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Abstract

Staphylococcus aureus frequently invades the human bloodstream, leading to life threatening bacteremia and often
secondary foci of infection. Failure of antibiotic therapy to eradicate infection is frequently described; in some cases
associated with altered S. aureus antimicrobial resistance or the small colony variant (SCV) phenotype. Newer antimicrobials,
such as linezolid, remain the last available therapy for some patients with multi-resistant S. aureus infections. Using
comparative and functional genomics we investigated the molecular determinants of resistance and SCV formation in
sequential S. aureus isolates from a patient who had a persistent and recurrent S. aureus infection, after failed therapy with
multiple antimicrobials, including linezolid. Two point mutations in key staphylococcal genes dramatically affected clinical
behaviour of the bacterium, altering virulence and antimicrobial resistance. Most strikingly, a single nucleotide substitution
in relA (SACOL1689) reduced RelA hydrolase activity and caused accumulation of the intracellular signalling molecule
guanosine 39, 59-bis(diphosphate) (ppGpp) and permanent activation of the stringent response, which has not previously
been reported in S. aureus. Using the clinical isolate and a defined mutant with an identical relA mutation, we demonstrate
for the first time the impact of an active stringent response in S. aureus, which was associated with reduced growth, and
attenuated virulence in the Galleria mellonella model. In addition, a mutation in rlmN (SACOL1230), encoding a ribosomal
methyltransferase that methylates 23S rRNA at position A2503, caused a reduction in linezolid susceptibility. These results
reinforce the exquisite adaptability of S. aureus and show how subtle molecular changes cause major alterations in bacterial
behaviour, as well as highlighting potential weaknesses of current antibiotic treatment regimens.
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Introduction

The factors promoting persistence of bacterial infection in the

face of apparently effective antimicrobial therapy have not been

clearly defined. This particularly applies to Staphylococcus aureus,

especially methicillin-resistant S. aureus (MRSA), which remains a

major human pathogen that frequently causes invasive disease,

often associated with a high mortality rate [1,2,3]. A number of

bacterial factors have been associated with persistent bacteremia

and failed antimicrobial therapy for serious MRSA infections,

including reduced activity of the quorum sensing system agr,

resistance to host antimicrobial peptides, and the evolution of

reduced vancomycin susceptibility in patients treated with this

antibiotic [4,5]. Although traditionally considered an extracellular

organism, recently it has been demonstrated that S. aureus can

reside and persist in an intracellular state [6]. A staphylococcal

phenotype that appears to be particularly associated with cellular

invasion and clinical persistence is the small colony variant (SCV)

phenotype [6,7]. This is phenotypically characterised by reduced

growth rate, small colony size and in some cases auxotrophism for

hemin or menadione, related to mutations in genes encoding

products involved in the electron transport system. Small colony

variants of S. aureus have been associated with persistent and

recurrent S. aureus infections, and with increased antimicrobial

resistance [7]. The mechanisms of the SCV phenotype in S. aureus

have been investigated in detail over a number of years. Defined

hemB and menD mutants [6,7] of laboratory S. aureus strains have

defects in electron transport, and have demonstrated global

transcriptional changes [8], increased cellular attachment, inva-

sion and persistence [9,10,11], reduced antibiotic susceptibility
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[12], and reduced virulence [13]. However, despite this significant

work the molecular correlates of persistence have not been

definitively elucidated in clinical isolates of S. aureus.

One important bacterial response to stress and nutritional

starvation, including antimicrobial challenge, is activation of the

stringent response, mediated by intracellular accumulation of the

alarmones ppGpp and pppGpp [(p)ppGpp], which are usually

controlled by the activities of a synthetase (RelA) and a hydrolase

(SpoT) [14]. In gram positive organisms, including S. aureus, a

single rel gene encodes a protein with synthetase and hydrolase

domains that controls the stringent response under stressful

conditions, while other synthetases such as RelP and RelQ

provide basal levels of (p)ppGpp during non stressful conditions

[14,15,16,17]. The stringent response has been associated with

persistence of infection in Mycobacterium tuberculosis, where it is

important for the long term survival of the organism [18], and

recently has been linked with growth defects and vancomycin

tolerance in E. faecalis [17]. However, different bacteria have

developed different strategies to utilize the alarmones in

intracellular signalling, with diverse regulatory changes found in

different organisms [19]. The impact of an active stringent

response has not been studied in S. aureus, mainly because a

functional hydrolase domain of the RelA/SpoT homolgue in S.

aureus (RelA) is essential for survival of the organism [19,20,21].

Although mupirocin is a strong inducer of the stringent response

in S. aureus and has been used to investigate the transcriptional

profile of an active stringent response in this organism, it also

leads to RelA/SpoT independent transcriptional changes [19,22],

indicating that the mupirocin model alone is not an optimal

strategy to study the stringent response in this organism.

Although it could be anticipated that the bacterial stringent

response would play a role in the adaptation of S. aureus to

antimicrobial challenge during persistent infection, this has not

been previously reported.

For many years vancomycin has been the mainstay of therapy

for serious MRSA infections [5]. However, with increasing

antimicrobial resistance in MRSA, including resistance to

vancomycin, the newer, novel antimicrobials such as linezolid

and daptomycin are the last available therapies in some patients

[5]. While there are increasing reports of daptomycin non-

susceptible S. aureus strains [23], reports of reduced linezolid

susceptibility in S. aureus have, to date, been rare. Linezolid is the

first in a new class of antimicrobials, the oxazolidinones, that bind

to the A site of the peptidyl transferase centre (PTC) of the

bacterial ribosome [24], inhibiting bacterial ribosomal protein

synthesis. Resistance to linezolid in S. aureus has primarily been

related to target site mutations in domain V of 23S rRNA,

especially the G2576U mutation [25,26]. Recently, however, a

naturally occurring resistance gene cfr, which encodes Cfr

methyltransferase and leads to modification of adenosine at

position 2503 in 23S rRNA has been described in a single S.

aureus isolate from Columbia, and in two staphylococcal clinical

isolates from the USA [27,28]. The cfr gene on the chromosome

was associated with mobile genetic elements, suggesting the

resistance mechanism may be transferable [27]. The S. aureus

genome encodes a number of conserved RNA methyltransferases,

including RlmN (encoded by SACOL1230), and although

methylation of rRNA is a common mechanism of acquired

antimicrobial resistance [29], mutations in chromosomally encod-

ed RNA methyltransferases have not been linked to reduced

linezolid susceptibility in S. aureus.

Recently, we treated a patient with persistent and recurrent

methicillin-resistant S. aureus (MRSA) bacteremia despite extensive,

appropriate antimicrobial therapy. The clinical isolates obtained

following treatment demonstrated significant antimicrobial resis-

tance, including reduced susceptibility to linezolid, and features

characteristic for small colony variant strains (SCV) of S. aureus

[6,7]. However, phenotypic features suggested that mutations were

not present in hemin or menadione biosynthesis genes. Therefore

we investigated the mechanisms of persistence and antimicrobial

resistance in these isolates using a combined comparative and

functional genomics approach, and discovered a clinical isolate

with a persistently activated stringent response, and a novel

mechanism of reduced linezolid susceptibility.

Results

Clinical details
A 73-year old man with end-stage renal failure was admitted

with line related methicillin-resistant S. aureus (MRSA) bacter-

emia. The MRSA was susceptible to clindamycin, trimethoprim-

sulfamethoxazole, ciprofloxacin, vancomycin, rifampicin and

fusidic acid. He was commenced on intravenous vancomycin,

and due to persistent S. aureus bacteremia, rifampin and

ciprofloxacin were added. After 16 days of ongoing bacteremia

and detection of heterogeneous vancomycin-intermediate S.

aureus (hVISA), vancomycin was changed to oral linezolid and

he completed 18 days of linezolid combined with rifampicin and

ciprofloxacin. Multiple investigations including transesophageal

echocardiogram, computed tomography of brain, chest, abdo-

men, pelvis and lumbar spine, and white cell/SPECT imaging

did not reveal any definite focus. Eleven days later he developed

fever, hypotension and back pain and blood cultures were again

positive for MRSA, on this occasion a small colony variant

(SCV). He was recommenced on oral linezolid and completed 6

weeks of therapy. Five days later he developed severe lumbar

back pain and raised inflammatory markers. A single blood

culture and a lumbar aspirate from the L3–4 region again

cultured SCV-MRSA (Fig. 1). He was commenced on intrave-

nous linezolid and completed 6 weeks of therapy, and was

changed to trimethoprim-sulfamethoxazole for long-term sup-

pressive treatment. Pulsed field gel electrophoresis demonstrated

Author Summary

The treatment of serious infections caused by Staphylo-
coccus aureus is complicated by the development of
antibiotic resistance, and in some cases the appearance of
more persistent bacteria that have a reduced growth rate
resulting in small colony variants (SCV). Here we have
shown using whole genome sequencing and gene
replacement experiments on sequential S. aureus isolates
obtained from a patient with a serious bloodstream
infection, how S. aureus evolved into a multi-antibiotic
resistant, persistent and almost untreatable SCV. Specifi-
cally we show that a minor DNA change in a S. aureus gene
encoding an enzyme called RelA causes an accumulation
of a small signalling molecule called (p)ppGpp, which in
turn leads to persistent activation of the important
bacterial stress response known as the stringent response.
This is the first report of the involvement of the stringent
response in S. aureus SCV formation and its association
with persistent infection. Additionally, we have uncovered
a novel mechanism of resistance to the new antimicrobial
linezolid, caused by a mutation in a gene encoding a 23S
rRNA methyltransferase. This study highlights the exquisite
adaptability of this important pathogen in the face of
antimicrobial treatment.
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that the SCV strain JKD6229 emerged from the parental strain

(JKD6210) [5] (Fig. 1), but JKD6229 did not demonstrate

auxotrophism for hemin or menadione [7]. Both strains were

multi-locus sequence type 5. During failed therapy, resistance to

ciprofloxacin, rifampin and reduced susceptibility to linezolid

developed (Table 1).

Microarray transcriptional analysis
Initially, to understand the molecular determinants of clinical

persistence in the SCV-MRSA isolate JKD6229 the transcriptional

profile was analysed. Using microarray transcriptional analysis

significant global gene expression changes were found in the SCV

strain (JKD6229) compared to the parental strain (JKD6210) (349

genes up-regulated and 175 genes down-regulated $2-fold (see Fig. 2,

Table 2 and Table S1). Changes included pronounced up-regulation

(up to 80-fold) of genes encoding capsule biosynthesis in JKD6229

(cap5A to cap5P; SAV0149 to SAV0164). To confirm the biological

impact of capsule gene transcriptional changes the capsule type of

JKD6210 and JKD6229 was confirmed as type 5 by PCR [30], and a

capsule immunoblot was then performed. This demonstrated

significant enhancement of capsule production in JKD6229

compared to the parental strain JKD6210 and the capsule type 5

control strain Newman (Fig. 2B).

Intracellular persistence and the SCV phenotype of S. aureus has

previously been associated with down regulation or complete loss

of activity of the global quorum sensing accessory gene regulator

(agr) [31], however all genes encoding the agr locus (SAV2036 to

SAV2039) and the delta-hemolysin precursor (SAS1940a) were

significantly up-regulated in the SCV strain JKD6229 (2 to 10-fold

increased expression). Associated with this was up-regulation of

two genes encoding exotoxins (alpha-hemolysin [SAV1163], 5.9-

fold increase; enterotoxin P [SA1761], 2.8-fold increase), however

the SAV1163 orthologue in JKD6210 and JKD6229 was found to

be a pseudogene because of a point mutation introducing a

premature stop codon.

Distinct differential regulation of genes involved in carbohy-

drate transport and metabolism, amino acid metabolism and

oligopeptide transport was also detected. Genes involved in lactose

utilization and galactose metabolism (SAV2189-SAV2194) were

remarkably down-regulated (up to 100-fold), with similar changes

found in genes encoding key glycolysis enzymes such as pgi

(SAV0962, glucose-6-phophate isomerase), while genes with

products potentially involved in metabolism of alternative carbon

sources such as sucrose, fructose and galactitol (scrA, gatC, fruA,

fruB) were up-regulated in SCV JKD6229. Amino acid metabo-

lism was another distinct functional class that was up-regulated in

SCV JKD6229. Genes encoding valine, leucine and isoleucine

biosynthesis enzymes showed increased expression, as did genes

such as rocD (SAV0957) and argJ (SAV0183) linked to ornithine

and arginine production. Striking too was the up-regulation of the

Opp3 oligopeptide transport system (SAV0986–SAV0994). Opp3

facilitates the acquisition 4–8 aa-long peptides from the extracel-

lular environment and it is the only known functional oligopeptide

transport system in S. aureus [32].

Figure 1. Clinical features and antimicrobial therapy. The major features of the clinical case and the relevant clinical isolates are demonstrated.
Included are photos of overnight cultures on HBA depicting the normal MRSA strain (JKD6210) and the SCV strain (JKD6229) isolated after many
weeks of failed antimicrobial therapy. Pulsed field gel electrophoresis results of SmaI digested DNA from the paired clinical isolates are also included
(lane 1 JKD6210, lane 2 JKD6229) and demonstrate an identical banding pattern for the two strains. #Note, JKD6229 demonstrated reduced linezolid
susceptibility within the susceptible MIC range.
doi:10.1371/journal.ppat.1000944.g001
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Whole genome comparison of SCV JKD6229 and parent
strain JKD6210

The prominent transcriptional changes detected in JKD6229

compared to JKD6210 suggested SCV JKD6229 had undergone

important genetic changes. In addition, the transcriptional profile

of SCV JKD6229 was significantly different to the transcriptional

profile of the SCV hemB mutant, suggesting that mutations in other

genes may be contributing to the SCV phenotype of this strain [8].

Therefore whole genome sequencing and comparison of the

parental MRSA strain JKD6210 and the SCV JKD6229 was

performed. Illumina short-read sequencing yielded 2.7 Mb of

mappable data for each genome. After detailed reciprocal

sequence comparisons and comparisons against the reference

genomes S. aureus COL and S. aureus N315, the only changes

detected in JKD6229 compared to JKD6210 were two nucleotide

substitutions, two codon insertions, and the loss of a ,15 kb

plasmid (Table 3). The sequences for JKD6210 and JKD6229

were aligned to the genome sequence of N315 (also MLST 5–the

same as JKD6210 and JKD6229) and this demonstrated that

97.2% of N315 was covered to a depth of $20 in both JKD6210

and JKD6229. The regions not covered in N315 by the JKD6210

sequence were the same as the regions not covered by the

JKD6229 sequence. PCR and Sanger sequencing confirmed the

presence of each mutation in SCV JKD6229, and PCR and

plasmid analysis confirmed the loss of the plasmid in JKD6229.

Annotation and BLAST analysis of the plasmid (denoted as

pJKD6210) revealed a pUSA300-HOU-MS-like replicon (Fig. 3)

with genes encoding beta-lactam resistance, but absence of the

genes encoding cadmium resistance that are present on pUSA300-

HOU-MS [33]. All four changes in nucleotide sequence were

associated with a predicted amino acid change or addition,

suggesting one or more of these mutations might be responsible for

the phenotypic changes in JKD6229.

Two of the four mutations clearly corresponded with the

acquired antibiotic resistance of SCV JKD6229. The change in

rpoB that led to a H481Y substitution is a mutation commonly

linked with rifampin resistance in S. aureus [34] and the amino

acid insertion in parC (encoding Topoisomerase IV) likely

contributed to reduced ciprofloxacin susceptibility in this strain.

Single mutations in topoisomerase IV without additional

mutations in DNA gyrase are often associated with low-level

quinolone resistance [35], as demonstrated in JKD6229

(Table 1).

A novel mutation in SACOL1230 contributed to reduced
linezolid susceptibility in JKD6229

The ‘CAA’ insertion in SACOL1230, encoding RlmN, a

ribosomal RNA large subunit methyltransferase, was associated

with the linezolid exposure of SCV JKD6229. RlmN methylates

23S ribosomal RNA at adenosine 2503, and deletion of the gene

renders S. aureus more susceptible to linezolid [36]. Linezolid

resistance in clinical isolates of staphylococci is often linked to

G2576T mutations in domain V of the 23S rRNA genes [37] or

acquisition of a plasmid-encoded cfr (methyltransferase), which

also methylates ribosomal RNA at position 2503 [28]. Interest-

ingly, a 23S rRNA T2500A mutation has also been previously

Table 1. Strains and plasmids used in this study.

MIC (mg/mL)

Strain or plasmid Properties VANa TEIa GEN LINa DAP TIG RIF CIP Ref

Strain

Isolate Pair

JKD6210 VSSA, RIFS, CIPS. Day 0 BC isolate 4.0 3.0 0.38 0.75 0.19 0.19 0.023 0.5 This study

JKD6229 SCV, RIFR, CIPR. Day 107 spinal aspirate 8.0 8.0 0.38 2.0 0.38 0.19 .256 2.0 This study

Others

JKD6301 JKD6210 with point mutation in relA from
JKD6229

4.0 3.0 0.50 0.75 0.19 0.19 0.023 0.5 This study

JKD6300 JKD6210 with ‘‘CAA’’ insertion in
SACOL1230 from JKD6229

NT NT NT 2.0 NT NT NT NT This study

RN4220 S. aureus strain capable of stably
maintaining shuttle plasmids

[71]

P1 Capsule type 8 positive [72]

Newman Capsule type 5 positive [72]

E. coli DH5a NEB

Plasmids

pKOR1 E. coli/S. aureus shuttle vector for the
construction of allelic-exchange mutants

[39]

pJKD6318 pKOR1 with the relA loci from JKD6229,
generated with oligos P-relA-F-AttB1
and P-relA-R-AttB2

This study

pJKD6319 pKOR1 with the SACOL1230 loci from
JKD6229, generated with oligos
P-CAA-F-attB1 and P-CAA-R-AttB2

This study

NB. aVancomycin, Teicoplanin and Linezolid Etest performed with 2McF suspension. SCV, small colony variant. VAN, vancomycin; TEI, teicoplanin; GEN, gentamicin; LIN,
linezolid; DAP, daptomycin; TIG, tigecycline; RIF, rifampin; CIP, ciprofloxacin; NT, not tested. NOTE, JKD6210 was vancomycin-susceptible by standard Etest and
vancomycin population analysis profile (PAP) testing.
doi:10.1371/journal.ppat.1000944.t001
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linked to linezolid resistance in a clinical isolate of S. aureus [38],

but mutations in SACOL1230 have never been reported. The

‘CAA’ insertion in JKD6229 is predicted to incorporate an

additional glutamate to the motif (DIDACCGQ’Q’) at the

extreme C-terminus of the enzyme, a motif that is absolutely

conserved among diverse Gram positive and negative bacteria

[36]. An allelic replacement experiment was performed, where

the normal SACOL1230 sequence from JKD6210 was replaced

with the mutated SACOL1230 allele from JKD6229 using

pKOR1 [39]. The SCV clinical strain (JKD6229) and the mutant

JKD6300 (JKD6210 with SACOL1230 ‘CAA’ insertion) both

demonstrated an increase in linezolid MIC within the susceptible

Figure 2. Microarray transcriptional analysis of SCV strain JKD6229 and parental strain JKD6210. A) Results of microarray
transcriptional analysis of JKD6229 (SCV) compared to JKD6210 (MRSA). Up-regulated genes (in red) are differentially up-regulated in JKD6229
compared to the parent strain JKD6210, and the down-regulated genes (in green) are differentially down-regulated in JKD6229 compared to
JKD6210. The heat map analysis highlights the proportion of each cluster of orthologous groups (COG) functional group [70] that is differentially
regulated in the array analysis. This clearly demonstrates global transcriptional changes in the SCV strain, affecting genes from all COG groups. J
is associated with translation, ribosomal structure and biogenesis; K is related to transcription; L is related to replication, recombination and
repair; B is related to chromatin structure and dynamics; D is related to cell cycle control, cell division, chromosome partitioning; V is related to
defence mechanisms, T is related to signal transduction mechanism; M is related to cell wall, membrane and envelope biogenesis; N is related to
cell motility; U is related to intracellular trafficking, secretion, and vesicular transport; O is related to posttranslational modification, protein
turnover, chaperones; C is related to energy production and conversion; G is related to carbohydrate transport and metabolism; E is related to
amino acid transport and metabolism; F is related to nucleotide transport and metabolism; H is related to coenzyme transport and metabolism; I
is related to lipid transport and metabolism; P is related to inorganic ion transport and metabolism; Q is related to secondary metabolites
biosynthesis, transport and catabolism; R and S are function unknown or general function prediction only categories. B) Anti-capsule type 5
immunoblot of serial dilutions of crude capsule extracts from JKD6210, JKD6229, and control strains Newman (Cap5 positive) and P1 (Cap8
positive), demonstrating a marked increase in capsule production in the SCV strain JKD6229, consistent with the microarray transcriptional
profiles.
doi:10.1371/journal.ppat.1000944.g002
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Table 2. Selected genes differentially regulated in JKD6229 compared to JKD6210 based on microarray transcriptional analysis.

Locus_tag Gene Putative product
Fold ratio
(JKD6229:JKD6210)

CELL ENVELOPE: Capsule Biosynthesis

SAV0149 capA capsular polysaccharide synthesis enzyme Cap5A 13.3

SAV0150 capB capsular polysaccharide synthesis enzyme Cap5B 10.9

SAV0151 capC capsular polysaccharide synthesis enzyme Cap8C 12.0

SAV0152 capD capsular polysaccharide synthesis enzyme Cap5D 60.2

SAV0153 capE capsular polysaccharide synthesis enzyme Cap8E 25.7

SAV0154 capD capsular polysaccharide synthesis enzyme Cap5F 80.7

SAV0155 capF capsular polysaccharide synthesis enzyme Cap5G 23.0

SAV0156 capG capsular polysaccharide synthesis enzyme Cap5H 19.0

SAV0157 capI capsular polysaccharide synthesis enzyme Cap5I 39.3

SAV0158 capJ capsular polysaccharide synthesis enzyme Cap5J 14.5

SAV0159 capK capsular polysaccharide synthesis enzyme Cap5K 10.3

SAV0160 capL capsular polysaccharide synthesis enzyme Cap5L 7.2

SAV0161 capM capsular polysaccharide synthesis enzyme Cap5M 4.6

SAV0162 capN capsular polysaccharide synthesis enzyme Cap5N 11.9

SAV0163 capO capsular polysaccharide synthesis enzyme Cap5O 2.9

REGULATORY FUNCTIONS:

SAS1940a hld delta-hemolysin precursor 10.3

SAV2036 agrB accessory gene regulator B 3.0

SAV2037 agrD accessory gene regulator D 2.2

SAV2038 agrC accessory gene regulator C 6.4

SAV2039 agrA accessory gene regulator A 2.8

CELLULAR PROCESSES: Pathogenesis

SAV0111 spa Immunoglobulin G binding protein A precursor 0.4

SAV2502 fnbB fibronectin-binding protein homolog 2.4

SAV2503 fnbA fibronectin-binding protein homolog 2.8

Toxin production

SA1761 sep enterotoxin P 2.8

SAV1163 hly alpha-hemolysin precursor 6.0

Superantigen-like

SAS0387 Exotoxin 0.5

SAV0433 set15 Exotoxin 15 0.3

CARBOHYDRATE TRANSPORT AND
METABOLISM:

Down-regulated

SACOL2180 lacG 6-phospho-beta-galactosidase 0.03

SAR2281 lacE PTS system, lactose-specific IIBC component 0.4

SAS0164 glucose-specific PTS transporter protein, IIABC component 0.2

SAS2090 6-phospho-beta-galactosidase 0.04

SAS2096 galactose-6-phosphate isomerase 0.01

SAV0189 glcA glucose-specific PTS enzyme II 0.2

SAV0242 maltose and glucose-specific PTS enzyme II 0.1

SAV0962 pgi glucose-6-phosphate isomerase 0.3

SAV2189 lacG 6-phospho-beta-galactosidase 0.01

SAV2190 lace PTS system, lactose-specific IIBC component 0.02

SAV2191 lacF PTS system, lactose-specific IIA component 0.02

SAV2192 lacD tagatose 1,6-diphosphate aldolase 0.01

SAV2193 lacC tagatose-6-phosphate kinase 0.01

SAV2194 lacB galactose-6-phosphate isomerase 0.03

Persistent S. aureus Infection
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range when an Etest using a 2 McFarland inoculum was used

(Table 1).

A mutation in SACOL1689 (relA) permanently activated
the stringent response in SCV strain JKD6229

The fourth mutation occurred in SACOL1689. Based on high

amino acid sequence similarity (71% amino acid similarity) to an

ortholog in Streptococcus mutans, SACOL1689 (relA) is predicted to

encode a bifunctional enzyme that modulates the amount of the

intracellular signalling molecules guanosine 39-diphosphate 59-

triphosphate and guanosine 39, 59-bis(diphosphate), abbreviated to

(p)ppGpp [40]. Accumulation of (p)ppGpp, activates the bacterial

stringent response leading to a switch to ‘‘survival mode’’ [17,18].

The mutation in relA (SACOL1689) was of particular interest with

respect to SCV formation because of the involvement of this gene

in the bacterial stringent response and the potential impact on

growth characteristics of an enhanced stringent response.

Additionally, the microarray transcriptional profile of JKD6229

Locus_tag Gene Putative product
Fold ratio
(JKD6229:JKD6210)

SAV2256 glucose uptake protein homolog 0.5

SAV2538 ptsG PTS system, glucose-specific II ABC component 0.3

Up-regulated

MW2435 fructose-bisphosphatase (fbp) 2.2

SAS0431 sugar-specific PTS transport system, IIBC component (trehalose) 2.2

SAS1448 maltose operon transcriptional repressor 7.5

SAV0247 gatC probable PTS galactitol-specific enzyme IIC component 2.0

SAV0700 fruA PTS system, fructose-specific IIBC component 2.2

SAV1507 malA alpha-D-1,4-glucosidase 5.7

SAV1508 malR maltose operon transcriptional repressor 8.0

SAV2377 scrA PTS system, sucrose-specific IIBC component 3.0

SAV2506 gntK gluconokinase 8.5

SAV2507 gntR gluconate operon transcriptional repressor 4.1

SAV2516 fbp fructose-bisphosphatase 3.6

ENERGY METABOLISM: TCA Cycle

SAV1147 sdhC succinate dehydrogenase cytochrome b-558 9.4

SAV1148 sdhA succinate dehydrogenase flavoprotein subunit 2.9

SAV1413 kgd alpha-ketoglutarate decarboxylase 2.1

SAV1695 citZ methylcitrate synthase 5.8

SAV1791 pckA phosphoenolpyruvate carboxykinase 2.3

AMINO ACID METABOLISM:

SAV0962 rocD ornithine—oxo-acid transaminase 2.64

SAV0986 opp3B oligopeptide transport permease, Opp3B 2.53

SAV0987 opp3C oligopeptide transport permease, Opp3C 4.94

SAV0988 opp3D oligopeptide transport ATP-binding protein, Opp3D 7.27

SAV0989 opp3F oligopeptide transport ATP-binding protein, Opp3F 7.36

SAV0990 opp3A oligopeptide binding protein, Opp3A 6.06

SAV0994 oligopeptide transport system permease 3.19

SAV1023 htrA Serine protease HtrA 3.34

SAV1083 argJ bifunctional ornithine acetyltransferase/N-acetylglutamate
synthase, ArgJ

2.61

SAV1085 ornithine aminotransferase 2.69

SAV2053 ilvD dihydroxy-acid dehydratase 6.03

SAV2054 ilvB acetolactate synthase large subunit 4.54

SAV2057 leuA 2-isopropylmalate synthase 7.07

SAV2058 leuB 3-isopropylmalate dehydrogenase 2.58

SAV2059 leuC isopropylmalate isomerase large subunit 4.81

SAV2060 leuD 3-isopropylmalate dehydratase small subunit 3.32

SAV2062 hypothetical protein 2.01

NOTE, the full list of differentially regulated genes is available in Table S1.
doi:10.1371/journal.ppat.1000944.t002

Table 2. Cont.
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suggested the stringent response was active in this strain, with

upregulation of amino acid catabolism pathways, significant over

expression of genes encoding oligopeptide transport proteins, up-

regulation of genes associated with isoleucyl tRNA limitation

(including ilvB and ilvD, 4 to 6-fold increase; and leuABCD, up to 7-

fold increase) [41], over expression of genes encoding extracellular

proteases (hrtA, splB, SAV1612, SAV1613), and up-regulation of

the quorum sensing system agr. The transcriptional profile was

very similar to the profile of S. aureus after in vitro induction of the

stringent response by exposure to mupirocin, an agent that inhibits

isoleucyl tRNA synthetase [22].

Structural and functional studies of RelA in Streptococcus mutans

(RelASm) have shown that the enzyme can modulate intracellular

levels of (p)ppGpp through a N-terminal hydrolase domain and C-

terminal synthetase domain that act antagonistically in a ligand-

dependant manner, either by degrading (p)ppGpp within the

hydrolytic domain or converting GDP or GTP to (p)ppGpp within

the synthetic domain [40]. Scanning mutagenesis of RelASm has

defined regions of the enzyme that are critical for its hydrolytic

function [40]. An alignment of the N-terminus of RelA from SCV

JKD6229 (RelASCV) with RelASm shows that the F128Y mutation

occurred in a region known to be critical for hydrolase function in

S. mutans (Fig. 4A). Thus, the alignment data and microarray

results suggested that RelASCV might have impaired (p)ppGpp

hydrolase function leading to an accumulation of (p)ppGpp and

the persistent activation of the stringent response. To confirm that

the RelA F128Y mutation was causing accumulation of (p)ppGpp,

the relA allele from SCV JKD6229 was introduced into the

parental strain JKD6210, and ppGpp levels were measured using

the fluorescent chemosensor PyDPA [42]. As predicted, a

significant increase in ppGpp levels was demonstrated in

JKD6229 (clinical SCV) and the mutant RelA F128Y mutant

JKD6301, compared to the parental strain JKD6210 (Fig. 4B and

C), suggesting that the F128Y mutation reduced the hydrolase

activity of RelA. This is the first time an activated stringent

response has been implicated as a mechanism of SCV formation in

clinical S. aureus.

Phenotypic characteristics and virulence of S. aureus
strains with a persistently activated stringent response

The phenotypic features and impact on virulence of a

persistently activated stringent response have not been previously

investigated in S. aureus, because of the inability to generate a

mutant strain without RelA hydrolase activity [19]. Therefore, the

discovery of the clinical strain JKD6229 with the active stringent

response, and creation of the relA mutant JKD6301 provided a

unique opportunity to investigate the active stringent response in

this organism. A number of phenotypic characteristics were

investigated (Fig. 5 and 6). JKD6301 demonstrated a reduced

growth rate in MH broth, and reduced colony size on HBA after

24 hours incubation indicating that the relA mutation contributed

significantly to the growth defect of the clinical SCV strain

JKD6229 (Fig. 5A and B). An analysis of vancomycin susceptibility

in JKD6301 using macromethod Etest [5], and population analysis

profile (data not shown) demonstrated no increase in vancomycin

resistance in the mutant compared to JKD6210 (Table 1),

indicating that although the stringent response has been linked

to vancomycin tolerance in E. faecalis [17], the relA mutation alone

was not responsible for the reduced vancomycin susceptibility in

JKD6229. Susceptibility to other antimicrobials was also un-

changed in JKD6301 compared to JKD6210 (Table 1).

Previous studies have demonstrated enhanced invasion and

persistence of some S. aureus SCV strains [6]. Therefore, the

attachment, invasion, and persistence potential of the clinical

Figure 3. Sequence comparison of pJKD6210 and pUSA300-HOU-MS. Linear comparison (Artemis Comparison Tool) of the ,15 kb plasmid
detected in S. aureus JKD6210 (pJKD6210) compared with pUSA300-HOU-MS [33]. Replication and regulatory genes are colored red, recombination/
transposition genes are blue, antibiotic/heavy metal/bacteriocin resistance genes are brown, hypothetical genes are colored orange. Blue vertical
bars indicate the regions of pJKD6210 and pUSA300-HOU-MS sharing high DNA sequence identity. Note; blaZ, beta-lactamase; blaR, beta-lactamase
regulator; bin, invertase; sin, recombinase; repA, replication protein.
doi:10.1371/journal.ppat.1000944.g003

Table 3. Summary of base substitutions and insertions detected in JKD6229 (small colony variant) compared to JKD6210
(methicillin-resistant S. aureus).

ORF ID Gene Gene Product Mutation Type
Allele JKD6229
(no. reads)

Allele JKD6210
(no. reads) Effect of Mutation

SACOL0588 rpoB DNA-directed RNA polymerase Substitution T (302) C (387) His 481 Tyr

SACOL1230 rlmN Ribosomal RNA large subunit
methyltransferase

Insertion CAA (60) ‘‘-‘‘ (50) ‘‘-‘‘ (151) Glu insertion prior
codon 354

SACOL1390 parC DNA topoisomerase IV subunit A Insertion TGT (93) ‘‘-‘‘ (50) ‘‘-‘‘ (229) Val insertion prior to
codon 463

SACOL1689 relA Guanosine polyphosphate
pyrophosphohydrolase/synthetase

Substitution T (176) A (223) Phe 128 Tyr

NOTE: A ,15 kb plasmid was also deleted in JKD6229 (see text); ‘‘-‘‘ means no insertion was present in those reads.
doi:10.1371/journal.ppat.1000944.t003

Persistent S. aureus Infection

PLoS Pathogens | www.plospathogens.org 8 June 2010 | Volume 6 | Issue 6 | e1000944



isolate pair, and the relA mutant strain were tested (Fig. 5C, D).

Bacterial attachment to HeLa cells was decreased in JKD6229 and

JKD6310 compared to the parental strain JKD6210, while

invasion was increased only in the SCV strain JKD6229,

indicating that the stringent response promotes factors that

facilitate bacterial attachment but these changes alone are not

sufficient to enhance invasion. In contrast to reported studies of

electron transport deficient SCV strains, after 72 hours incubation

there was no difference in intracellular persistence of SCV

JKD6229 compared to the other strains. This observation might

reflect the activated agr expression and increased toxin gene

expression in JKD6229 (Table 2) which is unusual for SCV S.

aureus where reduced agr expression and alpha-toxin expression is

thought to promote intracellular persistence without lethal effects

on the host cell [7,31,43].

The larval stage of the Greater Wax Moth (Galleria mellonella) is

an invertebrate model used to assess S. aureus virulence [44]. A

comparison in this model of the virulence of parental strain

JKD6210 with SCV JKD6229 and the relA mutant JKD6301

demonstrated a marked reduction in virulence in the SCV strain

JKD6229 and also in the relA mutant (Fig. 6). The attenuation of

SCV JKD6229 and JKD6310 was not due to their reduced growth

rate compared to JKD6210 because the infected larvae had

equivalent bacterial burden after 48 hours incubation. These

experiments indicate that the increased persistence of SCV

JKD6229 is associated with a reduced ‘virulence’ phenotype

caused by the relA mutation.

Discussion

In this study comparative and functional genomics has

demonstrated the remarkable adaptive response of S. aureus to

antimicrobial challenge during chronic infection, where four

point mutations were sufficient to permit the strain to persist and

Figure 4. Location of RelA mutation in JKD6229 and impact of the mutation on cellular ppGpp levels. A) Alignment of the N-terminal
Rsh domains of RelA/SpoT from S. mutans (Rsh_SM) and RelA from S. aureus JKD6210 (Rsh_SA). The triangles are regions shown by Hogg et al. [40]
that-when mutated-affect hydrolase function. Indicated by star and grey shading is the F128Y amino acid substitution that occurs in SCV JKD6229
(Rsh_SA_SCV). B and C) Analysis of ppGpp levels in JKD6210 (MRSA), JKD6229 (SCV) and JKD6301 (JKD6210 with relA F128Y mutation) using the
fluorescent chemosensor PyDPA [42]. B) Five, two-fold serial dilutions (1/2–1/32) of test strains demonstrate increased ppGpp levels by increased
fluorescence in JKD6229 and JKD6301 compared with the parental strain JKD6210. Control 1 is JKD6210 exposed to serine hydroxymate; control 2 is
JKD6210 without the addition of PyDPA; control 3 is buffer alone with PyDPA added. (C) Results confirmed in a 96-well plate format, analysed with a
fluorescent plate reader. Results are presented as the mean6SD of biological replicates with a significant increase in fluorescence found for JKD6229
and JKD6301 compared to the parental strain JKD6210 (P,0.0001).
doi:10.1371/journal.ppat.1000944.g004
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resist multiple antibiotic therapies. This confirms the role of

sequential point mutations in S. aureus adaptation during

persistent infection, initially described by Mwangi et al [45]. We

have uncovered a novel mechanism of growth inhibition

contributing to SCV formation by S. aureus through mutation of

relA and activation of the stringent response, and have described

for the first time phenotypic features of an active stringent

response in S. aureus, associated with profound global transcrip-

tional changes. Analysis of the stringent response in S. aureus has

been previously hampered by the inability to generate relA knock-

out strain in this organism [21], confirming the unique nature of

the naturally occurring clinical isolate JKD6229. Here, using the

clinical strain JKD6229 and a mutant with a single base swap in

relA (JKD6301), we demonstrate that an active stringent response

in S. aureus leads to a reduced growth rate and features

characteristic of SCV strains, as well as attenuated virulence in

the G. mellonella invertebrate infection model. These data contrast

with a recent report describing attenuated virulence of a S. aureus

Figure 5. Phenotypic features and cellular attachment, invasion and persistence of clinical isolates and mutant strain JKD6301. A
and B) Growth characteristics of parental strain JKD6210 (normal MRSA), the clinical SCV strain (JKD6229), and the allelic exchange relA mutant
containing the F128Y mutation (JKD6301). Reduced growth rate in MH broth (A) and reduced colony size on HBA agar (B) is demonstrated for the
SCV strain JKD6229. The relA mutant JKD6310 demonstrates reduced growth rate in broth and on solid media, but is not as impaired as the clinical
SCV strain. The growth curves were significantly different for all strains (P,0.001). An analysis of cellular attachment/invasion after 1 hour incubation
demonstrates a reduced rate of attachment in JKD6229 and JKD6301 compared to JKD6210 (C), however an analysis of cellular invasion after 2 hours
incubation (D), demonstrates significantly greater invasion for the SCV strain JKD6229 compared to JKD6210 and JKD6301. Results are presented as
mean6SD of triplicates from at least three independent experiments. **, P#0.01; ***, P#0.001.
doi:10.1371/journal.ppat.1000944.g005
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Rsh synthetase mutant in a murine infection model [20],

suggesting that both persistent activation or inactivation of the

stringent response is associated with attenuated virulence in S.

aureus. The specific impact of the relA mutation was clearly

demonstrated by replicating the same single nucleotide change in

relA from the SCV strain JKD6229 into the parental strain

JKD6210, and measuring the cellular levels of ppGpp using the

fluorescent chemosensor PyDPA (Fig. 4). It is likely that the

mutation detected in relA of JKD6229 partially impairs hydrolase

function of the enzyme, leading to accumulation of the alarmones

(p)ppGpp, but not cell death as has been described following

complete loss of hydrolase function [19]. Despite the attenuated

virulence of the strain in the invertebrate model, it was associated

clinically with a persistent infection, suggesting that the mutation

leading to permanent activation of the stringent response in this

strain may have provided a survival advantage during chronic

infection. Further analysis of the clinical impact of an active

stringent response in S. aureus is now needed, with particular focus

on the impact of this response on bacterial immune evasion,

persistence and response to antimicrobial treatment.

In addition to an activated stringent response the clinical

strain JKD6229 harboured a number of mutations leading to

the reduced antimicrobial susceptibility that also promoted

persistent infection. Most intriguingly, we have described for the

first time a codon insertion in the methyltransferase gene

SACOL1230 (RlmN) that reduces linezolid susceptibility in

clinical S. aureus. Early reports of linezolid resistance in S. aureus,

and other Gram positive organisms, suggested that mutations in

domain V of 23S rRNA are primarily responsible for resistance

[25,26], in particular the G2576T mutation, which continues to

be detected in resistant strains from multiple S. aureus lineages

[46,47,48]. Recently, mutations in ribosomal proteins L3 and

L4 have also been associated with linezolid resistance in

staphylococci [48,49], and it has also become apparent that

changes in ribosomal methylation can affect susceptibility to

linezolid and other antimicrobials in S. aureus and other

organisms [50,51,52]. The conserved methyltransefrase RlmN

methylates 23S rRNA at position A2503 and a S. aureus strain

with a knock-out of the gene encoding RlmN demonstrated a 2-

fold increase in linezolid susceptibility [36]. Additionally, an

acquired mechanism of linezolid resistance due to acquisition of

cfr has recently been described [53,54]. The product of cfr

hypermethylates 23S rRNA at position A2503 leading to the

presence of not one, but two methyl groups which affects drug

binding [50]. The impact of the codon insertion in SACOL1230

in our strain was confirmed by an allelic exchange experiment

where the identical insertion was created in the linezolid

susceptible parent strain JKD6210. Although the change in

linezolid MIC was not large, this is consistent with previous

reports of changes in linezolid resistance in S. aureus due to

acquisition of the methyltransferase cfr, where prolonged

incubation was required to detect an increase in MIC using

Etest [53]. We therefore propose that the CAA insertion in

SACOL1230 enhanced ribosomal methylation in the clinical

isolate JKD6229 leading to a reduction in linezolid susceptibil-

ity. The clinical impact of subtle changes in linezolid

susceptibility of S. aureus have not been defined. However,

similar to recent findings with reduced vancomycin susceptibil-

ity in this organism [5], subtle reductions in susceptibility to an

antibiotic may significantly impact the outcome of therapy,

especially in patients with deep-seated infection as occurred in

this case.

Two additional mutations were detected in JKD6229, as well as

the loss of a ,15 kb plasmid. The mutation in rpoB was clearly

linked to the acquired rifampin resistance in JKD6229, and has

been previously described [34]. Likewise, the codon insertion in

parC contributed to an increase in quinolone MIC of the organism

[35]. The plasmid which was present in JKD6210, but absent in

JKD6229 (pJKD6210), shared high sequence homology to

pUSA300-HOU-MS and encodes beta-lactam resistance, but

did not contain the genes encoding cadmium resistance which are

present on pUSA300-HOU-MS [33].

Over recent years there has been significant interest in the role

of small colony variants of S. aureus in persisting and relapsing

infections, and intracellular invasion and persistence is a frequently

described feature of these strains [7]. While an understanding of

the genetic determinants of SCV S. aureus has focussed on

mutations in genes encoding hemin, menadione or thymidine

biosynthesis [55,56,57], our data clearly demonstrates the

heterogeneic nature of this phenotype, with permanent activation

of the bacterial stringent response also leading to a growth defect

in S. aureus. Not surprisingly, the global transcriptional profile and

phenotypic features of stringent response S. aureus demonstrate

significant differences to those of the defined hemB and menD

mutants, while the transcriptional profile of the stringent response

SCV JKD6229 shared significant similarity to the profile of S.

aureus after exposure to mupirocin [22]. For example, auxotrophs

for hemin, menadione or thymidine have been shown to have

reduced tricarboxylic acid cycle (TCA) metabolism leading to

reduced electron transport [8,58,59]. The SCV strain JKD6229

was not an auxotroph for hemin or menadione and the genes for

the TCA cycle were up-regulated in JKD6229 compared to

JKD6210. The SCV strain JKD6229 demonstrated increased

intracellular invasion, however there was no increase in persistence

compared to the parental strain (Fig. 5). Increased fibronectin-

binding protein gene expression was found in JKD6229, possibly

contributing to increased cellular invasion, as has been previously

described for the hemB mutant [11]. However, the absence of

increased persistence is interesting. It has previously been

demonstrated that reduced agr expression and alpha-toxin

expression occurs in clinical SCV S. aureus, and in the hemB and

medD mutants [31], and it has been suggested that these changes

Figure 6. Galleria mellonella virulence assay. The percent survival of
caterpillars injected with the clinical isolate pair (JKD6210, normal
MRSA; JKD6229, SCV) and the relA mutant JKD6301 over 96 hours post
injection is demonstrated using a Kaplan Meier plot. The average initial
inoculum per caterpillar and the colony counts from selected worms
after 48 hours incubation are also demonstrated. The difference in
survival between JKD6210 and JKD6229 or JKD6301 was significant
(P,0.0001), and the difference between JKD6229 and JKD6301 was also
significant (P = 0.02). Note: cp = caterpillar.
doi:10.1371/journal.ppat.1000944.g006
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favour intracellular persistence by avoiding lysis of the invaded

cells [7,43]. In the SCV strain JKD6229, increased expression of

the agr locus was demonstrated; an unusual finding for an SCV

strain, but this is also associated with the mupirocin induced

stringent response in S. aureus [22], and could potentially explain

the failure to demonstrate increased intracellular persistence. An

interesting finding of this study was the profound increase in

expression of capsule biosynthesis genes, associated with a

significant increase in capsule production in JKD6229, demon-

strated by capsule immunoblot (Fig. 2B). A previous microarray

transcriptional comparison of the hemB mutant to its parental

strain also demonstrated an increase in capsule biosynthesis genes,

however not to the same degree found in JKD6229 [8]. Given the

association of staphylococcal capsule production with innate

immunity evasion mechanisms and virulence in animal models

[60], this phenotypic change in the SCV strain JKD6229 also

likely contributed to the clinical behaviour of the organism.

The growth defect of SCV JKD6229 was incompletely

replicated in the relA mutant strain JKD6301, suggesting that

additional factors contributed to the growth defect of the clinical

strain. Although it appears unlikely that the other mutations

detected in JKD6229 would lead to an additional growth defect,

step-wise generation of each mutation in JKD6301 would be

required to confirm this. Another unanswered question from

this study is the mechanism of reduced vancomycin susceptibil-

ity in the strain JKD6229, which demonstrated a heterogenous-

vancomycin intermediate S. aureus (hVISA) phenotype based on

the macromethod Etest result (Table 1) [5]. Although mutations

of relA in the Gram positive pathogen E. faecalis have been linked

to vancomycin tolerance in that organism, there was no change

in vancomycin susceptibility of the relA mutant JKD6301

compared to the parent strain JKD6210 demonstrating that

an activated stringent response did not alter vancomycin

susceptibility in this strain. Interestingly, the transcriptional

profile of JKD6229 which was a hVISA, demonstrated some

similarities to the transcriptional profiles of other hVISA strains,

including enhanced capsule expression and reduced expression

of the gene encoding protein A [30]. Finally, it is unlikely that

other genomic differences were missed during our comparative

genomics analysis. We performed a de novo assembly of the

JKD6210 and JKD6229 sequences which revealed similar

genome size (approx 2.7 Mb), and 97.2% coverage of the

N315 genome at a depth of $20 for both strains. Regions of

N315 not covered in the JKD6210 and JKD6229 sequences

were identical, indicating that these regions were unique to

N315. To reduce false positive SNP detection during compar-

ative genomics analysis we set a threshold of a minimum depth

of coverage at a SNP of $20, and that the reads covering that

position are all uniquely and unambiguously aligned to the

reference genome. Although a small possibility exists that SNPs

with very low read coverage or SNPs within repeat regions

might be missed in out comparative genomics analysis, this is

unlikely.

In summary, using comparative and functional genomics to

investigate the mechanisms of staphylococcal persistence in a

patient with a very difficult-to-treat infection, we have detected a

new mechanism of SCV S. aureus, and we have described for the

first time the features of an activated stringent response in this

organism. Also, a novel mechanism of reduced linezolid

susceptibility has been described. Further work to determine the

relationship between the stringent response and outcome of

staphylococcal infections is required, as well as an exploration of

the frequency of mutations in the staphylococcal gene encoding

RlmN in patients treated with linezolid. This study highlights the

limitations of current antimicrobial treatment strategies in patients

with serious S. aureus infections.

Methods

Ethics statement
This study was performed in accordance with Austin Health

Human Research Ethics Committee guidelines. The de-identified

clinical details described in this manuscript constitute a medical

case report that did not require formal Human Ethics Committee

approval or Informed Patient Consent.

Strains and growth conditions
Bacterial strains and plasmids used in the study are listed in

Table 1. Staphylococcal strains were stored in glycerol broth at

280uC and subcultured twice onto Horse Blood Agar (Oxoid) for

48 h before being used for any experiment. Unless otherwise

indicated all S. aureus isolates were grown in BHIB (Oxoid), and E.

coli grown in LB broth (Oxoid). When required media was

supplemented with the following antibiotics at the indicated

concentrations: for E. coli, ampicillin 100 mg/mL; for S. aureus

RN4220, chloramphenicol 10 mg/mL; for S. aureus clinical isolates,

chloramphenicol 25 mg/mL. For all DNA and RNA extractions,

or for experimental inoculum preparations when the SCV strain

JKD6229 was used, a subculture onto solid media was performed

to confirm that the strain retained the SCV phenotype. For all

phenotypic experiments growth conditions were carefully con-

trolled, and all strains were grown to the same OD600 prior to

analysis.

Antibiotic susceptibility and molecular typing
Vancomycin MICs were determined by microbroth MIC

according to CLSI criteria [61]. The detection of vancomycin

hetero-resistance was performed by macromethod Etest for

vancomycin and teicoplanin as well as vancomycin population

analysis, as previously described [62,63]. A positive macromethod

Etest result for hVISA was defined as vancomycin plus teicoplanin

MIC$8 mg/mL, or teicoplanin MIC$12 mg/mL [5]. The MICs

for daptomycin, gentamicin, linezolid, rifampicin and ciprofloxa-

cin were performed by Etest (AB Biodisk), according to

manufacturer’s instructions. For linezolid MIC testing a 2

McFarland saline suspension was used, because of previous

problems in detecting linezolid resistant strains of S. aureus using

standard Etest [53]. Other antibiotic susceptibilities were per-

formed by agar dilution according to CLSI criteria [61]. Pulsed-

field gel electrophoresis (PFGE) and multilocus sequence typing

(MLST) were also performed as previously described [62,64].

Growth characteristics and auxotrophism testing
Analysis of S. aureus growth rate was performed using 50 mL

Muller Hinton II broth by inoculating 500 mL of an overnight

broth culture. The optical density of the broth was read at 600 nm

using a spectrometer. Assessment of colony size on solid media was

performed by a blinded operator by measuring the size of 100

single colonies on Horse Blood Agar using callipers after 24 hours

incubation. An analysis for hemin and menadione auxotrophism

for the SCV strain JKD6229 was performed using chemically

defined medium (CDM) [65] as previously described, and assessed

after overnight incubation [55].

Microarray transcriptional analysis
Microarray transcriptional analysis was performed with TIGR

version 6 S. aureus arrays, as previously described [30]. For

preparation of total RNA shaking flasks (50 mL BHI broth in
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250 mL flasks) were inoculated with 500 mL overnight BHI broth

culture and incubated on a 225 rpm shaker at 37uC. Optical

density was closely monitored, and one millilitre of sample was

collected at exponential growth phase (optical density at 600 nm of

0.5) and 0.5 mL RNA stabilization reagent (RNA later, Qiagen)

was added and mixed immediately. The mixture was allowed to

stand in room temperature for 10 minutes before total RNA was

extracted using the RNeasy micro kit (Qiagen). RNA extractions

and hybridisations were performed on four different occasions,

and the dye swapped with each biological replicate. The images

were combined and quantified using ImaGeneTM ver 5.1

(Biodiscovery), and then imported into BASE and analyzed using

Bioconductor and Limma [66,67]. The fold ratio of gene

expression for the SCV strain (JKD6229) relative to the parental

MRSA (JKD6210) was calculated. Using a modified t-test P-values

were calculated and adjusted for multiple testing using false

discovery rate (FDR) correction. A$2-fold change with a P value

less than 0.05 was considered significant and included in an

analysis of differentially expressed genes. Microarray data has

been submitted to GEO with accession number GSE20957.

Capsule polysaccharide (CP) typing and quantification
The capsule typing (CP5 and CP8) by multiplex PCR and

quantification by immunoblot was performed as previously

described [30]. Briefly, crude CP extracts were prepared using

10 mL of an overnight BHI broth culture adjusted to an OD600 of

,0.5. Serial two-fold dilutions of CP extracts were loaded onto a

nitrocellulose membrane using a dot-blot apparatus. After

blocking with 5% skim milk, the membrane was hybridised with

CP5-specified rabbit antiserum, hybridised with sheep anti-rabbit

IgG peroxidase conjugate (Chemicon, Australia), and the image

acquired and analysed using the LAS-3000 Luminescent Image

Analysis System (Fujifilm, Tokyo, Japan).

JKD6210 and JKD6229 comparative genomics
Genome sequences for the parental strain JKD6210 and the

clinical SCV strain JKD6229 were obtained from an Illumina

Genome Analyzer II using 36 cycle paired-end chemistry. Reads

were mapped to the reference strains S. aureus COL (Genbank

NC_002951.2) and S. aureus N315 (Genbank NC_002745.2) using

SHRiMP. SNP/DIPs were detected using Nesoni 0.14, a software

tool for analysing high-throughput DNA sequence data (http://

bioinformatics.net.au/software). Nesoni tallied the raw base counts

at each mapped position in each of the reference strains, and then

compared them using Fisher’s Exact Test to find variable

nucleotide positions in JKD6229 relative to JKD6210. To exclude

the possibility that mutations in JKD6229 may have occurred in

regions not present in S. aureus COL or N315, de novo assembly of

JKD6210 and JKD6229 was performed using Velvet 0.7.55 [68]

and the above read mapping and SNP/DIP detection was

performed, using the resulting contigs as reciprocal reference

sequences. For SNP detection a depth of coverage of $20 was

required at the allele. The read data for JKD6210 and JKD6229

have been deposited in the NCBI Sequence Read Archive as part

of Study accession number SRP001289.

DNA methods, molecular techniques and construction of
mutants

Standard procedures were used for DNA manipulation,

molecular techniques, PCR and sequencing [63,69]. The loci

containing the relA nucleotide substitution and the ‘CAA’ insertion

in rlmN (from JKD6229 were amplified (Table S2), cloned with the

vector pKOR1 and then generated in the parental strain

JKD6210 as previously described [63]. The generation of the

allele swap in JKD6210 using pJKD6318 was performed as

previously described [63], with some modifications. For the final

selection step, 100 mL of a 48 hour BHI broth culture (incubated

at 30uC) was inoculated into 10 mL BHI broth with 5% horse

blood and 400 mg/mL anhydrotetracycline. The broth was

incubated for 24 hours at 37uC on a shaker at 225 rpm. The

culture was then diluted to 1025 and 10 mL of a range of dilutions

plated on several HBA and BHI agar plates. After 24 hours

incubation at 37uC, single colonies were patched on BHI agar

plates with and without chloramphenicol, and screened for the

correct allele swap. The correct allele swaps were confirmed, and

introduction of unwanted mutations excluded, by PCR amplifi-

cation and Sanger sequencing of the whole relA and SACOL1230

locus from the mutants strains JKD6301 and JKD6300,

respectively.

Analysis of stringent response
The presence of ppGpp was detected as previously published

[42], with some modifications. Briefly, S. aureus strains (JKD6210,

JKD6229 and JKD6301) were grown in 25 mL of BHI broth at

37uC with vigorous shaking. Serine hydroxymate (concentration

0.5 mg/mL) was added to one flask of JKD6210 for 10 minutes to

induce the stringent response and provide a positive control for the

assay. Cells were harvested by centrifugation at OD600 of 0.5.

Following addition of 100% methanol, vigorous vortexing and

centrifugation to pellet cellular debris, the supernatant containing

ppGpp was collected and concentrated by freeze drying overnight.

The dried extracts were then resuspended in 1 mM HEPES

buffer, pH 7.4 containing 16% DMSO (v/v) and two-fold serial

dilutions were performed in the same buffer. To each dilution,

PyDPA to a final concentration of 25 mM was added. Fluorescence

was observed using a hand held Wood’s UV lamp (365 nm) and a

FLUOstar Omega microplate reader (Ex 344 nm/Em 470 nm)

(BMG Labtech, Offenburg, Germany).

Cellular invasion and persistence assays
A HeLa cell line was used to test the invasive and intracellular

persistence abilities of the clinical and mutant S. aureus strains.

HeLa cells were seeded and grown in DMEM cell culture with 5%

fetal bovin serum (FBS) in 24 well plates, and infected by the

addition of approx 56106 CFU of an overnight broth culture. The

correct starting inoculum was confirmed by colony counts. After

1 hour incubation at 35uC in an incubator with 5% CO2, the

infected cells were washed with pre-warmed PBS 6 times to wash

away the unattached bacteria and fresh DMEM with 5% FBS and

supplemented with 400 mg/mL gentamicin and 40 mL/mL

lysostaphin was added into each well and incubated for a further

72 hours. The infected HeLa cells were sampled before adding

antibiotics to assess bacterial attachment/invasion, and at 1 hour

post addition of antibiotics (to assess invasion), and at 24 hours and

72 hours after adding antibiotics (to assess intracellular persis-

tence). The cell cultures were lysed by PBS supplemented with

0.05% saponin and plated on BHI agar plates. CFUs on plates

were counted after 48 hr incubation at 37uC.

Galleria mellonella killing assay
The previously described invertebrate S. aureus infection model

Galleria mellonella [44] was used to study the pathogenesis of clinical

and mutant strains. G. mellonella in the final instrar larval stage were

used in groups of 16, and weighed to confirm no difference in size

between groups. A HPLC syringe was used to inject 10 mL of

bacterial suspension (approx 0.5–1.06106 CFU) into each cater-

pillar via the last left proleg. Bacterial colony counts were
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performed to confirm consistency of inoculum and caterpillars

injected with PBS and caterpillars that were not injected were

included as controls. Each experiment was repeated on at least 4

different occasions. To determine the bacterial burden in infected

caterpillars 48 hours after inoculation an assessment of the S. aureus

CFU per caterpillar was performed on a subset of caterpillars.

Statistical analysis
Non-parametric tests were used to analyse the results of colony

size, bacterial attachment, invasion and persistence assays.

Statistical analyses were performed using the two-tailed Mann-

Whitney U test, with a p,0.05 set for statistical significance.

Growth curves and stringent response activity were analysed using

a one way analysis of variance (ANOVA) at each time point, and

Kaplan Meier plots of G. mellonella killing results were analysed

using the log rank test. All analyses were performed using Prism 4

for Macintosh ver 4.0 (GraphPad Software Inc., CA, USA).

Supporting Information

Table S1 Microarray transcriptional results for JKD6229

compared to JKD6210 with complete list of differentially regulated

genes.

Found at: doi:10.1371/journal.ppat.1000944.s001 (0.23 MB PDF)

Table S2 Primers used in this study.

Found at: doi:10.1371/journal.ppat.1000944.s002 (0.02 MB PDF)
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