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The use of AI and machine learning in sports is increasingly prevalent, including their

use for in-game strategy and tactics. This paper reports on the use of machine learning

techniques, applying it to analysis of U.S. Division I-A College Football overtime games.

The present overtime rules for tie games in Division I-A college football was adopted

in 1996. Previous research (Rosen and Wilson, 2007) found little to suggest that

the predominantly used strategy of going on defense first was advantageous. Over

the past decade, even with significant transformation of new offensive and defensive

strategies, college football coaches still opt for the same conventional wisdom strategy.

In revisiting this analysis of overtime games using both logistic regression and inductive

learning/decision tree analysis, the study validates there remains no advantage to the

defense first strategy in overtime. The study found evidence that point spread (as an

indicator of team strength) and red zone offense performance of both teams were useful

to predict game results. Additionally, by altering the decision-making “frame,” specific

scenarios are illustrated where a coach can use these machine learning discovered

relationships to influence end-of-regulation game decisions that may increase their

likelihood of winning whether in regulation time or in overtime.

Keywords: sports, football, analytics, machine learning, decision making

INTRODUCTION

The practical and widespread use of sports analytics continues to increase across the entire industry.
Artificial intelligence and machine learning techniques continue to be adopted in areas involving
scouting and recruiting, training and performance analysis, revenue management strategies, and
broadcasting and streaming decisions, in addition to strategic and tactical decisions “on the field”
(Rein and Memmert, 2016; Joshi, 2019). This use of analytics transcends different sports, including
those who have a long history of many statistics (such as baseball) to those which are more nascent
in the use of big data (e.g., de Leeuw et al., 2018).

This paper revisits one such “on the field” decision—participation in overtime games in
American college football. In revisiting this unique phenomenon in Division I-A college football
games, the research uses additional data and a different decision lens in examining team attribute
relationships to overtime game success. Machine learning approaches (regression and decision tree
algorithms) are applied to historical game data, resulting in additional insight into overtime game
outcomes that could also influence end-of-game decisions.
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LITERATURE/APPLICATION REVIEW

Note: This section assumes working basic knowledge of rules and
scoring of American college football.

Until the 1996 regular season, major college football (Division
I-A teams) in the U.S. allowed games to end in a tie. While
there have been some monumentally famous and exciting tie
games in college football’s history, a tie game typically leaves little
satisfaction to either teams or their fans.

Starting officially during the 1996 regular season, Division I-A
College Football adopted what was known as the “Kansas Plan” to
determine a winner for games that ended in a tie after the normal
four quarters of play. A coin toss was held prior to the start of the
overtime period(s), and the team that won the coin toss could
choose to either have the ball first or go on defense first. Not
surprisingly, the coaching conventional wisdom was that there
is an advantage to playing defense first (much like batting last
in baseball or cricket), so there was little or no variation at this
“decision” stage—practically 100% of all coin toss winners elected
to go on defense first.

Each team receives one possession in the overtime period,
starting on the opponent 25-yard line (25 yards away from a
touchdown), playing with the same game rules as in regulation
and attempt to score either a touchdown or a field goal. It is
worth noting that after a touchdown, teams retain the choice to
either kick the extra point (a highly likely occurrence for one
point) or try to score from the three-yard line for two points (the
so-called two-point conversion, which is successfully <50% of
the time).

If the score remains tied after the first overtime, the teams
repeat the process but switch order of possession—the team that
was on defense first in the first overtime has the ball first in the
second overtime, and vice versa.

The teams continue playing until there is a winner, with the
teams changing “the order” with each successive period until
finally one team outscores the other. Thus, if a third period was
needed, then the order of defense first/offense first would revert
back to the original overtime period.

Due to unintended lengthy overtime games, rules have been
modified twice to try to shorten the number of overtimes needed
to declare a victor. In 1997, teams were mandated to go for
two points after touchdowns from the 3rd overtime period and
beyond. Most recently, in 2019, a rule change requires that teams
rotate two-point conversion tries beginning in the fifth overtime,
eliminating possessions at the 25-yard line. In these rare cases,
each offense will have just one chance to convert the two-point
try before the other team gains possession.

Oftentimes, the college football rules are contrasted with the
rules used by the National Football League (NFL) for overtime,
which are still widely criticized. In the NFL, a team can win the
coin toss, elect to get the ball, then score a touchdown and win
the game without the other team having a chance to score. The
NFL rules appear to be unfair to the team that loses the coin toss.
As this research will again show, the coin toss in college football
overtime has virtually no tangible effect on game outcome, and
thus universally, the college football overtime process is viewed
to be “fair”.

Rosen and Wilson (2007) looked at the set of overtime
games that had occurred since the beginning of the 1996 season
(through 2005) and assessed whether the belief of the “large
advantage” of going on defense first (held by coaches, fans, the
press, etc.) was valid. Using discriminant analysis and decision
tree analysis, little evidence was found indicating any advantage
to being on defense first, and the paper hypothesized some
scenarios where it could be advantageous for teams to choose to
go offense first. Thus, Rosen andWilson focused on what actions
should be taken after the coin flip.

The present study uses some of the same elements of the
previous study but utilizes a different decision lens framework.
Using themost recent 7 years of overtime game data (2013–2019),
including new parameters (red zone offense and defense) not
found in the original study, machine learning techniques (logistic
regression and decision tree analysis) are used to discover
whether a coach should alter their end-of-game strategy based
on the anticipated likelihood of winning the game should it go to
overtime. For instance, if a coach is faced with a low likelihood of
winning a game in overtime, calling more risky plays to try to win
the game in regulation might increase their chance of winning.
As coaches are invariant in their choice of the “defense first” coin
toss decision, altering the decision lens to considering this end of
game decision is a more relevant and impactful problem worthy
of overtime game analysis.

DATA/METHODOLOGY

A variety of online websites were used to collect relevant game
data. The NCAA.com website hosts a list of OT games played
over the past 7 years (it was cross-checked with other online
sources such as ESPN.com to insure accuracy). Additionally,
the data reflecting a team’s offensive and defensive red zone
performance (explained in more detail below) was also found at
the NCAA website. This data is only available for the past 7 years,
thus the 7 years convenience data set.

Each overtime game was coded from the perspective of the
team that chose the conventional wisdom strategy of “defense
first,” determined either from the ESPN.com box score or, when
it was not clear, from a search of newspaper articles describing
the game itself. WIN is the 0/1 dependent variable, representing
whether the defense first team won the game.

The home team (HOME) (game location) was noted in
the game record (1 = home, 0 = visitor), as was the “point
spread” (PSPREAD) of the game, each of the team’s offensive and
defensive red zone performance (four parameters in all, RZO,
RZD, ORZO, ORZD, acronym clarified below), and the number
of overtimes (OT) required.

Goldsheet.com was the main source of the game’s point
spread. This value indicates which team is favored to win (and
by how many points) and is set by Las Vegas gambling casinos in
attempt to level betting amounts on each team. As such, the point
spread represents a surrogate measure of which team is “better”
[and favored to win, see Smith and Capron (2018) for a more
detailed discussion]. While the point spread may include other
factors (theoretic home field advantage, bettor bias, among other
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things), it has long been used in football prediction research as a
valid measure for team strength.

One of the seminal past works using point spread data in
football game analysis was Stern (1991). In essence, he found
empirically that the likelihood of a team winning a game is found
by the cumulative normal distribution with a value of the point
spread, the mean of 0, and a standard deviation of 14. Thus,
a seven-point favorite would have a Z = (7–0)/14 or Z(0.5) or
69.14% change of winning, and a seven-point underdog would
have a Z(−0.5) or 30.86% chance of winning. This study chose
to transform the point spread data to the likelihood of winning
based on this research (NORM).

The “red zone” is a football term referring to a team having
possession inside the opponent 20-yard line (close to the end
zone). The NCAA keeps track and ranks teams based upon
the percentage of times they score in the red zone, including
the number of touchdowns (six points) and field goals (three
points). Curiously (and inaccurately), they rank the teams based
on their percentage of scoring instead of the more insightful
expected number of points a team scores in the red zone. Thus,
the NCAA data was transformed by taking touchdowns × 7
(points plus assuming an extra point) + field goals × 3, then
dividing by the number of times the team was in the red zone.
This “expected value” is a more accurate representation of team
red zone performance. The defensive red zone performance was
similarly calculated for each team, reflecting the expected (or
average) number of points scored when opponents crossed their
20-yard line.

The red zone data was coded from the perspective of the
team that chose to go on defense first. RZO (Red Zone offense)
and RZD (Red Zone defense) were the expected values for the
“defense first team,” while ORZO and ORZD (O = Opponents)
represented the same expected value measurement for the
opponent team. As overtime rules gives each team possession
of the ball at the 25 yards, just five yards greater than where
the hypothetical red zone begins, it is hypothesized that a team’s
performance measured by RZO may be relevant to the outcome.

While the number of overtime periods necessary to reach
the final game outcome was also procured and reported, the
decision framework treats overtime as an “opaque box.” In
essence, the model is trying to predict winners regardless of the
process needed to achieve victory (i.e., the number of periods).
The implications of investigating this process may be worthy of
future research.

In a few cases, data was missing regarding team red zone
performances (normally when non-division I-A teams were
involved in an overtime game). In such a case, the average value
for Red Zone performance was used in that record (∼4.9 points
per red zone trip).

A total of 243 usable data points (games) were identified. As
the goal of the study was to discover actionable rules for the
coaches, all games were used in creating the machine learning
models (i.e., the training set). In the spirit of the challenges of
creating “explainable Artificial intelligence” (XAI), some form
of actionable and understandable set of “rules” or numerical
assessments were desired that could be utilized by the decision-
makers (coaches). This drove the choice of machine learning

TABLE 1 | Descriptive statistics.

AVG SD MIN MAX

WIN 0.51 0.501 0 1

HOME 0.486 0.501 0 1

PSPREAD −0.815 10.486 −41 34

OT 1.642 1.04 1 7

RZO 4.947 0.427 3.902 5.984

RZD 4.852 0.465 3.454 6.302

ORZO 4.971 0.442 3.54 6.093

ORZD 4.888 0.483 3.675 6.302

NORM 0.484 0.232 0.002 0.999

techniques (those that could be quantified and/or explained) as
well as use of one set of data to create the models [e.g., Miller
(2018)].

Given our goal of interpretable, implementable, and
understandable results, two machine learning techniques were
employed—logistic regression and SAS Enterprise Miner
decision tree algorithm. Logistic regression would provide a
probability on likelihood for teams to win games in overtime,
while a decision tree approach creates a set of rules that could
mimic a decision approach to help a coach decide how to
tactically alter their end-of-game strategies. The output of both
approaches will be contrasted in the following sections.

In both cases, the default parameters of SAS were used
to generate the models/analysis. The logistic regression model
(HPLOGISTIC) was used with Newton–Raphson with ridging
for the optimization technique. Backward stepwise regression
was used to limit the results to only significant variables in order
to achieve better “explainable” solutions. For the decision tree
analysis, all default parameters were used in the EnterpriseMiner.
This included the use of chi-squared measure for nominal splits
and the entropy criteria for ordinal splits. Generic use of the tools
would lead to greater ability for replication.

RESULTS

The following tables provide some of the relevant and
interesting descriptive statistics of our 243-game database.
Table 1 provides basic descriptive information regarding mean,
standard deviation, and range.

Table 2 shows the win–loss records of the teams that chose to
go on defense first, by year. Overall, 51% of the teams that went
on defense first won in overtime. We can see that the data does
not support the conventional wisdom held by many that there
is a significant advantage to being on defense first. Additionally,
Table 2 shows the win–loss records of home teams involved in
the overtime games. As some games were played at neutral sites,
the total number of games does not match the numbers in the
defense first column. Note that home teams won ∼50.6% of the
overtime games.

Table 3 shows the distribution of games by the number of
overtime periods. Note that this study is treating overtime as
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TABLE 2 | Win–loss records—defense first and home team.

Defense first Home

Win Loss Win Loss

2019 15 15 15 14

2018 19 14 17 14

2017 13 21 14 16

2016 21 21 24 16

2015 22 13 17 16

2014 19 16 15 17

2013 15 19 14 20

124 119 51.03% 116 113 50.66%

TABLE 3 | Results by number of overtimes.

Overtimes Defense first Overtime games

Wins Total

1 71 151

2 27 52

3 21 30

4 2 5

5 2 3

6 0 1

7 2 2

an “opaque box” and not explicitly considering the process of
overtime. 62% of the total overtime games were decided in the
first overtime period. The number of games won by the team that
went on defense first (in the first overtime as a reference point) is
shown in this table as well.

Observe how 70% of the games won in the third overtime were
teams that were on defense first in that period (and also in the
first period!). The third period of OT is where a team must go for
a two-point conversion after scoring a touchdown. Thus, because
of this unique phenomenon, a “process look” at overtime games
might provide additionally insight in future research.

Next, the two machine learning technique results are
presented—logistic regression and decision tree analysis. Clearly,
neither approach resulted in an outstanding predictive model—
which shows that the overtime process is “fair” in the sense that
each team has a good chance to win. However, from a predictive
standpoint, this makes this a difficult problem.

When using logistic regression, the use of an intercept term
was considered.When a full model was forced, the intercept value
was not significant.When the intercept value was suppressed, and
a backward elimination strategy employed, three variables were
significant—the normalized point spread (NORM), red zone
offense (RZO), and opponent red zone offense (ORZO). As the
descriptive data indicates little to no evidence on any advantage
to go “defense first” (which would be indicated in the significance
of the intercept value), logistic regression with no intercept was
chosen as an appropriate model.

TABLE 4 | Logistic regression parameters.

Parameter Estimate

Parameter Estimate SE T-value P-value

RZO 0.4664 0.2388 1.95 0.0508

ORZO −0.5894 0.2293 −2.57 0.0102

Norm 1.39 0.5737 2.42 0.0154

TABLE 5 | Classification matrix.

Predicted

Actual Win Loss

Win 81 57

Loss 43 62

TABLE 6 | Example parameters and win likelihood.

RZO ORZO NORM Win%

5 5 7 58.6

14 63.5

21 66.4

4.75 5.25 7 52

14 57.2

21 60

4.5 5.5 7 45.5

14 50.7

21 53.8

Table 4 shows information about the logistic regression
coefficients. Table 5 shows the classification matrix—which
classified at a respectable but not outstanding 59.6% overall. The
overall model was significant based upon the Likelihood ratio test
(p = 0.0025) and the rejection of the Hosmer and Lemeshow
goodness-of-fit test (p > 0.6962).

In interpreting the coefficients, it is not surprising that the
larger the perceived strength of the team (increased normalized
point spread) and the most effective (larger) red zone offense
expected value, the higher the likelihood of the model predicting
a victory for the reference team. Also note the larger negative
impact the opponent red zone offense has on the predicted odds.
Game location and any defensive parameters were eliminated as
insignificant variables in the stepwise regression.

Table 6 assists looking at a few examples to help illustrate
additional interpretation of the coefficients. Consider that the
average red zone offense expected number of points was almost
exactly 5.0 across the data set. So, with both teams performing at
that level, if a team was a seven-point favorite, they will have a
projected probability of winning the game in overtime of 58.6%;
if a 14-point favorite, a projected probability of winning of 63.5%,
and a 21-point favorite, a 66.4% likelihood of victory.

Now consider the situation where the reference team has
a poorer red zone offense (4.75) than the opponent (5.25).
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TABLE 7 | Classification accuracy—decision tree.

Predicted

Actual Win Loss

Win 74 50

Loss 32 87

Using the same 7-, 14-, and 21-point favorite scenarios, the
likelihood of the reference team winning decreases to 52, 57.2,
and 60%, respectively. As the difference in red zone performance
becomes more enhanced (see the third scenario in Table 6−4.5
vs. 5.5), the likelihood of a victory decreases to <50% even
if the team is favored (by 7). These scenarios are depicted
in Table 6.

Note that as an opponent red zone offense becomes “stronger”
in a matchup, the likelihood of winning for the favorite team
diminishes by ∼3.2 units per 0.25 point increase. In practice,
a coach would know the historical performance of each team’s
offense in the red zone and would also be able to assess through
point spreads or other means for the relative strength of the
teams. Therefore, in real time, they could gain a reasonable
estimate on the likelihood of winning a game in overtime based
upon this output. This possible “in-game” tactical decision is
illustrated in the Discussion section.

Finally, the results of the decision tree analysis (using built-
in pruning used by SAS Enterprise Miner with default settings)
showed a better predictive accuracy, but the resulting rules were
not as “implementable” as the logistic regression approach.

The derived rules from the Enterprise Miner used only the
normalized point spread and the red zone offense parameters. If
the normalized point spread was<0.4574 (whichmeans the team
on defense first was not the favored team), the suggested outcome
was “LOSS” (74/118 cases).

If the normalized point spread was ≥0.4574, then the red
zone offense was relevant. If the red zone offense averaged ≥4.43
(much less than the overall data set average), then the model
predicted a “WIN” (74/106 cases). If it was<4.43, then the model
predicted a loss (13/19 cases).

Using domain knowledge in the spirit of XAI, these rules in
general could be further simplified: If a team is favored and their
red zone offense is not terrible (since 4.43 is fairly low compared
to the average expected points), predict a win, otherwise, predict
a loss. Thus, the decision tree results in less helpful “rules” than
the logistic regression.

The predictive accuracy is shown in Table 7 (66.0%). While
the classification performance was better than the logistic
regression approach, the insight provided by the logistic
regression seems more value added to the decision-maker. A
coach can consider the relative strength of teams and the ability
of each team in the red zone to score when contemplating late
game actions designed to either force the game into overtime or
attempt to win the game outright during regulation time. Two
simple examples illustrate how these results could be used as such
in the Discussion section.

DISCUSSION

The two machine learning approaches struggled to predict the
outcome of overtime games, though the results were improved
over pure chance. Consider though the practical reality of
overtime games—after having 70–90 plays from scrimmage
during the regulation portion of the game, the outcome of
overtime could come down to as few (or even less) than
six plays. Thus, game results appear much more “random”
and, frankly, that is the allure of the college football overtime
process—it is exciting for fans because of the more unknown or
unpredictable results.

This study once again dispels that being on defense first
provides some sort of remarkable advantage to the team that
wins the coin toss. The knowledge of this should be comforting
to teams that lose the coin flip. The college football world is
waiting for the coaching “rebel” who, when faced with the coin
toss decision, starts choosing offense first in overtime games.

It is interesting to note that perhaps it is time to consider other
“conventional wisdom” strategies or in-game tactics that rely on
the assumption of “going last” is best (like the “defense first”
strategy)? Examples might include penalty kicks in soccer, the
home team batting last in baseball, and perhaps other scenarios
in various sports.

As mentioned in the introduction, the results of the machine
learning approaches presented might be more helpful when
teams/coaches are faced with end-of-game decisions. Consider
a scenario when late in the (regulation) game, a team scores
a touchdown and trails by one point after the touchdown.
They are then faced (as they are after every touchdown) with
choosing between kicking the one-point extra point (with an
∼97% chance of success) and sending the game into overtime
or trying to run/pass a two-point conversion and “winning” the
game if successful. Note that historically, two-point attempts have
a success rate around 45%.

Here are two recent examples (another convenience sample)
that illustrate how this approach might be implemented in real
time, using the results of this study.

Example 1: 2016 Season—Oklahoma State
vs. Texas Tech
Oklahoma State is favored by 10 points. Their red zone offense
averages 5.14 pts, whereas Texas Tech’s average 5.63 points.

Texas Tech scores late in the game to pull within one point.
They elect to kick the extra point to try to send the game into
overtime (in a strange twist of irony, they miss the normally
almost “sure thing” extra point). What would the results of
the study suggest that Texas Tech should do to maximize the
likelihood of a victory? Using the logistic regression equation, if
they make the extra point and the game goes into overtime, they
have a likelihood of between 46.5 and 48.1% to win the game
(depending on the reference point—defense or offense first).
Comparing this to the 45% chance of successfully completing the
two-point extra point, and considering the 97% likelihood of a
successful one-pt extra point, Texas Tech made the right decision
to try to send the game into overtime (likelihood of winning with
the 1-pt = 0.97∗0.465 = 0.451 on the low end, or 0.97∗0.481 =
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0.467 on the high end). Unfortunately, sometimes making the
right decision still leads to an unfavorable outcome.

Example 2: 2018 Season—Oklahoma State
vs. Oklahoma
Oklahoma is favored by 21 points. Oklahoma’s red zone
offense averages 5.485 points, whereas Oklahoma State’s averages
5.37 points.

Oklahoma State scores late in the game to pull within one
point. They elect to try a two-point conversion to win the game in
regulation instead of kicking the one-point extra point to send the
game into overtime. They are unsuccessful and lose. Their coach
gets a lot of criticism for going for two points.

Using the derived logistic regression equation, Oklahoma
State had between a 33.2 and 34.5% likelihood of winning
an overtime game. As stated before, the two-point conversion
typically has a 45% success rate. Thus, Oklahoma State appeared
to make the right end-of-game decision . . . even though they
too lost!

There are likely other similar examples that one can analyze,
and perhaps other scenarios where a teammay give up the chance
for a game-tying field goal toward the end of the game and tries
to score a touchdown to prevent overtime. In summary, the most
significant outcome of this study may be the additional insight
provided on these end-of-game decisions.

CONCLUSION

All studies have limitations. We have used the past 7 years of
data. Seeing that the red zone offense plays a role in predicting
outcomes, it will be difficult to go back in the game archives much
further without very strenuous play-by-play assessment of hard-
to-find game data. Perhaps there are surrogate measures one can
use instead of red zone efficiency that can assist us in gaining
further historical insight. It is clear from the analysis though
that there is no advantage to being on defense first. There is an
opportunity for a innovate coach to exploit this phenomenon.

Is there anything that other sports can glean from this study?
It was previously mentioned that the “last bats” philosophy

of baseball is what drives the conventional wisdom in college
football. Does the data support this? Perhaps the biggest takeaway
from the study to other sports is find data to question convention
wisdom in terms of strategies. The “Moneyball” era in baseball
questioned historical ways of building a team (Lewis, 2003). The
same may be true at the micro level in a variety of sports. As an
example, there is much work in big data and AI in soccer (Rein
and Memmert, 2016).

The machine learning/prediction models did not predict with
outstanding accuracy. Because college football overtime process
is “fair” by competitive standards, this is not surprising. The
models developed did provide some insight into predicting
outcome and can inform the knowledgeable coach to consider
the variables that influence possible overtime success as the end
of game nears.

The process of overtime (gong from period to period)
was not considered and is beyond the scope of this study.
Thus, does something happen as a game moves from overtime
one to overtime period two? Note the unique performance
of teams in overtime period three (a high percentage of
defense first teams win). This process may be worthy of
future investigation.

College football is one sport where analytics can play a role
in helping a team’s success. This study looked at archival data
and determined that there is some evidence for a team’s red zone
success (along with the relative strength of a team) to influence
the likelihood of a win in overtime. Trends in overtime games
should be followed in the future to see if this model holds up as
the game continues to evolve and change over time.
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