networks may help to
further elucidate the neuroinflammatory processes occur-
ring in ALS.

5. Conclusion

Overall, our findings not only provide interesting insights
into the role of inflammatory/immune responses in the
pathogenesis of SALS but also underline the existence of
molecular heterogeneity in the inflammatory status of differ-
ent subtypes of SALS patients, providing a rationale for the
specific use of potential cluster-specific biomarkers and ther-
apeutic targets. However, it is necessary to take into consider-
ation that deregulation of identified candidate genes in
human postmortem tissues may be due to reactive changes
that occur in the final stages of disease, impeding to distin-
guish causative factors from secondary degenerative changes
ongoing in the diseased brain. Therefore, future functional
and clinical investigation will be necessary to assess the
potential role of these candidates in affecting the origins
and/or progression of the disease, opening the way to the
development of novel and more effective diagnostic, prog-
nostic, and therapeutic applications.
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