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Major depressive disorder (MDD) is a severe mental disorder and is lacking in biomarkers
for clinical diagnosis. Previous studies have demonstrated that functional abnormalities
of the unifying triple networks are the underlying basis of the neuropathology of
depression. However, whether the functional properties of the triple network are
effective biomarkers for the diagnosis of depression remains unclear. In our study, we
used independent component analysis to define the triple networks, and resting-state
functional connectivities (RSFCs), effective connectivities (EC) measured with dynamic
causal modeling (DCM), and dynamic functional connectivity (dFC) measured with
the sliding window method were applied to map the functional interactions between
subcomponents of triple networks. Two-sample t-tests with p < 0.05 with Bonferroni
correction were used to identify the significant differences between healthy controls
(HCs) and MDD. Compared with HCs, the MDD showed significantly increased intrinsic
FC between the left central executive network (CEN) and salience network (SAL),
increased EC from the right CEN to left CEN, decreased EC from the right CEN to
the default mode network (DMN), and decreased dFC between the right CEN and
SAL, DMN. Moreover, by fusion of the changed RSFC, EC, and dFC as features,
support vector classification could effectively distinguish the MDD from HCs. Our results
demonstrated that fusion of the multiple functional connectivities measures of the triple
networks is an effective way to reveal functional disruptions for MDD, which may facilitate
establishing the clinical diagnosis biomarkers for depression.

Keywords: fusion, resting-state functional connectivity, effective connectivity, dynamic functional connectivity,
classification

INTRODUCTION

Major depressive disorder (MDD) is a severe mental illness with emotional and cognitive
abnormalities, and anhedonia, reduced energy, poor attention, and concentration are core
symptoms of MDD (Diener et al., 2012; Belzung et al., 2015). Recently, the triple network
model, consisting of the central executive network (CEN), default mode network (DMN), and
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salience network (SAL), was proposed, and dysfunctions of
the three networks may underlay the cognitive and affective
abnormalities in psychiatric and neurological disorders (Menon,
2011). Although the functional abnormalities of the three
networks have been reported in different studies (Kaiser
et al., 2015; Mulders et al., 2015; Brakowski et al., 2017;
Wang et al., 2017c), it remains unclear whether/how the
intrinsic functional changes and the casual influences between
the sub-components of the three networks contribute to the
neuropathology of depression.

Resting-state functional connectivity (RSFC), which can be
used to investigate the temporal coherence of spontaneous
neural activity, offers a task-free approach to detect the intrinsic
functional brain networks (Yeo et al., 2011; Wang et al., 2015,
2017d; Glasser et al., 2016; Wang et al., 2019). Independent
component analysis (ICA) is a model-free method to obtain
a set of components that are maximally independent of each
other (Calhoun et al., 2009). ICA has been widely used to
define large-scale brain networks, such as DMN, CEN, SAL,
and visual and motor networks, in a large number of previous
studies (van den Heuvel and Hulshoff Pol, 2010; Mulders et al.,
2015; Luo et al., 2021). To explore the causal effects between
brain regions, effective connectivity (EC) is a valuable method
to identify the information flow during functional interaction
(Wang et al., 2017b; Wang et al., 2020). Dynamic causal
modeling (DCM) is able to estimate the causal influences of one
neuronal subpopulation over another to characterize the causal
organization of the brain (Friston et al., 2013). Moreover, more
and more studies applied dynamic functional connectivity (dFC)
using a sliding window method to reveal the time dynamic of
functional couplings between brain areas (Allen et al., 2014).
Thus, using intrinsic, effective, and dynamic connectivities to
explore the abnormal interactions between the sub-components
of the tripe network without any assumption may provide us
with new information specific to the neuropathology of MDD. In
addition, fusion of the multiple functional connectivity measures
may facilitate establishing more effective diagnosis biomarkers
than using single connectivity measures.

In this study, we first applied ICA to define the triple
network and to extract the time courses of each sub-network
using the resting-state fMRI data in 27 MDD patients and 28
healthy controls (HCs). Next, the RSFC, EC, and dFC between
each pair of sub-components were analyzed and compared
to HC and MDD to identify the group differences. Finally,
the changed connectivity measures were taken as features to
set up the classification models for MDD to identify the
diagnosis biomarkers.

MATERIALS AND METHODS

Subjects
In total, 27 drug-free MDD patients and 28 HC subjects were
recruited, and written informed consent was provided and
obtained from each subject. MDD patients were diagnosed with
the Structured Clinical Interview for DSM Disorders (SCID)
using DSM-IV criteria, and the severity of depressive symptoms

was measured by Hamilton Depression Rating Scale (HAMD).
The inclusion criteria for MDD patients were as follows: not
taking any antidepressant medication during the recurrent
episode; not having any other comorbid mental disorders; and
no contraindications showing up on MRI scans. The HC subjects
were also included, and the exclusion criteria were as follows:
known personal or family history of psychiatric disorders; current
or lifetime diagnosis of Axis I illness; lifetime history of substance
abuse or dependence, head trauma, seizures, serious medical or
surgical illness; or contraindications showing up on MRI scans.
The current study was approved by the Ethics Committee of The
Affiliated Brain Hospital of Guangzhou Medical University.

Resting-State fMRI Data Acquisition
Resting-state fMRI data acquisition was performed using a
3.0-Tesla Philips MR imaging system with an eight-channel
SENSE head coil and echo-planar imaging (GRE-EPI) sequence.
Before the scanning, all subjects were asked to relax, keep
their eyes closed, and not fall asleep. The detailed scanning
parameters were as follows: repetition time (TR) = 2000 ms,
echo time (TE) = 30 ms, flip angle (FA) = 90o, field of
view (FOV) = 220 × 220 mm2, matrix = 64 × 64, slice
thickness = 4 mm, inter-slice gap = 0.6 mm, and volume of 240.

Resting-State fMRI Preprocessing
The resting-state fMRI data were preprocessed using SPM8
software1 with various steps, including discarding the first 10
volumes, head motion correction, spatial normalization to the
standard EPI template, and smoothing with a 6 mm Gaussian
kernel. For resting-state functional and EC analyses, the time
courses of each subcomponent of the triple network obtained
by ICA were further detrended, despiked, and filtered with a
bandpass of 0.01–0.1 Hz.

Group ICA
The spatial group ICA was used to identify the different
resting-state components in all MDD patients and HCs using
the GIFT toolbox2 (Calhoun et al., 2001; Erhardt et al.,
2011; Calhoun and Adali, 2012). The principal component
analysis was first used to reduce the dimensions of the
functional data. Next, the number of independent components
was automatically estimated using the Infomax algorithm to
define the most stable and reliable components by running
them 100 times with the ICASSO algorithm (Bell and
Sejnowski, 1995), and 28 components were finally found.
Then, subject-specific time series and spatial ICs were back
reconstructed and converted into z-maps (Calhoun et al.,
2001; Erhardt et al., 2011). Finally, the sub-components of
the triple network were identified by visually checking all the
independent components for subsequent analyses. The detailed
procedures for ICA analysis can be found in our previous study
(Luo et al., 2021).

1https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2http://mialab.mrn.org/software/gift
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TABLE 1 | Demographics and clinical characteristics of the used subjects.

Subjects MDD HC P-value

Number of subjects 27 28

Gender (male: female) 10/17 12/16 0.66

Age (mean ± SD) 29.67 ± 7.26 30.57 ± 6.68 0.63

Years of education (mean ± SD) 13.83 ± 3.70 13.89 ± 2.2 0.94

HDRS scores (mean ± SD) 33.56 ± 7.21

Age of onset (years) 26.48 ± 7.82

Duration of illness(months) 38.92 ± 54.96

A Pearson chi-squared test was used for gender comparison. Two-sample t-tests were used for age and education comparisons. HDRS, Hamilton Depression Rating
Scale score; MDD, major depression disorder (MDD); HC, healthy control (HC).

Functional Network Connectivity (FNC)
Analysis
The RSFCs between sub-components of the triple network were
calculated. Next, a Fisher r-to-z transformation was applied
to convert the correlation coefficient to z values to improve
normality. Finally, two-sample t-tests were performed to identify
the significant alterations in FCs between MDD and HCs. The
significance level was set at p < 0.05 with Bonferroni corrections.

DCM Analyses
To calculate the EC, the time series for each sub-component
of the triple network was first obtained as state above. Then,
the spectral DCM (dcm), which is developed specifically for
resting-state fMRI DCM analyses, was used to investigate the
causal interaction between the sub-components of the triple
network in both MDD and HCs. The spDCM is an extension
of the conventional DCM except, adding a stochastic term and
removing the modulatory component. This means that spDCM
estimates the time-invariant covariance between time series
instead of estimating time-varying hidden states. Thus, spDCM
only needs to estimate the covariance of the random fluctuations,
a scale-free (power law) form for the state noise. The detailed
procedures for spDCM can be found in a previous study (Razi
et al., 2015). After obtaining the ECs for each subject, two-sample
t-tests were used to compare the causal effects between MDD
patients and controls. The significant level was set at p < 0.05
with Bonferroni correction.

dFC Analyses
The dFC was calculated using a sliding window method. Since the
length of the sliding window is the absence of a standard criterion,
the length of the sliding window was set at 1/f min (f min is the
minimum frequency of time series), which has been proven to be
able to well characterize the time dynamics (Leonardi and Van De
Ville, 2015; Du et al., 2017; Li et al., 2019). Thus, a window length
of 50 TR (100 s) with a step size of 5 TR (10 s) as the optimal
parameter was applied to keep the balance between capturing
reliable dynamics and obtain steady correlations between regions.
In each window, the FC values were computed between any
pair of subcomponents of triple networks, and the variance of
the FC values across all the windows was used to measure the
dynamic. Finally, the dFC values were normalized to z-scores for
statistical analyses.

FIGURE 1 | The triple networks. The group independent component analysis
(ICA) was used to define the triple networks. Four subcomponents of the triple
networks were identified including default mode network (DMN), salience
network (SAL), and left and right central executive network (CEN_L, CEN_R).

FIGURE 2 | The differences in functional network connectivities. The
significantly increased functional network connectivity between the left central
executive network (CEN_L) and salience network (SAL) was found in MDD
patients. *Represents significant difference.

Correlation Analyses
Pearson correlation analyses were conducted between the
changed FNC, EC, dFC, and HAMD scores and disease duration.
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FIGURE 3 | The differences in functional network effective connectivities. Dynamic causal modeling was used to determine the differences in effective connectivities
between the triple networks. The significantly increased effective connectivity from right to the left central executive network (CEN) was found in MDD patients while
significantly decreased effective connectivity from right CEN to default mode network (DMN) was found in MDD patients. *Represents significant difference.

The significance was set at a threshold of p < 0.05. No correction
was performed to show the trend of the associations because of
the small samples in our study.

SVM Classification
To validate whether multiple connectivity measures could serve
as effective biomarkers for depression, fusions of changed RSFC,
EC, and dFC were taken as features, and a linear support
vector classification (SVC) was employed to train the mode
for classifying (Chang and Lin, 2011). A leave-one-out cross-
validation (LOOCV) test was used to assess the generalization
ability because of the limited number of samples in the
present study. The classification result was assessed using the
classification accuracy, sensitivity, specificity, and area under the
curve (AUC) values.

RESULTS

Demographics and Clinical
Characteristics
The demographics and clinical characteristics of the HCs and
MDD patients are shown in Table 1. There are no significant
differences in gender (p = 0.66), age (p = 0.63), and education
level (p = 0.94) between MDD and HCs.

ICA Results
Four sub-components of the triple network including left and
right CEN (CEN_L, CEN_R), DMN, and SAL were identified
in this study (Figure 1). The spatial patterns of the four
subcomponents of the triple network were consistent with the

previous findings (Damoiseaux et al., 2006; Arbabshirani et al.,
2013; Mueller et al., 2014).

Resting-State FNC Results
Pearson correlation coefficients between each pair of the four
sub-components were calculated to study the changes of the
large-scale FC. Compared with HCs, the MDD patients had
significantly increased FC between left CEN (CEN_L) and SAL
(p = 0.0082) (Figure 2).

DCM Results
The spDCM was performed to identify the changes of casual
interactions between sub-components of the triple network
in MDD. Compared with HCs, the significantly increased
magnitude of causal interactions from right CEN (CEN_R) to
CEN_L (p = 0.0045) and significantly decreased magnitude of
causal interactions from the right CEN_R to DMN (p = 0.00087)
were found in MDD patients (Figure 3).

dFC Results
The significantly decreased dFC between right CEN (CEN_R)
and SAL (p = 0.012), DMN (p = 0.011) were found in MDD
patients as compared to HCs (Figure 4).

Clinical Correlations
We found negative correlations between the ECs from CEN_R to
CEN_L and HAMD scores (r = −0.3841, p = 0.0479) and disease
duration (r = −0.3950, p = 0.0414) (Figure 5).
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FIGURE 4 | The differences in dynamic functional connectivity (dFC). The significantly decreased dFC between right central executive network (CEN) and salience
network (SAL), default mode network (DMN) was found in MDD patients compared to healthy controls. *Represents significant difference.

FIGURE 5 | Correlation analyses. The significantly negative correlations between effective functional connectivities from right to left central network networks (CEN)
and Hamilton Depression Rating Scale (HAMD) scores, disease duration were found in MDD patients.

Classification Results
With the fusion of changed RSFC, EC, and dFC as features, SVC
could distinguish MDD from HCs with an accuracy of 90.91%,
a sensitivity of 92.59%, a specificity of 89.29%, and an ACU of
0.895 (Figure 6).

DISCUSSION

In this study, we aimed to explore the intrinsic, effective, and
dynamic connectivity alterations between subcomponents of
the triple networks to reveal the potential neuropathology of
MDD. Compared to HCs, MDD patients showed increased
intrinsic functional connectivity between CEN_L and SAL,
increased EC from CEN_R to CEN_L, decreased EC from
CEN_R to DMN, and decreased dFC between CEN_R and
SAL, DMN. Interestingly, the increased ECs from CEN_R to

CEN_L were negatively correlated with HAMD scores and
disease duration in MDD patients. Furthermore, by fusion
of the multiple connectivity measures, we demonstrated that
changed RSFC, EC, and dFC could effectively distinguish
MDD from HCs. Our findings provide evidence for how
functional disorganization of the triple network in MDD
patients could facilitate the development of clinical diagnosis
biomarkers for depression.

We found abnormal functional interactions among CEN, SAL,
and DMN in MDD patients with increased functional couplings
between left CEN and SAL, decreased EC from CEN to DMN,
and decreased dFC between CEN and SAL, DMN in MDD
patients. Our findings were consistent with that reported in MDD
patients in previous studies (Greicius et al., 2007; Zhu et al.,
2012; Wang et al., 2017a, 2018). SAL plays an important role
in switching information between CEN and DMN (Menon and
Uddin, 2010; Menon, 2011). CEN is mainly involved in external
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FIGURE 6 | Fusion of connectivity measures for classification. By fusion of the changed resting-state, functional connectivities, causal effective connectivities, and
dynamic functional connectivities as features, support vector classification could effectively differentiate depression from healthy controls with an accuracy of
90.91%, a sensitivity of 92.59%, a specificity of 89.29%, and an ACU of 0.895.

executive and cognitive control, while DMN is mainly involved
in internal attention and self-reference (Corbetta and Shulman,
2002; Hamilton et al., 2015; Wang et al., 2015, 2016; Wu et al.,
2016; Wang et al., 2019). The increased functional connections
between CEN and SAL may be a compensatory mechanism for
the functional impairments in switching between external and
internal attention in MDD patients (Barch and Sheffield, 2014).
On the contrary, the decreased EC from CEN to DMN and
dFC between CEN and SAL, DMN indicated disrupted switching
between the internal self-reference and the demand cognitive
action (Seeley et al., 2007; Scheibner et al., 2017). All the evidence
suggested that functional dysfunctions of information switching
among CEN, SAL, and DMN may be the neuroanatomical basis
of rumination of MDD. Moreover, we found that the changed
RSFC, ECs, and dFC as features could effectively distinguish
the MDD patients from HCs. This finding indicated that the
abnormal functional couplings of the triple network may be the
underlying neuropathological mechanism of depression.

Interestingly, our study revealed increased EC from the right
CEN to left CEN in MDD patients, and the effective connections
were closely associated with depression symptoms and disease
duration. This finding indicated that the functional balance
of bilateral CEN is fundamental to maintaining the normal
functions of the brain in MDD patients (Grimm et al., 2008;
Triggs et al., 2010; Chen et al., 2013). Moreover, we found that
the effective connections were negatively correlated with HAMD
scores. This finding suggests that enhanced interaction from
the right to left CEN is a compensatory mechanism and not a
neuropathological change.

There are some limitations to our study. First, the sample size
in our study is relative small, and a larger number of patients
are needed to validate the findings in further studies. Second,
although all the patients are medication-free in the current
episode, some patients took antidepressant medications before.
Thus, the first-episodic drug-naïve MDD patients are warranted
to better identify the neural basis for MDD.

CONCLUSION

This study revealed large-scale functional network dysfunctions
in MDD, including increased functional connectivity between
left CEN and SAL, increased EC from right CEN to left
CEN, reduced EC from right CEN to DMN, and decreased
dFC between right CEN and SAL, DMN. Moreover, by
fusion of the changed connectivity measures as features,
our study revealed that it is able to distinguish MDD
from HCs. These findings provide new evidence for the
neuropathology of triple networks in MDD. Our study may
facilitate developing clinical diagnosis biomarkers and the future
treatment for MDD.
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