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Abstract. There is considerable interest in the pathobiology of tau protein, given its potential role in neurodegenerative
diseases and aging. Tau is an important microtubule associated protein, required for the assembly of tubulin into microtubules
and maintaining structural integrity of axons. Tau has other diverse cellular functions involving signal transduction, cellular
proliferation, developmental neurobiology, neuroplasticity, and synaptic activity. Alternative splicing results in tau isoforms
with differing microtubule binding affinity, differing representation in pathological inclusions in certain disease states, and
differing roles in developmental biology and homeostasis. Tau haplotypes confer differing susceptibility to neurodegeneration.
Tau phosphorylation is a normal metabolic process, critical in controlling tau’s binding to microtubules, and is ongoing within
the brain at all times. Tau may be hyperphosphorylated, and may aggregate as detectable fibrillar deposits in tissues, in both
aging and neurodegenerative disease. The hypothesis that p-tau is neurotoxic has prompted constructs related to isomers,
low-n assembly intermediates or oligomers, and the “tau prion”. Human postmortem studies have elucidated broad patterns
of tauopathy, with tendencies for those patterns to differ as a function of disease phenotype. However, there is extensive
overlap, not only between genuine neurodegenerative diseases, but also between aging and disease. Recent studies highlight
uniqueness to pathological patterns, including a pattern attributed to repetitive head trauma, although clinical correlations
have been elusive. The diagnostic process for tauopathies and neurodegenerative diseases in general is challenging in many
respects, and may be particularly problematic for postmortem evaluation of former athletes and military service members.
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SUMMARY OF PURPOSE

The primary purpose of this review is to high-
light the complexity of tau in health and disease,
and to point out the many uncertainties concerning
its role in pathogenesis as well as diagnostic inter-
pretation. It is intended to foster a more circumspect
approach to molecular and clinical neuroscience with
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respect to tau biology, and the avoidance of prema-
ture conclusions with respect to: 1) the role of tau
phosphorylation as a primary neurotoxic process; and
2) the relationship between tau pathology at autopsy
and clinical problems that may have been present
during life.

IDENTIFICATION OF TAU AND THE TAU
GENE

Tau was initially identified by Weingarten et al.
as a heat stable protein factor that would convert
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6S dimers of tubulin into 36S rings necessary for
microtubule polymerization [1]. They named this fac-
tor tau (7) for its ability to induce tubule formation.
Phosphorylation of tau was found to promote a con-
formational change favoring depolymerization of the
tubulin assembly [2—4]. Brion et al. first reported
immunohistochemical evidence of tau in paired heli-
cal filaments (PHF) in 1985 [5]. Later the same year,
Grundke-Igbal et al. [6] reported that bovine tau
preparations reacted with antibodies to Alzheimer
PHEF, and that affinity purified antibodies labeled neu-
rofibrillary tangles (NFT) and dystrophic neurites, but
not amyloid-B (AB) plaques. Neve et al. [7] subse-
quently used cDNA clones for tau and mapped the
tau gene to 17q21.

The tau gene on chromosome 17q21.31 spans 16
exons of approximately 150 kilobases of genomic
DNA. In human brain, alternative splicing of exons
2 and 3 results in three isoforms with either O, 1,
or 2 inserts of 29 amino acids (ON, 1IN, 2N) [7-11]
(Table 1). Each of the three isoforms may contain
3 repeats (3R) or 4 repeats (4R) of the microtubule
binding domain encoded on exon 10, resulting is six
isoforms. 1N, ON, and 2N isoforms comprise 54%,
37%, and 9% of tau in human brain, while 3R and 4R
tau species are expressed in roughly equal amounts
among ON, IN, and 2N tau [12-14]. Expression of
tau isoforms is developmentally regulated and tissue
specific [9, 15, 16]. In the human fetus, only the short-
est isoform (3R, ON) is expressed, while the same
isoform is downregulated in the adult brain. Tau phos-
phorylation is also developmentally regulated, being
high until the end of synaptogenesis, compared to the
adult human brain in which only 2—4 mole phosphate
are attached per molecule of tau protein [17].

The developmental shift in isoforms roughly coin-
cides with the formation of synapses [18]. The 3R, ON
isoform that predominates during development shows
the least microtubule binding affinity, and switches
to a relative increase in 4R tau species over time,
suggesting pressure for greater microtubule binding
affinity in the developed brain, and perhaps a role for

Table 1
Genetic heterogeneity of tau

Differential regulation of exons 2, 3, and 10 in development and
disease (6 isoforms)

Regulated 3R and 4R tau with different microtubule binding
affinities

Two haplotypes (H1 and H2) that confer disease susceptibility

Pathogenic mutation causes frontotemporal dementia phenotype

the 3R tau species in neuroplasticity or in response
to injury. Increased 3R tau during cellular stress, as
well as the persistence of fetal tau in the adult brain
[19], support this concept.

The regulation of tau binding appears to occur
by alternative splicing and post-translational mod-
ifications. Tau also has a short reaction time with
microtubules [20], which might explain why a protein
in such abundance within the axon does not interfere
with axonal transport. There is evidence that tau has
two binding sites for microtubules. Microtubule bind-
ing repeats bind protofilaments at the taxol-binding
site of beta-tubulin. The proline-rich region binds a
protofilament anchoring the projection domain on the
surface of the microtubule [21].

It is interesting that exon 10 is constitutively
expressed in rodents [22], but is regulated in humans
[8, 9]. This may in part underlie human susceptibil-
ity to tauopathy compared to rodents. The relative
microtubule instability conferred by human 3R tau
in response to cellular stress favors a depolymer-
ized phosphorylated species, compared to rodents in
which microtubule binding is maintained in a steady
state because of constitutive expression of exon 10.

Faulty regulation of exon 10 splicing in humans,
and the resulting imbalance of 3R and 4R tau expres-
sion, is suggested as a pathogenic basis for human
tauopathy [12]. Excessive inclusion of exon 2 and
exon 3 has also been reported in gliopathy and spinal
cord degeneration [23], although it remains to be
determined whether cell specific expression of exon
2 and exon 3 is the basis for this finding.

Two tau haplotypes, referred to as H1 and H2,
occur because of a 900 kb inversion polymorphism
[24-26]. The H1 haplotype and the HI/H1 geno-
type is suggested to be a risk factor for progressive
supranuclear palsy (PSP), corticobasal degeneration
(CBD), argyrophilic grain disease, and idiopathic
Parkinson’s disease [24, 27-32]. The H2 haplotype is
associated with increased expression of exon 3 in grey
matter, suggesting that the inclusion of exon 3 might
be protective against neurodegeneration [33]. The
H1/H2 genotype confers a greater risk of developing
dementia before the age of 45 years in individuals
with Down’s syndrome [32, 34].

Normal tau function

The primary function of tau within the brain
appears to be the binding of tubulin to promote
polymerization and stabilization of microtubules [1]
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(Table 2). Tau stabilizes and stiffens microtubules
such that it supports the lengthy axon. Interac-
tions with tubulin are dynamic processes with equal
binding properties to both polymerized and non-
polymerized tubulin, which regulates neurite polarity,
axonal sprouting, and neuroplasticity, i.e., mor-
phogenesis, and regulates axonal transport through
interactions with motor proteins [35-41]. Micro-
tubule binding confers a conformational change
[3, 4], influences other diverse cellular processes
[42-45], and interacts with other natively unfolded
protein such as TDP-43, FUS, and alpha-synuclein
[46—48]. A number of studies suggest alternative
functions, including cell cycle regulation via tyrosine
kinase, plasma membrane interaction, and synaptic
function [42, 43, 46, 49].

Physiologic tau phosphorylation is therefore inte-
gral to life across species as a productive response
to a variety of stressors including insulin dysfunc-
tion, glucose deprivation, starvation, hypothermia,
hibernation, anesthesia, and glucocorticoids, among
other conditions [50-57] (Table 3). Physiologic tau
phosphorylation may also regulate subcellular local-
ization of tau, which in turn may influence signaling
cascades or synaptic function [58, 59]. A number
of post-translational modifications apart from phos-
phorylation also occur which may have functional
implications [58]. Among these are O-glycosylation,
advanced glycation and the Maillard reaction,

Table 2
Some physiologic functions of tau

Stabilization of microtubules

Actin binding and cytoskeletal integrity
Regulating neurite polarity

Axonal sprouting

Neuroplasticity

Axonal transport

Cell cycle regulation

Plasma membrane interaction

Synaptic transmission (“synaptic brake”)

Table 3
Some stimuli for tau phosphorylation

Insulin dysfunction
Glucose deprivation
Starvation
Hibernation
Hypothermia
Anesthesia
Glucocorticoids
Opiates

Alcohol

ubiquitination, nitration, SUMOylation, prolyl-
isomerization, acetylation, and truncation [60-67].

Studies increasingly suggest a role for physiologic
tau phosphorylation in synaptic function [59]. Tau
is normally present at both pre- and post-synaptic
sites [68], and accumulates as hyperphosphorylated
tau at these sites in AD [69]. Whether tau dif-
fuses across the synapse under normal conditions is
an open question. Synaptic stimulation nevertheless
induces site-specific, subsynaptic tau phosphoryla-
tion [70-72]. Tau mRNA has also been identified
in axons and at subsynaptic sites, suggesting a role
for local translation of tau in maintaining axonal
integrity and synaptic function [73, 74]. Tau may
also modulate signaling of synaptic neurotransmit-
ter receptors, with post-synaptic tau phosphorylation
acting as a “synaptic brake” via a complex and incom-
pletely resolved mechanism. Glycogen synthase
kinase 3 beta (GSK3fp)-mediated tau phosphory-
lation, for example, may regulate neurotransmitter
receptor endocytosis and negatively influence long
term depression [59, 72].

The biology of hibernation is interesting in that
tau protein transitions to a PHF-like phosphorylated
state, involving epitopes typically related to tau phos-
phorylation in AD. Yet the phosphorylation state is
completely reversible upon arousal from torpor and
return to euthermic conditions [75]. This tends to
suggest that tau phosphorylation in AD is a reactive
phenomenon rather than a primary toxic process, and
raises the issue of whether controlled hyperphospho-
rylation of tau confers cellular protection.

Tau has been shown to bind filamentous actin of
dendritic spines as further evidence of its role in
cytoskeletal integrity [76, 77]. Other studies have
localized tau to the nucleus and the centrosome, in
addition to the mitotic spindle microtubules of divid-
ing cells [78-80], suggesting that tau phosphorylation
might be involved in nucleus-cytoplasm transloca-
tion and cell cycle transition. Tau can also bind DNA,
whereas tau phosphorylation may prevent DNA bind-
ing [81, 82]. Nucleolar organization and protection of
genomic DNA is still another potential function [83,
84]. Tau is found in association with RNA as part
of a ribonucleoproteome, complexing with RNA and
a variety of proteins [48, 85, 86]. Finally, tau is also
expressed in astrocytes and oligodendrocytes, the lat-
ter with all six isoforms, although with a lesser degree
of microtubule binding [87-89]. Oligodendrocyte tau
appears to be involved in microtubule stability during
morphogenesis and myelination [90].
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Tau protein phosphorylation and
hyperphosphorylation

Normal tau is a highly soluble natively unfolded
protein [91-93], which contrasts with hyperphos-
phorylated p-tau in NFT which is highly insoluble
[94]. The latter should be distinguished from phys-
iologic tau phosphorylation, which is an ongoing
dynamic process in the brain, and a necessary, tightly
regulated process [75]. Phosphorylation regulates
interactions involved in subcellular distribution and
axonal transport [95, 96], organelle delivery to the
somatodendritic compartment [97], neurotransmitter
receptors [98], apolipoprotein E [99], Src kinases
[49, 100, 101], and Pinl [102]. Because of its high
number of serine and threonine residues, tau protein
is an excellent substrate for protein kinases, espe-
cially proline-directed kinases such as GSK3p3 [75].
Tau phosphorylation by cyclin dependent kinases and
mitogen activated protein kinases [103—105], empha-
size the role of tau metabolism in cellular division
and proliferation. Non-proline directed kinases are
also involved [106]. GSK3B and cdk5 may play a
relatively more prominent role in tau phosphory-
lation in the human brain [75]. Interconnection of
the kinase network, promiscuity of protein kinases,
and the tendency of phosphorylation sites to cluster
present technical challenges to the study of tau phos-
phorylation in vivo. The phosphorylation yield at any
given site is low and can be difficult to assess. Site
directed mutagenesis results in complex alterations
in ionic properties, which limits the significance of
experimental findings [75].

Numerous phosphatases dephosphorylate tau
in vitro [43, 107], especially PP2A which is thought
to also play a role in vivo [108]. Activity of tau pro-
tein phosphatases is further regulated by endogenous
inhibitors, which themselves are subject to regulatory
phosphorylation [75], emphasizing the complexity of
tau phosphorylation.

The broad property of “hyperphosphorylation”
is a hallmark of tau aggregates in AD, numerous
other tauopathies, and aging [17, 109, 110]. Many
phosphorylation sites occupied in PHF tau may be
occupied in the normal brain [75]. In advanced dis-
ease, most of the approximately 39 potential AD
phosphorylation sites [111, 112] are phosphorylated,
with total phosphate content in p-tau pathological
aggregates three times that of physiologic tau [17,
113]. One study in transgenic mice reports that patho-
logical hyperphosphorylation is characterized by an
increase in the proportion of phosphorylation at given

residues, rather than an increase in the total num-
ber of phosphorylated residues [58], suggesting that
tau “hyperphosphorylation” reflects an exaggerated
physiologic phosphorylation, rather than disorga-
nized phosphorylation at random sites receptive to
phosphate groups. Still other studies suggest a role for
molecular isomerism catalyzed by proline isomerase,
with cis isomers of the Thr231 proline motif of p-
tau variously labeling lesional brain tissue in AD and
former professional athletes, as well as acutely trau-
matized murine neurons and axons in acute or recent
trauma in humans [114, 115]. Trans isomers of p-tau
are said to be “physiological” [114], although their
specific role in the diversity of cellular tau functions
is unclear.

It is noteworthy that antibodies used in p-tau
analyses in vitro and in vivo react to highly selec-
tive epitopes, each with functional and pathological
implications. The widely used monoclonal antibody
ATS, for example, is used to identify tau phos-
phorylation at Ser 202, Thr 205, and Ser 208,
which in turn identifies a wide spectrum of tau
aggregates including the “pre-tangle” in autopsy
brain [116]. Pretangle aggregates are not otherwise
apparent using histologic dyes such as hematoxylin
and eosin, or silver impregnation techniques such
as Bielschowsky silver. For this reason, p-tau as
identified by AT8 immunohistochemistry may lack
any associated pathological alteration (such as a
morphologically identifiable NFT). Pathology with
a hypothesized link to repetitive traumatic brain
injury (TBI) for example is often entirely immuno-
histochemical, with no tissue reaction that would
otherwise suggest that an injury has taken place. This
tends to raise questions about p-tau immunoreactiv-
ity as an indicator of cell death with repetitive TBI
exposure. This may also explain the lack of eloquence
regarding p-tau and clinical signs [117-120]. Phos-
phorylation at Thr 212 and Ser 214, identified in
tissues by monoclonal antibody AT 100, may be a bet-
ter indicator of more advanced pathology [121], less
sensitive than AT8 but more specific for pathological
aggregates.

Decomposition and associated artifacts are syn-
onymous with postmortem human brain analyses,
and may be underappreciated. It is known, for exam-
ple, that postmortem changes in the phosphorylation
state is a dynamic process, with dephosphorylation
of p-tau occurring rapidly postmortem, in a site-
specific manner [122-128]. P-tau autopsy tissues
may preferentially label buried epitopes, i.e., resis-
tant to degradation. The patterns of immunoreactivity
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in the human brain may therefore be skewed toward
postmortem artifact and away from solubility or in
vivo biological relevance.

Hyperphosphorylation of tau may result from an
imbalance in the activity of tau protein kinases and
tau phosphatases, which in turn may be necessary for
the formation of pathological fibrils. The conversion
of physiologic tau to filamentous tau is believed to be
a multi-step processes, with microtubule detachment
as the initial step [129-131]. A number of biological
mechanisms have been suggested [132—136]. Higher
concentrations of tau may also influence conforma-
tional changes necessary for fibril formation [129].
Interestingly, 3R tau is said to facilitate twisted paired
helical filaments such as those seen in classical AD
NFT, while 4R tau has a tendency to assemble into
straight filaments such as described in PSP [137].
Whether fibrillar or PHF tau signifies cytotoxicity,
versus a productive response to the aging process or
cellular stress, remains an open question [138]. Direct
experiments verifying a feed-forward pathological
cascade are sparse, with some studies showing no
correlation between NFT accumulation and length of
microtubules [139]. Still other studies demonstrating
adduct formation (e.g., advanced glycation, advanced
lipid peroxidation), and sequestration of redox active
transition metals, may indicate that p-tau aggregation,
up to and including PHF tau, is a productive response
to cellular stress [140, 141].

Studies in recent years have increasingly impli-
cated soluble, low-n tau assembly intermediates as
the toxic or biologically active species [142—149].
The same concept is invoked for Af3 in AD [150].
This again suggests that the most readily identifiable
postmortem lesions detected by immunohistochem-
istry may be the least biologically relevant. In one
inducible transgenic model, progression of insoluble
tau pathology was noted after suppression of mutated
tau gene expression, during the process of functional
recovery [144].

“Tauopathy”

The broad term “tauopathy” was first suggested
in 1997 for a familial degenerative tauopathy [151]
and is often used to connote diverse neurodegenera-
tive diseases characterized by p-tau accumulations
with various morphologies and clinical correlates
(Table 4). To the extent that tauopathy implies the
accumulation of p-tau as a rate-limiting factor for
disease pathogenesis, the terminology may be unfor-
tunate. A convincing case could be made that p-tau

Table 4
Diseases with tau neuropathology

Frontotemporal dementia and parkinsonism linked to
chromosome 17 (FTDP-17)

Alzheimer’s disease

Aging

Primary age-related tauopathy

Aging-related tau astrogliopathy

Progressive supranuclear palsy

Pick’s disease

Argyrophilic grain disease

Corticobasal degeneration

Progressive subcortical gliosis

Amyotrophic lateral sclerosis/parkinsonism-dementia complex

Diffuse neurofibrillary tangles with calcification

Dementia pugilistica

Tangle-only dementia

Down syndrome

Gerstmann-Straussler-Scheinker disease

Hallervorden-Spatz disease

Creutzfeldt-Jakob disease

Globular glial tauopathy

Niemann-Pick disease type C

Prion protein cerebral amyloid angiopathy

Subacute sclerosing panencephalitis

Myotonic dystrophy

Non-guanamian motor neuron disease with neurofibrillary
tangles

Postencephalitic parkinsonism

Meningioangiomatosis

Tuberous Sclerosis

is a disease response, perhaps even a productive
disease response [117, 138]. The term “tauopathy”
may be subclassified into “primary” tauopathy, in
which p-tau accumulation is the major pathological
finding, or “secondary” tauopathy, in which some
other protein deposit occurs (e.g., AP, prion pro-
tein) [75]. P-tau in sporadic primary tauopathies may
not correlate with neuronal loss in some diseases
[120]. Rigorously defined, true primary tauopathies
may be limited to frontotemporal lobar degenera-
tions associated with pathogenic mutations of the tau
gene (MAPT) on chromosome 17 (FTDP-17) [152].
Like familial AD with APP mutations, the role of tau
mutation in the molecular pathology is unclear. Some
studies suggest that MAPT mutation causes chromo-
somal instability and aneuploidy [153, 154], rather
than the elaboration of a toxic tau species per se.
Sporadic tauopathies are currently classified as
frontotemporal lobar degeneration-tau (FTLD-tau),
which encompasses Pick disease, PSP, and CBD
[120]. Interestingly, MAPT remains the most sub-
stantial association by genome wide association
analysis [155], and patients with MAPT tau mutation
have clinical and pathological features that overlap
with PSP and CBD [156, 157]. CBD and PSP clinical
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Experimental and other limitations of the tau prion concept

Inefficiency of templating in culture

Methods for generating neurotoxic species not standardized
Fibril characteristics necessary for seeding are poorly defined
No consensus standards for tau seeding in culture

Relevance of mutant tau

Selective isoform expression experimentally versus nonselective expression in vivo
Tau expression promiscuity in transgenic animals

Tau leakiness

Axonal (as opposed to perikaryal) expression of tau

No natural tauopathy in rodents

Phenotypic propagation of neurodegeneration as a function of strain is not demonstrated

Does not explain selective vulnerability

Contradicted by early appearance of tau in structures with diffuse projections

phenotypes tend to contain lesions composed mainly
of 4R tau, which supports dysfunctional microtubule
binding as a factor in neurodegeneration. Pick disease
phenotype (the least common of the sporadic FTLD-
tau phenotypes), on the other hand, contains lesions
comprised of 3R tau. Given the tendencies toward
tau isoform specificity in FTLD-tau, it is tempting to
suggest specific isoforms as therapeutic targets [158].
Such a construct would require p-tau as inherently
toxic, however, which is not established.

The tau prion

Clavaguera et al. first demonstrated the elabora-
tion of tau filaments following injection of wild-type
mice with tau derived from P301S transgenes, raising
the issue of protein-only transmission of phenotypic
characteristics [159]. Relevance to human disease
nevertheless requires the presumption that p-tau is
neurotoxic in the human brain in vivo, which remains
an open question. Conceptualizing the tau prion is
challenging, and involves putative processes such as
seeding, templating, spread, strain variation, tran-
scellular propagation, trans-synaptic propagation,
functional connectivity, selective vulnerability, and
prion-like, each with a level of imprecision [160].
Pliability of definition is evident with terms such as
“infectious prions”, “non-infectious prions”, “quasi-
prions”, and “transcellular prionoids” [161]. The
tau prion nevertheless provides a framework for
neurodegeneration based on non-mendelian, horizon-
tal transmission of deleterious information, which
is at issue in genuine prion disease. Protein-only
transmission of phenotypic information in yeast is
well-characterized [162]. By the prion analogy, p-tau
would template or seed brain tissue, confer adverse
biological properties on naive tau molecules, and per-
petuate an autocatalytic neurodegenerative cascade.

9
s

Kaufman et al. provide evidence for seeding
phenomena and strain variation in tauopathy [163,
164], although their relationship with neurodegener-
ation in progressive tauopathies is unclear.

There are some limitations of the tau prion con-
cept (Table 5). In an early seminal study by Frost
et al., extracellular tau at supraphysiological lev-
els templated intracellular tau in less than 2% of
the cells, while the conformationally templated p-
tau in cell culture showed little, if any, resemblance
to NFT [165]. Guo and Lee used recombinant 4-R
tau [166], which has weak amyloid-like properties
in human tauopathies compared to mixed 3R and
4R tau in AD. Sonication is often used to gener-
ate neurotoxic species for in vitro analyses, which
is not standardized across laboratories. Characteris-
tics of tau fibrils necessary for seeding experiments
are poorly defined. Consensus standards for tau seed-
ing in cell culture studies do not exist [160]. Many
studies employ mutant tau, which is of doubtful rele-
vance to sporadic disease since MAPT mutations do
not occur in the overwhelming majority of human
tauopathies. Most studies on tau propagation also
utilize truncated tau [160], mutated or not, rather
than full length tau. While reasonable in theory given
C-terminally truncated tau in the synapse, it gener-
ally ignores the multiple isoforms in humans with
variable splicing of the C-terminus and N-terminus.
Many studies use recombinant tau rather than tau fil-
aments derived from human disease, raising an issue
of biological relevance. Propagation studies that rely
on selective expression of specific isoforms do not
take into account the fact that expression of 3R and
4R isoforms occurs in all human tauopathies, regard-
less of whether the predominant form in pathological
lesions is 3R, 4R, or a mixture of both [160]. Trans-
genic constructs relying on conditional expression
of tau [167] may have unaccounted for promiscuity
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(e.g., expression outside the entorhinal cortex), tau
“leakiness,” [160] or axonal tau mRNA and expres-
sion outside the cell body [73, 74].

Transgenic mice expressing, or overexpressing, a
single isoform of wild-type human tau, do not develop
tauopathy or neurodegeneration [160], while various
other experimental constructs show tau expression
without neurodegeneration [168, 169]. Tau prions
have yet to be re-derived and re-injected with pheno-
typic changes in subsequent passages, separating tau
prions from conventional prion disease. It may finally
be pointed out that p-tau accumulates initially within
neurons of the locus ceruleus, appearing as early as
childhood [170]. Since the locus ceruleus is said to
be “unsurpassed” among brain regions in the diffuse-
ness of its connections [171, 172], trans-synaptic or
transcellular neurodegeneration appears to be limited
in the aging process in vivo.

Age-related p-tau

Recent analyses of primary age-related tauopathy
(PART) [118] and aging-related tau astrogliopathy
(ARTAG) [173] have expanded the spectrum age-
related p-tau accumulation patterns. PART is, in
essence, an accumulation of p-tau within medial tem-
poral lobe and subcortical structures, with little or
no A deposition. Clinical symptoms range from no
symptoms to mild symptoms involving the memory
domain. Most cases previously referred to as “tan-
gle only dementia” or “tangle-predominant senile
dementia” are likely within the PART spectrum. It is
noteworthy that classic studies of dementia pugilis-
tica (DP) describe neurofibrillary degeneration in a
similar distribution [174], which raises the possibility
of coincidental p-tau pathology.

The related condition ARTAG, refers to p-tau
accumulation within astrocytes, with a tendency for

subpial, subependymal, and perivascular areas, and
in subcortical white matter. Like PART, ARTAG
has no predictable clinical substrate and overlaps
substantially with pathology hypothesized as a sub-
strate for repetitive neurotrauma [173]. PART is said
to be primarily neuronal although tau astrogliopa-
thy may co-exist with PART. Interestingly, PART
is a mixed 3R/4R tauopathy whereas ARTAG is a
4R tauopathy, suggesting some degree of cell type
specificity. This may in part explain why AD is a
mixed 3R/4R tauopathy, while PSP and CBD, with
an abundance of 4R tau, have prominent glial p-
tau accumulation. A recent study of 687 postmortem
brains from a spectrum tauopathies suggested vari-
able distribution patterns of ARTAG, and differing
pathogenesis possibly related to cerebrospinal fluid
circulation or mechanical forces. The clinical signif-
icance of these patterns was not studied. The issue
of spread among astrocytes was raised but remained
speculative [175].

TBI and tauopathy in athletes and military
service members

Athletes

The relationship between repetitive TBI and neu-
rodegenerative tauopathy has been poorly understood
for decades. It remains theoretical and is problem-
atic for a number of reasons [176] (Table 6). The
TBI component of the equation itself presents a sig-
nificant challenge for study. Mathematical thresholds
for parenchymal and vascular injury are impossible to
quantify (reviewed in [177]). TBI repetition is largely
undefined, and the role of TBI repetition of whatever
extent on injury thresholds or putative tauopathy is
unknown. Given myriad conditions associated with
p-tau accumulation, as well as the numerous biolog-
ical processes associated tau phosphorylation, it is

Limitations of the TBI-progressive neurodegenerative tauopathy concept

Neurological signs attributed to early 20th century boxing were not progressive in most cases

Index case of DP at autopsy was most likely familial AD in a former boxer

Index case of putative DP-like disease in a football player depicted age-related changes [184]

Putative disease process is currently defined solely by immunohistochemistry (no clinical correlate required; no neurodegeneration

(neuron or axon loss) required)

TBI in athletes is inferred from participation; otherwise undefined and impossible to quantitate

Athletes in modern case series were neurologically asymptomatic or had known neurodegenerative diseases in most cases

National Football League cohort has less cancer, fewer suicides, lower mortality, and better cardiovascular health compared to controls
(no evidence of a pervasive, fatal disease related to occupational exposure)

Studies suggesting AD risk with mild TBI are inconsistent (no risk or modest risk)

AD is not confirmed pathologically in studies showing AD risk with moderate or severe TBI (dementia from structural brain injury in

some cases not excluded)

No longitudinal data exists demonstrating TBI, latency, clinical neurodegeneration, and neurodegenerative pathology
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nevertheless expected that TBI at some level of sever-
ity may stimulate physiologic tau phosphorylation,
and even that p-tau inclusions may appear over time
following TBI in some instances, for reasons not fully
elucidated.

TBI-neurodegenerative disease theory began with
the investigation of boxers in the early part of the 20th
century, some of whom demonstrated neurological
signs and a putative condition known in boxing circles
as “punch drunk.” [178] Signs included dysarthria,
gaitdisturbance, tremor, and cognitive impairment, as
well as dementia in some cases (later termed ‘demen-
tia pugilistica’ by Millspaugh [179]). It is important
to note that neurotrauma exposure in boxers of this era
was extreme [ 180, 181]. Many hundreds of fights over
a lengthy career, with additional exposure in boxer
booths and as sparring partners for elite fighters, were
commonplace. Medical oversight was limited, with
no mandatory exclusion times. Boxers often used
light gloves. Little care was taken to match evenly
weighted or evenly skilled boxers, and there was lit-
tle inclination to stop fights short of incapacitating
and often multiple TBI of a range of severities. The
emergence of neurological manifestations of TBI in
this setting is therefore not surprising.

Theoretical constructs suggesting a relationship
between TBI and chronic disease have evolved
considerably. Concussion-related hemorrhage was
suggested by Martland as a pathological substrate
for Punch Drunk, but was discarded by the 1940s.
Martland included autopsy data of acute TBI in
a non-boxer to support his theory, although there
was no mention of NFT or other neurodegen-
erative inclusions. The case itself depicted gross
features of diffuse axonal injury, suggesting confla-
tion with severe, acute TBI. Later pathogenic theory
by Millspaugh also emphasized acute traumatic
injury with no mention of NFT [179], suggesting
some difficulty with an explanation for chronic dis-
ease and disease progression. Interestingly, the first
report of microscopic neuropathology by Branden-
burg and Hallervorden in 1954 [182] indicated in
retrospect a case of early-onset, and likely famil-
ial autosomal dominant AD, having nothing to do
with boxing. The depiction of lesions that could aptly
be regarded as “cotton wool” plaques, early-onset
dementia, and extensive cerebral amyloid angiopathy
suggest presenilin 1 mutation [183].

In 1973, Corsellis and colleagues [174] reported
neuropathological features in 15 boxers from the
early 20th century, most of whom had severe neu-
rologic impairment. The findings included NFT,

prominent in the medial temporal lobe and out of
proportion to plaque pathology (distinguishing DP
from AD), loss of pars compacta neurons of the sub-
stantia nigra, scarring of the cerebellar tonsils, and
fenestrated cavum septum pellucidi. Thin fornices
and atrophy of the mammillary bodies were common
in this series. Vascular disease with infarcts and other
co-morbidities such as contusions, neurosyphilis,
and cavernous malformation were also present. The
NFT assumed primary importance, however, even-
tually placing DP in the lexicon of tauopathies,
and solidifying the notion of TBI-induced progres-
sive degenerative tauopathy, perhaps prematurely.
Careful examination of the clinical data and neu-
ropathology from historical cases casts doubt on
the concept of a progressive AD-like or PD-like
neurodegenerative disease, or otherwise progressive
degenerative tauopathy following a period of latency,
even among early 20th century boxer with extreme
levels of neurotrauma exposure [176].

The Corsellis et al. series was reported prior to the
advent of immunohistochemistry (i.e., the concept of
tauopathy), although case material from that series
was relied upon for later immunohistochemical stud-
ies [185-188], likely because of reduced neurotrauma
exposure in boxers and few new DP cases. Studies in
recent years more often include asymptomatic boxers
[189] (notwithstanding one death from acute TBI),
or boxers who became symptomatic from other neu-
rodegenerative diseases [190—193]. Boxing-related
neuropathology has also become progressively more
subtle, limited to immunohistochemical reactivity in
some cases [194]. In essence, there has been a shift
in case material from men with unambiguous neu-
rological signs due to head trauma from boxing, to
deceased men who happened to have boxed.

Attempts to link TBI to neurodegenerative tauopa-
thy in non-boxers from 2005 forward follow a similar
pattern. Subjects either lacked neurological signs
attributable to TBI or had other neurodegenerative
diseases. Diagnosis instead relies only on brain p-
tau interpretation [195, 196]. Identification of p-tau
in some cases requires whole brain screening with
free-floating immunohistochemistry of 50 wm hemi-
spheric sections obtained from a sledge microtome
[198]. Given the ubiquity of p-tau with age [170],
the high frequency of p-tau deposits in former Amer-
ican football players is not surprising [197], nor is
the fact that p-tau patterns attributed to TBI are
described in people with no history of neurotrauma
[198-202]. Data from other athlete cohorts are sparse,
but tend to be similar. Autopsy studies of p-tau in
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former soccer players, for example, describe p-tau
in athletes with either no neurological signs [203], or
neurological signs attributable to known neurodegen-
erative diseases [204-208].

In summary, available scientific evidence does not
demonstrate a causal link between athletic participa-
tion and progressive neurodegenerative tauopathy in
athletes, or for that matter a risk for genuine neurode-
generative disease [209], either from TBI inferred
from athletic participation or athletic participation in
general. Such a link would also be in conflict with
epidemiological data demonstrating that NFL ath-
letes in particular have better overall health (lower
cancer rates, lower mortality, better cardiovascular
health), and lower suicide rates [210], notwithstand-
ing a modest increase in AD and amyotrophic lateral
sclerosis (ALS) [211], which may be explained by the
lower mortality. Indeed, the superior overall health
of the NFL cohort, combined with the reported high
frequency of focal p-tau immunoreactivity, indicate
axiomatically that the focal p-tau as described has no
clinical impact across the group as a whole.

Military service members

Military service members are vulnerable to TBI
because of the nature of armed conflict and mili-
tary training, and also because of the increased use
of improvised explosive devices (IEDs) [212]. Most
military service-related TBIs since 2006 have been
associated with IED blasts [213]. Case reports and
small case series have likewise described focal p-tau
immunoreactivity patterns, hypothesized to be due
to blast-related TBI sustained in the service [214,
215]. Reports have gone so far as to suggest that
post-traumatic stress disorder may share common
neurobiological underpinnings with neurodegenera-
tive tauopathy [214-216].

Some studies have suggested that military service-
related TBI is a risk for AD specifically. A study of
World War II veterans suggested that AD risk was
increased in subjects with a history of moderate or
severe TBI in a dose dependent fashion, with moder-
ate TBI conferring roughly two-fold risk, and severe
TBI conferring a roughly four-fold risk [217]. The
study did not find an AD risk with mild TBI, which
is in line with one systematic review [218]. How-
ever, one recent, large-scale case-control study of US
veterans concluded that mild TBI without loss of con-
sciousness conferred a modest risk for dementia as
well as AD specifically [219]. The risk was higher
in mild TBI with loss of consciousness, and higher
still with moderate or severe TBI, again suggesting

a dose-dependent relationship between TBI and AD.
A recent large cohort study of civilians in Denmark
concluded that mild TBI conferred a modest risk for
both dementia and AD [220].

Causal assertions from epidemiological studies
remain hypothetical, however. The risks are over-
all modest as noted. The dose-response relationship
between AD and TBI severity is also problematic
in that severe TBI causes dementia and reduced life
expectancy, while AD increases exponentially after
middle age. Small relative risks in this setting may
be due to misclassification of TBI-related demen-
tia as AD in subset of cases. For example, Lewin
et al. [221] studied 75 severely head-injured patients
and found that patients often had dementia from
TBI, with few surviving more than a decade. In
another study, of 288,009 hospitalized survivors of
TBI, 124,626 developed long-term disability includ-
ing dementia [222]. Accurately assessing AD risk
in this setting may therefore require pathological
confirmation (generally not available in large scale
epidemiological studies), since moderate and severe
TBI often include structural brain damage [219] (e.g.,
contusion, laceration, diffuse axonal injury), which
may in turn cause “dementia.” To date, no longitu-
dinal study demonstrating the sequence of TBI, a
period of latency, clinical neurological deterioration,
and autopsy-confirmed AD has been presented. More
research is needed before the null hypothesis—that
the reported dose-response relationship with service-
related TBI and AD is a statistical artifact—can be
rejected.

Blast-related TBI has emerged as a major cause
of morbidity and mortality in military service. Blasts
have been the most common cause of injury in Amer-
ican soldiers since 2006; of the ~1 million veterans
screened for TBI between 2007 and 2015, 8.4%
reported TBI, the majority of which were mild and
associated with blast [213]. Injury to the brain asso-
ciated with blasts is heterogeneous [212]. Primary
blast injury due to positive and negative pressure
waves, secondary injury due to shrapnel, tertiary
injury due to acceleration of the head and body across
the war theater, and quaternary injury due any down-
stream pathology, including burns, lung injury, mass
effect from brain swelling, ischemic brain injury,
etc., are components of the blast injury complex.
Neuropathological sequelae of primary blast injury
are unclear, although early data suggest astroglial
scarring at sites of differing tissue density (gray-
white interface, periventricular tissue, perivascular
areas, subpial areas) [223]. P-tau proteinopathy was
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inconsistent in this series, arguing against the hypoth-
esis of blast-induced tauopathy.

Tau immunohistochemistry, TBI, and diagnostic
challenges

Given the complexities of tau biology as well as
the unproven concept that TBI causes neurodegener-
ative tauopathy, limitations in the diagnostic process,
for which there is a paucity of literature, may not be
fully appreciated (Table 8). Pathological assessment
and tissue sampling typically involve a multitude of
brain regions, the standards for which are variable and
evolving. Antibodies in common use for immunohis-
tochemistry react with only one of a large number
of candidate epitopes, and may have differing reac-
tivities as a function of epitope, time, and lesion
type [224]. Human tissue is limited to postmortem
brain, which is by definition partly decomposed and
subjected to phosphatase activity as noted above. Epi-
topes that survive phosphatase activity are amplified
by polymers [225], such that the tissue expression
overestimates the true amount of p-tau. Cross reac-
tivity is usually controlled for by omitting the primary
antibody rather than by absorption with purified pro-
tein. The extent to which p-tau antibodies react with
tau epitopes per se in any given case is, strictly speak-
ing, unclear.

Neuropathological assessment by immunohisto-
chemistry is therefore an entirely empirical exercise,
permitting no conclusions about the nuances of tau
pathobiology. The focus is instead on microscopic
morphology [118, 173], which may be misleading as
an indicator of disease or neurotoxicity (reviewed in
[226]). P-tau immunohistochemistry also calls atten-
tion to selective vulnerability, for which there is no
explanation. The questions of why, for example, the
neurons of the cerebellar cortex are spared of p-tau
even in end-stage neurodegenerative tauopathy, or

Table 8

Table 7
Some p-tau microscopic lesions

Neurofibrillary tangle
Flame-shaped neurofibrillary tangle
Globus neurofibrillary tangle
Ghost tangle

Pre-tangle

Dystrophic neurite

Neuropil thread

Grain

Tufted astrocyte

Equivocal tufted astrocyte
Coiled body

Astrocytic plaque

Globular astroglial inclusion
Ramified astrocyte

Thorny astrocyte

Fuzzy astrocyte

why the neurons of the locus ceruleus or the basal
nucleus of Meynert may accumulate p-tau early in
life, separately or together, are unanswered. Factors
responsible for AD variants such as limbic predomi-
nant AD and hippocampal sparing AD, are similarly
elusive [160].

Added to the diagnostic challenges are limitless
morphological variations and patterns of immunore-
activity [75, 173, 227] (Table 7). The NFT, dating
to the early 20th century [228], was the primary
lesion of interest until the identification of tau
as the major protein component of NFT and the
advent of immunohistochemistry. Neuropil threads,
dystrophic neurites, and a variety of morphologic
p-tau presentations within neurons in AD and
FTLD-tau were described subsequently [120, 229].
Various morphological subtypes of glial inclusion
are reported in recent literature, including tufted
astrocytes, oligodendroglial coiled bodies, astro-
cytic plaques, globular astroglial inclusions, ramified
astrocytes, “equivocal tufted astrocytes,” thorn-
shaped astrocytes, and granular or fuzzy astrocytes,

Challenges in addressing TBI-p-tau theory at autopsy

Poor correlation of p-tau accumulations with clinical signs

Frequent lack of detailed TBI history

Evolving standards for sampling, immunohistochemistry, and diagnosis

Subjectivity in interpreting p-tau accumulations and tissue architecture

Broadening spectrum of benign, age-related p-tau patterns

Lack of guidelines for assessing vascular disease, metabolic derangements, polypharmacy
Unknown error rate between and within neuropathologists

Variable clinical characterization of individual cases during life

Absence of genetic data

Broad public misunderstanding of TBI consequences driven by scientifically naive media
Absence of patient consequences for misdiagnosis at autopsy

Vulnerability to ipse dixit interpretation
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each considered somewhat specific among the
tauopathies [120, 227, 230-234]. The error rate in
distinguishing among these descriptive morpholo-
gies, irrespective of clinical correlation, is entirely
unknown.

Clinical correlations in neurodegenerative pro-
teinopathy are also more limited than may be
appreciated [235]. For example, AD proteinopathy
cannot predict the level of cognitive dysfunction
unless the pathology is end-stage [119]. Decedents
with a substantial level of p-tau pathology in their
medial temporal memory circuitry are often cogni-
tively normal [118]. In the elderly, proteinopathy is
virtually meaningless as a predictor of cognitive func-
tion by blinded analysis [236]. Proteinopathy cannot
distinguish clinical Parkinson’s disease from the clin-
ical presentation of Lewy body dementia [237]. PSP
p-tau pathology may be associated with CBD clinical
manifestations, and vice versa. Both PSP and CBD
p-tau pathology may occur in patients with the behav-
ioral variant of frontotemporal dementia or primary
progressive aphasia [238]. Patients with frontotem-
poral lobar degeneration may show signs of ALS,
and patients with ALS may develop the spectrum
of frontotemporal dementia phenotypes [238], none
of which have been shown to correlate with pro-
teinopathy burden with any degree of precision. The
presence of neurodegeneration, i.e., neuronal/axonal
degeneration, has an inconsistent relationship with
p-tau pathology in CBD and PSP [120]. Clinical
signs correlate more with neurodegeneration than
proteinopathy [120], suggesting that proteinopathy
may be epiphenomenal in some cases. This may
explain substantial proteinopathy with intact cogni-
tion [118, 170, 173, 236], or the lack of a clinical
correlate of p-tau pathology described in former ath-
letes or military service members. There are also few
guidelines for assessing metabolic derangements,
numerous medications, and microvascular disease
[239], which influence cognition independent of pro-
teinopathy.

Some guidance is available in terms of consen-
sus recommendations [118, 119, 173, 238, 240-242],
although these tend to be provisional and subject
to repeated modification. Because of the nature of
consensus guidelines, i.e., the formal recognition
that the science is unresolved, their application in
neuropathology tends toward precision (consistency
in pathological assessment), rather than accuracy
in identifying clinical disease. This is reflected in
consensus recommendations for AD, in which the
preferred terminology is “Alzheimer’s disease neu-

ropathologic change,” irrespective of clinical findings
during life [119]. Similarly, consensus recommen-
dations for frontotemporal lobar degeneration are
concerned with patterns of neuropathology rather
than clinical subtypes [242].

Added to the bewildering array of pathological
lesions and clinical correlations, is the human ele-
ment. The breadth of circumstances associated with
prospective case material, and interpretation for the
sake of diagnosis for interested families, may be con-
siderable. Any given case may present with little or
no clinical information, and variably rigorous clinical
disease classification during life. The specialization
of treating physicians may vary from general family
practitioners to neurologists with specific expertise
in dementia and movement disorders. Genetic data
is often not available. Imaging studies may cloud
the diagnostic process by suggesting some condi-
tions over others based on variable image acquisition
sequences and soft anatomical data.

The diagnostic process may be even more
challenging in the arena of presumed repetitive neu-
rotrauma. TBI history may be absent or incomplete,
or inferred from a history of athletic participation or
military service. Surviving next-of-kin may believe
that recent onset of psychiatric signs is due to sport
participation many decades prior. A family may
be struggling with an inexplicable neurodegenera-
tion in a family member. They may believe that
concussion causes suicidal ideation or neurodegener-
ation because of scientifically naive media reporting
[243-245], or they may be unwilling or unable to
accept that a family member took his or her own life.
Families may demand that certain items appear or
not appear on death certificates, or they may be inter-
ested in seeking damages from a third party, which
may in turn lead to profligate tissue sampling and p-
tau immunostaining in an attempt to confirm a desired
diagnosis. The diagnostic process further takes place
in the autopsy setting, in which misdiagnosis has no
impact on the patient. These factors taken together
may encourage ipse dixit interpretation, and present
major challenges to objective and accurate disease
classification.

Conclusions

The foundation for tau toxicity theory dates to
Alzheimer’s description of the NFT in 1906. It
began in earnest with the identification of tau,
a protein co-factor involved in the polymeriza-
tion of tubulin, as a major protein component of
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the NFT. Subsequent pathogenic theory, includ-
ing kinase-phosphatase imbalance, soluble assembly
intermediates, and prion-like propagation, is rooted
in the concept that pathological lesions represent
neurotoxicity. The limiting factor for this neuro-
toxicity bias may be the light microscope. But
for the visible microscopic inclusions, p-tau neu-
rotoxicity theory and the extensive literature that
now accompanies it, would not exist. The ques-
tion nevertheless remains whether neurodegenerative
inclusions embody a dynamic, primary etiopatho-
genesis, or instead downstream epiphenomena that
distract from a more fundamental upstream biology.

Investigations from multiple perspectives includ-
ing molecular, genetic, experimental, pathological,
and clinical, indicate complex tau biology that
bridges normal metabolic processes, neurodevelop-
ment, healthy aging, and neurodegenerative disease.
Normal tau, including tau phosphorylation, is nec-
essary for development, cell cycle activity, synaptic
function, and neuroplasticity. P-tau in postmortem
brain may tend toward buried epitopes, insolubility,
and limited biological meaning. Clinicopathological
correlations with inert p-tau inclusions are fraught
with imprecision. Neurodegeneration in the true
sense, that is degeneration of neurons with an asso-
ciated tissue reaction, is the better clinical correlate,
while p-tau immunoreactivity in the absence of neu-
rodegeneration and clinical signs may be extensive.
P-tau neuropathology is ultimately a superficial indi-
cator of tau pathophysiology, and may be misleading
in terms of cause and effect.

Uncertainties in the repetitive TBI-tauopathy
paradigm are considerable. TBI definitions are
widely variable. Thresholds for mechanical tissue
injury are impossible to quantify. Human data in ath-
letes are limited to case reports and heterogeneous
case series with little to no TBI history other than that
inferred from participation. Brain tissue interpreta-
tion may require expensive, labor-intensive research
methodology that has yet to be validated for diagnos-
tic purposes. The concept of a decades’ long period of
latency between TBI exposure and neurodegenerative
disease is often asserted, but has not been convinc-
ingly demonstrated, even in boxers. P-tau, especially
p-tau identified in postmortem brain, is debatable as
adriver of clinical disease, and is in part an artifact of
postmortem decomposition. Importantly, epidemio-
logical data indicate better overall health in the NFL
athlete cohort, compared to the control population,
casting doubt on the idea of a pervasive neurodegen-
erative disease from athletic participation. In former

military service members, epidemiological studies
of dementia or AD (and associated tauopathy) risk
with mild TBI show modest risk or no risk, which
essentially precludes causality. The dose-dependent
risk of AD with TBI severity is based on large-scale
epidemiology with no pathological confirmation
of tauopathy. To these uncertainties and contrary
data are added the tau prion concept, soluble low-
n assembly intermediates, and geometric isomers,
making for limitless theoretical possibilities and
the potential for constructs more metaphysical than
biological.

Finally, the diagnostic process with respect to
tauopathy in postmortem brain is problematic. Clin-
ical correlation is poor, standard methodology for
postmortem brain examination is lacking, diagnostic
error rates are unknown, and there may be exter-
nal influences that degrade diagnostic accuracy. Such
challenges, along with the consequence-free envi-
ronment of postmortem diagnosis, may risk autopsy
confirmation of individual preferences rather than
genuine neurodegenerative disease.
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