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Abstract
Background: Aberrant expression of decoy receptor 3 (DcR3) is considered to be a
diagnostic and therapeutic target for human cancers. The aim of this study was to assess
DcR3 as a target of the anticancer effects of triptolide (TPL) in preclinical patient-
derived tumor xenograft (PDTX) models of oral squamous cell carcinoma (OSCC).
Methods: The expression of DcR3 was evaluated through immunohistochemistry,
and correlations were examined using clinical variables. The effects of TPL on the
expression of DcR3 and cell proliferation were investigated in OSCC cell lines and
in PDTX models.
Results: DcR3 overexpression was associated with overall survival and tumor size.
TPL significantly decreased tumor growth. Moreover, TPL inhibited the expression
of metastasis-associated protein 1 (MTA1), a transcription factor for DcR3 in vivo,
in vitro, and in PDTX models.
Conclusion: TPL appeared to exert anticancer effects by repressing DcR3 and
MTA1 in vitro, in vivo, and in PDTX models.
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1 | INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the most common
malignant tumor of the head and neck; it is the eighth most
prevalent malignancy worldwide and the third most common
cancer in developing countries.1 Furthermore, oral cancer
causes disfigurement and disability, and has a painful prog-
nosis.2,3 Concurrent chemoradiotherapy has demonstrated
efficacy in organ preservation but limited improvement in
survival rates in patients with head and neck cancer.
Therefore, the discovery of potential therapeutic drugs for
treating advanced oral cancer is crucial.

Decoy receptor 3 (DcR3 or TNFRSF6B) is a soluble
receptor belonging to the tumor necrosis factor receptor
superfamily (TNFRSF) that binds competitively to other
TNFSF members, such as Fas ligand (FasL/TNFSF6/
CD95L),4 LIGHT (TNFSF14),5 and TNF-like molecule 1A
(TL1A/TNFSF15).6 Upregulation of DcR3 was associated
with poor prognosis in several malignancies7–16 due to its
effect on angiogenesis and the proliferation, invasion, and
metastasis of tumor cells.7–9,17–19 However, very few studies
have explored the clinicopathological role of DcR3 in oral
cancer. Epidermal growth factor receptor (EGFR) is overex-
pressed in OSCC and is associated with poor prognosis.20–22

Activation of EGFR by epidermal growth factor and
transforming growth factor-alpha markedly upregulates
DcR3 production in keratinocytes.23 MTA1 expression in
immortalized keratinocytes has been shown to partially
depend on the activation of the EGFR.24 Notably, studies
that have applied data mining to analyze DcR3 promoter
using bioinformatic tools on the GENECARD web site
(www.genecard.com) have revealed that MTA1 is a
transcription factor of DcR3. Overexpression of MTA1 is
associated with the progression of various cancer types,
including those of the head and neck.25,26 These results sug-
gest that the correlation between DcR3 and MTA1 might
contribute to cancer progression in patients with OSCC.

Appropriate preclinical models could advance cancer
drug research. A patient-derived tumor xenograft (PDTX)
model has numerous advantages over standard xenograft
models in preclinical trials of novel anticancer drugs because
PDTXs are more capable of retaining the genetic, molecular,
and histological heterogeneity of patient tumors through
serial passage in a mouse model.27–29

Herbal extracts and phytochemicals have recently been
assessed for their inhibitory ability against cancer cell
growth and metastasis.30,31 These compounds are suggested
as candidates for novel chemotherapeutic agents or adju-
vants that improve anticancer effects in combination with
standard treatments. Triptolide (TPL, C20H24O6), a diterpe-
noid triepoxide derived from the Chinese herb Tripterygium
wilfordii, exerts effects against cancer,31–33 including oral
cancer.34–36 These findings have indicated that TPL might
be a promising candidate for combined therapy for advanced

oral cancer. TPL can suppress EGFR levels in vitro and
in vivo in malignant tumors.37,38 TPL can also downregulate
the expression of DcR3 in pancreatic cancer cells.39 How-
ever, the advanced anticancer mechanisms of TPL in OSCC
remain unexplored.

In the present study, we assessed the expression of DcR3
in oral cancer cells using human tumor tissue arrays. We
evaluated the anticancer effects of TPL through the downre-
gulation of DcR3 in our PDTX models in vivo and in vitro.

2 | MATERIALS AND METHODS

2.1 | Human tissue microarray

Microarray slides were prepared using tissues from paraffin-
embedded primary OSCC tumors (from 99 patients) and
normal oral mucosa (from 10 patients). Tissue samples were
extracted from a representative area of each paraffin-
embedded tumor block. The methods used were as described
in our previous study.40 The microarray study was approved
by the Ethics Review Committee of the Tri-Service General
Hospital, Taipei, Taiwan (IRB: TSGH-1-101-05-092).

2.2 | Establishment of PDTX models and treatment
protocol

The methods for establishing a PDTX were described in our
previous study.40 Briefly, tumor specimens were obtained
from patients with OSCC during the initial surgical treat-
ment. The experiments were conducted according to the
ethical guidelines of the institutional review board (TSGH-
1-101-05-092, TSGH-2-102-05-111) of the National
Defense Medical Center, Taipei, Taiwan. The histological
type of all tumor specimens was T4aN2b, as per World
Health Organization criteria.

The oral cancer tissue blocks were implanted subcutane-
ously into NOD/SCID/IL2R gamma null (NOD.Cg-Prkdcscid
Il2rgtm1Wjl/SzJ; NOD scid gamma) mice (8-10 weeks),
which were maintained in the National Defense Medical
Center, Taipei, Taiwan. All experiments were approved by
the Institutional Animal Care and Use Committee (14-299) of
the National Defense Medical Center. The tumor growth of
xenograft models was monitored at least twice a week.
Lengths (longest diameters) and widths (shortest diameters)
of the tumors were measured using calipers, and tumor
volume was calculated as volume = 1/2 × length × width2.
If the tumor volume reached approximately 3000 mm3, the
tumor tissues were removed and sliced into small pieces
(approximately 500 mm3) for serial transplantation.

When the tumor volume reached approximately
500 mm3, mice with seventh-generation PDTXs (134-PDTX)
were randomized into 2 groups (n = 4 per group) receiving
TPL (0.15 mg/kg/daily) or phosphate-buffered saline (PBS;
vehicle control) through intraperitoneal injection for 28 days.
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Body weight and tumor volume were measured at least twice
weekly. Tumor size was measured using Vernier calipers
twice weekly, and tumor volume was calculated using the
aforementioned formula. At the end of the treatment, the mice
were sacrificed and the tumors were removed, weighed, and
visualized.

2.3 | Histology and immunohistochemistry (IHC)

TPL-treated oral cancer SAS xenograft tissues were
included in the study.35 The mice with 134-PDTX were
sacrificed using CO2, and their tissues were fixed through
perfusion with 4% paraformaldehyde in 0.1 M phosphate
buffer. Next, 5-μm-thick serial sections were obtained on
slides, deparaffinized in xylene, and rehydrated. After
blocking endogenous peroxidase activity using 3% hydrogen
peroxide, the slides were incubated with the anti-DcR3
(333202, BioLegend, San Diego, CA, USA) and anti-MTA1
(A300-911A, BETHYL, Montgomery, TX, USA) antibodies
overnight at 4�C. Target protein expression was detected
using anti-mouse and anti-rabbit peroxidase complexes, and
peroxidase activity was observed using 3-amino-9-ethyl-car-
bazole. The slides were counterstained with hematoxylin
(Sigma-Aldrich) and mounted with a mounting solution.

2.4 | Evaluation of immunohistochemical staining

The intensity of tumor cells immunoreactivity was scored
on a scale of 0-3 (0, no staining; 1, weak intensity; 2, mod-
erate intensity; and 3, strong intensity). The percentage of
tumor cells with nucleus or cytosol staining for each inten-
sity score was graded on a 5-point scale (0, 0%; 1,
0%-25%; 2, 25%-50%; 3, 50%-75%; and 4, 75%-100%).
Immunostaining scores (range 0-12) were determined by
multiplying the scores based on the percentages of the
stained tumor cells (0-4) with the intensity scores (0-3).
Samples with IHC scores ≥4 were defined as having high
DcR3 expression. In the animal studies, immunostaining
scores were determined by multiplying the scores based on
the percentages of stained tumor cells (0-4) with the
intensity scores (0-3) and the percentage of survival tumor
cells in the tissue.

2.5 | Cell culture and reagents (cells, siRNA, plasmids,
and transfection)

The human tongue squamous cell carcinoma cell line SAS
(JCRB0260; JCRB) was provided to us by Dr Lo
(Institute of Oral Biology, Department of Dentistry, National
Yang-Ming University, Taipei, Taiwan).41 In addition, the
tongue cancer cell line SCC25 (CRL-1628; ATCC) was
obtained from the American Type Culture Collection, and
HSC-3 (JCRB0623; JCRB) cells were provided by Dr Lin
(Tri-Service General Hospital, Taipei, Taiwan).42 All the
tongue squamous cell carcinoma cell lines were cultured in
RPMI 1640 media supplemented with 10% fetal bovine

serum, 1% penicillin/streptomycin, and 2 mmol/L L-glutamine.
The cells were grown at 37�C in a humidified incubator with a
5% CO2 atmosphere.

TPL (Calbiochem, San Diego, California) purity ≥95%
as determined using high-performance liquid chromatogra-
phy was dissolved in dimethyl sulfoxide to form a 100-μM
stock and then added to cells at the indicated concentrations.

The plasmids expressing shMTA1 were obtained from the
RNAi consortium at Academia Sinica. The shMTA1 nucleo-
tide sequences corresponded to MTA1 coding sequences
(TRCN0000230496: TGAAGCTGAGAGCAAGTTAAA;
TRCN0000230497: TGCGCATCTTGTTGGACATAT; TR
CN0000218670: AGACATCACCGACTTGTTAAA). The
plasmids expressing MTA1 and DcR3 were obtained from
OriGene (Rockville, Maryland). Plasmids were isolated using
a GenElute HP EndoFree Plasmid Maxiprep kit (Sigma,
St. Louis, Missouri), and transfection was performed using a
PolyJet (SignaGen Laboratories Ijamsville, Rockville,
Maryland), according to manufacturer instructions.

2.6 | In vitro cell proliferation assay

Tongue cancer cells (10 000/well in 24-well plates) were
exposed to various concentrations of TPL for 24-48 hours.
Methylene blue assay was used to evaluate the effect of TPL
on cell growth, as described previously.36

2.7 | Quantitative real-time polymerase chain reaction
(Q-PCR)

Total RNA was extracted by using TRIzol Reagent
(Invitrogen) according to the manufacturer's protocol. First-
strand cDNA synthesis and amplification was performed
using the Maxima H Minus First Strand cDNA Synthesis
Kit (Thermo Scientific, Rockford, Illinois). The following
Q-PCR primers were designed using Primer3 (NCBI):
DcR3, 50-CAGACGTGCAACGACCTGAC-30 (forward)
and 50-TGGGACCTGCATCCTCAC-30 (reverse), and
GAPDH, 50-GGAAGGTGAAGGTCGGAGTCA-30 (for-
ward) and 50-GTCATTGATGGCAACAATATCCACT-30

(reverse). Q-PCR amplifications were performed using a
real-time PCR system (Applied Biosystems 7500 Fast)
using 20-μL reaction volumes containing 15 μL of SYBR
Green PCR Master Mix (Thermo Scientific). Changes in
DcR3 expression were calculated using an Applied Bio-
systems 7500 Real-Time PCR System (Applied Biosys-
tems 7500 Software, Version 2.0.6).

2.8 | Western blot analysis

Cell pellets were lysed directly in RIPA buffer containing
50 mM Tris (pH 7.8), 0.15 M NaCl, 5 mM EDTA, 0.5%
Triton X-100, 0.5% NP-40, 0.1% sodium deoxycholate, a
protease inhibitor mixture, and a phosphatase inhibitor mix-
ture (Calbiochem, Billerica, Massachusetts). The protein
concentrations of the supernatants were determined using a
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BCA protein assay kit (Thermo Scientific). For each lane of
10% SDS-PAGE, 30 μg of cell lysate protein was loaded,
separated, and transferred onto a polyvinyldifluoride mem-
brane (GE Healthcare, United Kingdom). The membranes
were then probed using specific antibodies against DcR3
(#4758, Cell signaling), MTA1 (A300-911A, BETHYL),
and GAPDH (LF-PA0018, LabFrontier, Korea).

2.9 | Statistical analysis

Statistical analyses were performed using GraphPad Prism
(GraphPad Software, San Diego, California). Associations
between the IHC results and clinicopathological variables
were analyzed, using the Chi-square test. The correlation
between DcR3 and MTA1 was assessed by Pearson correla-
tion coefficient test. A Kaplan-Meier analysis was performed
to estimate overall survival, and distributions were compared
using the Mantel-Cox log-rank test. Differences among
studied subgroups were determined using Student's t test if
normal distributions were evident, and the Mann-Whitney
U test was used for nonnormal distributions. P < 0.05 was
considered as statistically significant.

3 | RESULTS

3.1 | DcR3 is a potential biomarker and therapeutic
target for human OSCC

To assess the expression of DcR3 protein in oral cancer
cells, we evaluated the status of DcR3 using tissue microar-
rays of human OSCC cells (n = 99; Table 1) containing dif-
ferent oral cancer grades as well as normal mucosal tissues,
and the percentage of positive stained cells was calculated as
described previously.43 DcR3 expression levels were signifi-
cantly higher in oral cancer tissues than in adjacent normal
oral mucosa (P < 0.0001; Table 1) and associated with
tumor size (P = 0.01; Table 1). The Kaplan-Meier analysis
revealed that high staining scores of DcR3 were correlated
with poor prognosis (P = 0.006; Figure 1). We further
analyzed DcR3 mRNA levels in OSCC tissues paired with
adjacent normal mucosal tissues from 30 patients; higher
DcR3 RNA levels were observed in the OSCC tissues than
in the adjacent normal mucosal tissues (P = 0.001;
Figure 2B). We also used a bioinformatics databank (NCBI
Gene Expression Omnibus profiles, GDS4562) to assess the
expression of DcR3 in tongue cancer and observed that
DcR3 protein levels were higher in OSCC tissues than in
normal mucosal tissues (P = 0.004; Figure 2C). Western
blot analyses of the tongue cancer cell lines (SAS, SCC25,
HSC-3) displayed higher DcR3 expression levels than the
normal human gingival fibroblast primary cells (Figure 2D).
These results suggest that DcR3 is highly expressed in
OSCC, demonstrating its potential as a novel diagnostic
marker and therapeutic target.

3.2 | TPL inhibited tumor growth in oral cancer
PDTX models

TPL is an effective anticancer compound, but its mechanism
of action against oral cancer remains unclear. In the current
study, we examined the effects of TPL on growth in the oral
cancer patient-derived PDTX (134-PDTX) model and found
that TPL significantly inhibited tumor growth in the
134-PDTX model when compared with the vehicle (PBS)
controls (Figure 3A, P = 0.01; Figure 3B). No apparent
toxicity or weight loss was observed after TPL administra-
tion during the experimental period (Figure 3C).

3.3 | TPL repressed DcR3 expression in oral cancer
PDTX models and SAS xenografts

IHC analysis verified DcR3 expression in oral cancer cells
in the PDTX and SAS xenograft models, and we observed
that DcR3 expression was decreased after TPL administrated
in clinical tumor tissue-bearing mice when compared with
the controls (Figure 3D). Furthermore, DcR3 expression was
significantly decreased in the TPL-treated groups in both the

TABLE 1 Associated between DcR3 expression and multiple
clinicopathological parameters in oral squamous cell carcinoma (OSCC)

DcR3

Clinicopathological parameters Cases Low High P values

Normal oral mucosa 10 10 0 <0.0001*

OSCC 99 35 64

Sex

Male 86 27 59 0.05

Female 13 8 5

Age

<52 54 16 38 0.21

≧52 45 19 26

Tumor size

T1-T2 59 27 32 0.01*

T3-T4 40 8 32

Cervical node metastasis

N(−) 49 21 28 0.14

N(+) 50 14 36

Clinical stage

I-II 38 18 20 0.05

III-IV 61 17 44

Recurrent

R(−) 55 22 33 0.29

R(+) 44 13 31

Location of tumors

Buccal 38 18 20

Palate 2 1 1

Tongue 40 19 21 0.07

Gingiva 13 5 8

Mouth floor 3 0 3

Lip 3 2 1

* mean P < 0.05.
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134-PDTX and SAS xenograft models (P = 0.0004;
Figure 3D, P < 0.0001; Figure 3E).

3.4 | TPL suppressed oral cancer proliferation
associated with the DcR3/MTA1 axis

TPL was inhibited the proliferation of oral cancer cells
(Figure 4A) and repressed DcR3 expression in a time and dose
manner (Figure 4B).

MTA1, a transcription factors of the DcR3 promoter
according to the GENECARD transcription factors analysis,
was found to be overexpressed in tissues from patients with
OSCC in the current study, and it exhibited a positive corre-
lation with DcR3 levels (Pearson r = 0.2881; P = 0.003;
Figure 5A). IHC staining revealed that TPL repressed of
MTA1 expression in the PDTX and xenograft tissues
(Figure 5B). Furthermore, MTA1 was overexpressed in all
3 OSCC cell lines (Figure 5C); however, TPL was found to
suppress its expression in the SAS cell line in a time-
dependent and dose-dependent manner (Figure 5D).

It appeared that MTA1 regulated DcR3 expression in
SAS cancer cells (Figure 6). DcR3 expression decreased after
introduction of shMTA1 in SAS cells (Figure 6A). DcR3
was overexpressed after MTA1 was overexpressed, and was
subsequently downregulated through TPL treatment in SAS
cells (Figure 6B). Addition of the DcR3-overexpressed vector
was not associated with changes in MTA1 expression in SAS
cells (Figure 6C).

4 | DISCUSSION

DcR3 expression is upregulated in several inflammatory
diseases and malignancies.4,9,12,17,18,44,45 Elevated serum
level of DcR3 is a potential marker for nodal metastasis of

FIGURE 2 Overexpression of DcR3 in oral cancer. A, Positive cytosol immunostaining of DcR3 in normal mucosa and oral cancer tissues. B, Quantitative
polymerase chain reaction results from oral cancer tissues (n = 30 patients) and their matched adjacent normal mucosal tissues (n = 8 patients). C, DcR3
mRNA expression in human tongue cancer. Data were obtained from NCBI Gene Expression Omnibus profiles (http://www.ncbi.nlm.nih.gov/geoprofiles;
Reporter: GDS4562). D, DcR3 protein in three tongue cancer cell lines was determined through Western blot analysis. Normal human gingival fibroblast
(HGF) cells were used as negative control. P < 0.05 was considered statistically significant [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 1 DcR3 is a potential novel diagnostic marker and therapeutic
target in oral squamous cell carcinoma (OSCC) patients. Kaplan-Meier
curve compares the overall survival of cancer with high-level or low-level
DcR3 protein products. Samples with immunohistochemistry (IHC) scores
≥4 were defined as having high DcR3 expression [Color figure can be
viewed at wileyonlinelibrary.com]
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OSCC.12 The fact that DcR3 is a secreted molecule makes
its detection in the serum by enzyme-linked immunosorbent
assay relatively easy and patient friendly compared with
other methods used to diagnose OSCC. Wu et al reported
that DcR3 was not detected in tumor-free patients but was
identified in 98.8% (82 of 83) of patients with malignant
cancers,46 indicating that elevated expression levels of DcR3
are significantly correlated with tumorigenesis and tumor
progression. In the present study, we found that high expres-
sion levels of DcR3 were correlated with poor survival rates
and larger tumor size in OSCC (Table 1 and Figure 1).

PDTX models are progressively used as powerful tools for
the preclinical evaluation of anticancer drugs due to their ability
to maintain the diversity of molecular histologies and preserve
the 3-dimensional tumor-stromal cell interactions and compo-
nents similar to clinical tumor tissues.47 Numerous preclinical
PDTX models including those of lung cancer,48–50 breast
cancer,51 colon cancer,52 hepatocellular carcinoma,53,54 gastro-
intestinal stromal tumor,55 and melanoma56 cells have been
established and used for evaluating antitumor compounds;57

however, relatively few PDTX models of oral cancer have been
developed.29 In the present study, NSG mice were used to
establish oral cancer PDTX models. The tumor mass was trans-
planted into NOD-SCID mice to assess the antioral cancer
effect of TPL. According to the IHC analysis, cancer tissues
from the PDTX model and the patient were histologically

similar. Moreover, TPL could inhibit oral cancer tumor growth
and repress the expression of DcR3 (Figure 3) in the PDTX
model. In our previous studies, we have demonstrated that
TPL also inhibited cell growth in oral cancer xenograft
models.35,36 Furthermore, a novel compound derived from
diterpene triepoxide was demonstrated to reactivate p53
function and significantly decrease tumor progression and
volume in vitro, in vivo, and in a PDTX model of human
papillomavirus-positive head and neck squamous cell carci-
noma.58 Taken together, these results indicated that TPL
might be a potential adjuvant drug for OSCC.

TPL, an ancient Chinese herb, has been determined to
have significant cytotoxic effects on different types of
tumors, including oral cancer.36,58 TPL is a diterpenoid
epoxide produced by the thunder god vine, T. wilfordii, with
a molecular weight of 360.4 g/mol, thus belonging to a
group of small molecular prodrugs. Consequently, synthetic
compounds are being studied in several clinical trials.59

Numerous putative target proteins responsible for the
antiproliferative activity of TPL have been reported, includ-
ing HSP70, XBP, and ADAM1060–62; nevertheless, the
anticancer mechanism of TPL remains unclear. Overexpres-
sion of DcR3 is thought to promote cancer progres-
sion.4,9,12,17,18,44,45 TPL has been shown to inhibit tumor
growth in pancreatic cancer via the downregulation of DcR3
expression.39 In the current study, TPL suppressed tumor

FIGURE 3 Triptolide (TPL) inhibited tumor growth in DcR3-overexpressing oral cancer patient-derived tumor xenograft (PDTX) models. A, Changes in
tumor volume in 134-PDTX models (n = 4) treated with TPL (0.15 mg/kg daily intraperitoneally) and phosphate-buffered saline (PBS) (vehicle control;
n = 4) for 28 days. Tumor diameters were measured twice weekly for 28 days using Vernier calipers; tumor volume was calculated and compared with those
of controls. P < 0.05 was considered statistically significant. B, Tumor mass was weighed after the mice were sacrificed. C, No significant change was
observed in the body weight of the mice compared with that of the vehicle controls. D, Hematoxylin and eosin staining and immunohistochemistry were
performed after administration of TPL or PBS (vehicle control). The 134-PDTX model stained positive for DcR3. E, The SAS xenograft model stained
positive for DcR3. Immunodetectable proteins were stained brown; nuclei were counterstained blue. Original magnification: ×400 [Color figure can be
viewed at wileyonlinelibrary.com]
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growth and repressed the expression of DcR3 in vitro,
in vivo, and in PDTX models of OSCC (Figures 3 and 4),
suggesting that the antitumor effects of TPL are exerted via
repression of DcR3 expression in OSCC.

Aberrant gene expression in cancer is associated with
transcription factor activation.63,64 By using bioinformatics
tools (GENECARD) to scan the transcription factors of
DcR3, MTA1 was identified as one of the transcription

FIGURE 4 Triptolide (TPL) decreased DcR3 expression in oral cancer. A, Assessment of cell proliferation and viability using the methylene blue assay in
the three oral cancer cell lines treated with varying concentrations of TPL (0-100 nM) or DMSO (1 μL/mL) for 24 and 48 hours. B, Western blot analysis for
DcR3 after SAS cells were treated with TPL for 24 and 48 hours

FIGURE 5 Triptolide (TPL) repressed MTA1 expression in oral cancer. A, Correlation analysis of DcR3 and MTA1 expression in oral squamous cell
carcinoma (OSCC) tissue microarray. B, Hematoxylin and eosin staining and immunohistochemistry were performed after administration of TPL or
phosphate-buffered saline (PBS) (vehicle control). The 134-PDTX and SAS xenograft models stained positive for MTA1. Immunodetectable proteins were
stained brown; nuclei were counterstained blue. Original magnification: ×400. C, MTA1 protein in 3 tongue cancer cell lines was determined through
Western blot analysis. Normal human gingival fibroblast (HGF) cells were used as negative control. D, Western blot analysis for MTA1 after SAS cells were
treated with TPL for 24 and 48 hours [Color figure can be viewed at wileyonlinelibrary.com]
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factors. MTA1 is a component of several chromatin remo-
deling complexes, including the nucleosome remodeling and
deacetylation complex.65–67 Previous studies revealed that
MTA1 is one of the most upregulated proteins in human
cancer, and it is associated with cancer progression, aggres-
sive phenotypes, and poor prognosis in patients with can-
cer.26,67 In the present study, both DcR3 and MTA1 were
overexpressed in OSCC patients (Figures 2 and 5), and
MTA1 was positive correlated with DcR3 expression in the
clinical data (Figure 5A). Interestingly, TPL repressed both
DcR3 and MTA1 expression in vitro, in vivo, and in the
PDTX model of OSCC (Figures 3–5). These data suggest
that TPL is a potential therapeutic option for oral cancers
with DcR3 overexpression.

According to bioinformatics studies, MTA1 is a tran-
scription factor of DcR3. TPL can repress the expression of
DcR3 and MTA1 in SAS cells. To determine whether the
mechanism of TPL's repression of oral cancer was through
the DcR3-MTA1 axis, both the expression and downregula-
tion of the MTA1 vector were applied in SAS cells. We
revealed that DcR3 expression was both upregulated and
downregulated by the MTA1 vector. However, MTA1
expression was regulated by the DcR3 vector (Figure 6).
However, the detailed mechanism of action of TPL in oral
cancer requires further investigation.

In summary, this study demonstrated that the anticancer
effect of TPL was accompanied by DcR3 downregulation
in vitro, in vivo, and in the preclinical PDTX model of oral
cancer. Moreover, we posit that DcR3 could be a diagnostic
marker and therapeutic target for oral cancer. Furthermore,
TPL can potentially be used as an effective chemotherapeu-
tic agent for oral cancer. Finally, this study extends current
knowledge by further evaluating the mechanism of action of
TPL against oral cancer.
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