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Inflammatory bowel disease (IBD) is a disorder, which involves the gastrointestinal (GI)

tract consisting Crohn’s disease (CD) and ulcerative colitis (UC). The etiology of this

disease is not yet clear and, hence, there are numerous medications and treatments for

patients with IBD, although a definite and permanent treatment is still missing. Therefore,

finding novel therapeutic approaches are vital for curing patients with IBD. In the GI tract,

there are various lineages of cells with different roles that their existence is necessary

for the barrier function of intestinal epithelial cells (IECs). Therefore, signaling pathways,

which manage the hemostasis of cell lineages in intestine, such as Wnt, Notch, and

Hippo, could have crucial roles in regulation of barrier function in the intestine. Additionally,

these signaling pathways function as a governor of cell growth, tissue homeostasis,

and organ size. In patients with IBD, recent studies have revealed that these signaling

pathways are dysregulated that it could result in depletion or excess of a cell lineage in the

intestine. Moreover, dysregulation of these signaling pathways in different cell lineages of

the immune system could lead to dysregulation of the immune system’s responses in

IBD. In this article, we summarized the components and signaling of Wnt, Notch, and

Hippo pathways and their role in the intestine and immune system. Furthermore, we

reviewed latest scientific literature on the crosstalk among these three signaling pathways

in IBD. An overview of these three signaling pathways and their interactions in IBD could

provide a novel insight for prospective study directions into finding efficient medications

or treatments.
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INTRODUCTION

Inflammatory bowel disease (IBD) is a regressive inflammatory
condition, which occurs in the gastrointestinal tract (1). Patients
with IBD fall into two clinical types: ulcerative colitis (UC) and
Crohn’s disease (CD). In patients with UC, part of involvement
is limited to the colon and it can spread from the rectum
to the cecum. In this type of IBD, these parts show large
mucosal ulceration. On the other hand, in patients with CD,
the parts, which are affected the most, are the ileum and
the colon, but other parts of the gastrointestinal (GI) tract
could be influenced patchily (2). In spite of the vast studies
to find a causative factor for etiology of IBD, it is still known
as a multifactorial disorder (3). Different factors, such as
internal triggers (genetic susceptibility and immunoregulatory
impairments), environmental factors (diet and chemicals), and
microbial exposure, are considered to cause IBD (2, 4, 5).
Moreover, recent studies have shown that the dysbiosis of
gut microbiota profoundly contributes to the development of
IBD (2, 6–8).

Various cell lineages arise by differentiation and proliferation
of intestinal stem cells (ISCs), which are controlled by multiple
signaling pathways, including Hippo, Notch, and Wnt (9–13).
These signaling pathways accelerate undifferentiated columnar
cells, named crypt base columnar cells, to regenerate into
absorptive and secretory cell types in the GI tract (14). Some
studies have illustrated that in patients who suffer from IBD,
especially those with ulcerative colitis (UC), overexpression
of Notch and inhibition of Wnt lead to a lack of Paneth
cells that exist in crypts (15). Similarly, other studies have
demonstrated that an imbalance in components of Hippo
signaling pathway in the intestine of patients with IBD resulted
in excess of ISCs and shortage of secretory cells, such as
goblet cells and Paneth cells (16). Therefore, dysregulation in
pathways that play a role in proliferation and differentiation
may explain the defective mucus secretion and wound healing,
which could ultimately induce the failure of intestinal barrier
in patients with IBD (15). Furthermore, recent studies on Wnt,
Notch, and Hippo showed that these signaling pathways play
a regulatory role in the function and generation of various
immune cells’ types that in IBD, it could be dysregulated
(17–19). However, numerous studies have been conducted on
understanding the function and regulation of the proliferation
pathways in the gut epithelium and their specific role in IBDs is
still unknown (20).

In IBD, the process of wound healing and mucus secretion is
dysregulated that could lead to impaired barrier function of the
GI tract and ultimately leaky gut. Herein, we briefly explain the
barrier functionality of intestinal epithelial cells (IECs) and the
process of wound healing in IBD. In addition, it is illustrated that
some proliferation pathways, including Wnt, Notch, and Hippo,
could have critical impacts on these processes and the immune
system. We also summarize these three signaling pathways and
their role in the intestine and immune system. Finally, we
concisely discuss the interactions of these signaling pathways
in IBD.

BARRIER FUNCTION OF INTESTINAL
EPITHELIAL CELLS

The intestinal epithelial cells (IECs) establish a barrier, which
is selectively permeable and sets apart luminal content from
beneath tissues (21, 22). Basically, IECs function as a barrier,
which prevents unacceptable solutes, microorganisms, viruses,
and luminal antigens from passing the epithelium and entering
the lamina propria (22, 23). Multiple components that participate
in the intestinal barrier consist of the epithelial cells with
tight junctions, adherens junctions, and luminal secretions,
such as mucus or unstirred layers, on the apical side of the
epithelium (22).

PROCESS OF WOUND AND MUCOSAL
HEALING IN INFLAMMATORY BOWEL
DISEASE

The process of wound healing starts when a part of the intestinal
epithelium gets injured. Intestinal wound healing depends on
the accurate balance between migration, proliferation, and
differentiation of the epithelial cells, which are nearby the
wounded area (24). First, epithelial cells surround the wounded
area, which loses their columnar polarity. Then, they proliferate
to surge the pool of cells for resurfacing the wound. Finally,
to maintain the mucosal barrier function, maturation and
differentiation of epithelial cells are vital (25). Dysfunction of
these three steps during the wound healing’s process in patients
with IBD results in the broken differentiation and proliferation of
different cell lineages in gut, such as goblet cells or Paneth cells,
that lead to flawed mucosal secretion and leaky gut (26).

IMPORTANCE OF PROLIFERATION
PATHWAYS IN INTESTINE

Many cell lineages are vital for maintenance of intestinal
epithelial barrier integrity, which arise by differentiation and
proliferation of intestinal stem cells (ISCs) (27). Crypt-based
stem cells, which are near the base of the crypts, need to
actively proliferate to maintain continuous renewal of different
cell lineages (28). As these cells move up from crypt to villus,
proliferation ends gradually and differentiation into one of the
four primary cell types occurs (i.e., enterocytes, goblet, Paneth,
and enteroendocrine cells) (29, 30). Multiple signaling pathways,
such as Hippo, Notch, andWnt, are responsible for regulating the
proliferation and the differentiation in intestinal epithelial cells
(9–13, 31). Finally, an imbalance among these types of pathways
in epithelium could lead to colorectal cancer and IBD (27).

WNT PATHWAY

The Wnt signaling pathways are a group of signaling pathways,
which commence with proteins that transmit signals into a cell by
cell surface receptors (32, 33). Therefore, this pathway is activated
by the cell–cell communications and it has been conserved
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throughout the biological evolution (27). Wnt pathway is divided
into β-catenin dependent (canonical) and β-catenin independent
(noncanonical) types (34). This signaling pathway gets activated
when Wnt proteins contact with Frizzled (Frz) receptor on
the cells’ surface (18, 33). Thereafter, Wnt proteins run a
complex signaling cascade that plays an important role in
regulating cell proliferation and differentiation by regulating the
β-catenin, which is an important mediator (34–36). When the
Wnt pathway is silenced, β-catenin can be phosphorylated by
the ubiquitin-proteasome system [including glycogen synthase
kinase 3 (GSK3), casein kinase Iα (CKIα), axin, and adenomatosis
polyposis coli (APC)] and then transcription complexes prohibit
gene transcriptional activity (37, 38). In opposition, when the
Wnt signaling pathway has been activated, β-catenin degradation
is banned, which is leading to its aggregation (38, 39). As a
result, transcription complexes are changed by accumulated β-
catenin, which activates targeted expression of genes related
to cell proliferation and migration, EphB2/B3, Cylind-1, and
c-Myc (40, 41).

ROLE OF WNT PATHWAY IN INTESTINE

Wnt signaling pathway plays a vital role in the intestinal
epithelium, specifically in regulating the stem cells’ behavior,
proliferation, differentiation, and migration (42). This pathway is
one of the many signaling pathways for the maintenance of stem
cells (43). Recent studies have shown that deletion of β-catenin’s
encoding gene (CTNNB1) results in disruption of secretory cells’
differentiation (44). Wnt pathway is able to direct the beginning
development of secretory cells lineage and the endpoint of
differentiation of Paneth cells for sustaining homeostasis (45).
Reduced Wnt pathway, particularly diminished expression in
its transcription factor 4 (TCF-4), could mediate Paneth cells
differentiation flaws that it induces specific deficiency of Paneth
cell defensins, which is a principal factor in IBD pathogenesis
(15, 46). In addition, evidence found in TCF-4 knockout mice
illustrated that the reduced level of defensins in gut permits
bacteria to invade the epithelium and resulting in colitis (42,
47). On the other hand, excessive Wnt pathway accumulates
β-catenin in the cytoplasm, then they are translocated to the
nuclear, and finally induces overexpression of Wnt target genes,
which lead to colon cancer (48). Furthermore, recent studies on
IBD-associated colorectal cancer (CRC) revealed that negative
regulators ofWnt, such as AXIN2 and RFN43, are downregulated
in 31 tissue sample of patients with IBD-CRC (49).

ROLE OF WNT PATHWAY IN IMMUNE
SYSTEM

One of the important roles of Wnt pathway is in multiple
layers of immune regulation. Presence or absence of Wnt
proteins could have impact on different immune cells, such
as dendritic cells, macrophages, CD8+ T cells, and CD4+ T
cells (18, 50). Based on recent studies on Wnt proteins and
dendritic cells (DCs), it is demonstrated that Wnt proteins may

be involved in promoting DCs into a tolerogenic state (51).
Manicassamy et al. showed that reduced expression of β-catenin
in DCs enhances inflammatory responses in the mice model
of inflammatory bowel disease. Therefore, in DCs, β-catenin
signaling causes a tolerogenic state and prevents them from
inflammatory responses (52). Recent studies on Wnt pathway
andmacrophages showed that in macrophages, Wnt ligands have
crucial roles in repairing injured tissues, since macrophages’ role
in tissue repairing and wound healing is well known (53, 54);
however, in some studies, it is demonstrated that macrophage-
derived Wnt5a maintains immune functions and stimulates the
secretion of proinflammatory cytokines (55). Some previous
studies showed that proteins of Wnt signaling play a regulatory
role in the function of CD8+ T-cell effector and generating
memory T-cell pool (18, 56). Functional regulation of β-catenin-
mediated CD8+ T-cell immune responses remains unclear (57–
60). The role ofWnt pathway in CD4+ T-cells is not yet clear and
it needs more accurate investigations for various Wnt ligands;
however, some studies suggested that the overexpression of β-
catenin in regulatory T (Treg) cells enhanced Treg function
in IBD (61, 62). The canonical Wnt signaling proteins are
able to induce their roles in T-cell differentiation and effector
function in various inflammatory diseases, such as IBD, cancer,
as well as in autoimmunity and viral infections (18). Wnt
signaling is important in inflammatory and fibrotic diseases and
it is in harmony with the roles of Wnt proteins in repairing
injured tissue. Recent studies’ outcomes demonstrated that Wnt
signaling plays vital roles in lymphomyelopoiesis and immune
responses (56). Moreover, Wnt pathway and inflammatory
signaling pathways, such as nuclear factor-kappa B (NF-κB),
Janus kinase-signal transducer and activator of transcription 3
(JAK-STAT3), and mitogen-activated protein kinase (MAPK),
affect each other, which regulate inflammatory factors’ secretion
during the pathogenesis of colitis (18, 63).

NOTCH PATHWAY

The Notch signaling pathway is conserved during the evolution
that is presented in most animals (27). It regulates the
differentiation and development of cells, tissues, and organs
by interactions among nearby cells (27). The pathway consists
of receptors, ligands, transformation complexes, and several
regulatory molecules (64). The Notch transmembrane receptor
plays a critical role in the signaling pathway that regulates the
fate and development of a wide range of metazoan cells through
local cell interactions (65–67). There are at least four different
Notch receptors (Notch 1–4) in mammals that the Notch-1 is
dominant in the intestine (66, 68). As a result of binding ligands,
slight structural conformations in the membrane around the
binding site activate matrix metalloproteinases (MMPs) and γ-
secretase (69). With the assistance of activated γ-secretase and a
disintegrin andmetalloproteinase (ADAM)-familyMMPs, Notch
intracellular domain (NICD), which is the activated form of
Notch receptors, is generated (64, 66, 70). Thereafter, NICD
enters the nuclear and by the help of activator transcription
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complexes, it regulates the HES genes to determine the fate of
the cell (64, 71–74).

ROLE OF NOTCH PATHWAY IN INTESTINE

In the intestine, Notch is necessary for the survival of ISCs.
Notch is also responsible for determining ISCs differentiation
into secretory or absorptive lineages (63). High Notch signaling
leads to absorptive differentiation, whereas low Notch signaling
induces differentiation of secretory cells (75). Abnormal activity
of the Notch pathway in IBD induces increased expression
of the HES1 transcription factor in human colon cell lines,
which thereafter inhibits differentiation of secretory cell lineages
and weakens the mucus barrier, which is linked to chronic
colitis (76). Accordingly, it is demonstrated that the Notch
signaling pathway has a crucial role in maintaining goblet cells
in the lesion of patients with UC that is so important in
mucosal and wound healing in IBD. Zheng et al. illustrated
that abnormality in expression of Notch intracellular domain
(NICD) in ulcers induces reduction in the quantity of goblet
cells in patients with UC (77). NICDs imposed expression
leads to a decrease in phenotypic genes for goblet cells
located in human IECs (77). In addition, several signaling
pathways and cytokines cascade with Notch pathway mediate
epithelial regeneration, such as interleukin-22 (IL-22) and tumor
necrosis factor-α (TNF-α) (27, 78). Accordingly, Kuno et al.
found that messenger RNA (mRNA) expression of OFLM4,
intestinal stem cell marker, is upregulated by TNF-α and Notch
pathway in patients with IBD (63). Moreover, it is reported
that Notch signaling pathway contributes to the maintenance
of tight junctions and adherens junction proteins in mice.
Ahmed et al. showed that during the infection with Citrobacter
rodentium and absence of Notch pathway, the function of tight
junctions and adherens junctions impaired, which could result
in increased permeability of epithelial cells and more exposure
of luminal contents with immune system and inflammation
(79). Notch dysregulation has also been demonstrated in
colon cancer (80).

ROLE OF NOTCH PATHWAY IN IMMUNE
SYSTEM

Notch signaling is important pervasively all over the immune
system, since it has lineage and context-dependent impacts on
a broad range of cells. In the immune system, Notch1 ligands,
especially Jagged1, are present in regulatory T-cells (Tregs) (17).
The activation of Notch1 in dendritic cells (Notch1 intracellular
domain) induces the interaction of signaling elements and
components that result in overexpression and the transport
of pSmad3, which is known to facilitate the effector function
of Tregs (17, 81). Notch signaling is also involved in the
improvement of inflammatory conditions. Some studies revealed
that Notch signaling pathway improves an inflammatory cascade
in macrophages in inflammation and blocking Notch reduces the
production of proinflammatory cytokines, such as interleukin-1β
(IL-1β) (82, 83).

HIPPO PATHWAY

The Hippo pathway is a pathway, which is remained conserved
throughout the evolution and it controls the size and homeostasis
of an organ by regulating cell proliferation, survival, apoptosis,
and stemness (84, 85). Specifically, intercellular contacts and
membrane adhesion complexes modulate the transduction of a
signal by the fundamental constituents of this pathway, which
are highly conserved in mammals (86). These components
contain the mammalian sterile 20-like kinases, MST1 and
MST2, with their regulatory protein WW45 (SAV1) and the
large tumor suppressor 1 and 2 kinases (LATS1 and LATS2)
with their regulatory protein MOBKL1A/B (MOB1) (87).
When the MST1/2 kinases get activated and LATS kinases
get phosphorylated, it leads to negative regulation of cell
proliferation (88). Concisely, phosphorylation of LATS kinases
results in a process of phosphorylation of the transcriptional
coactivators Yes-associated protein (YAP) at Ser127 and PDZ-
binding motif (TAZ) at Ser89, so it makes binding sites for
14-3-3 proteins that accumulate YAP/TAZ in the cytoplasm
(88). Once this inhibitory phosphorylation does not work, these
transcription factors will be able to enter to the nucleus and
contact with other transcriptional factors that enhance cell
proliferation (89, 90). In cells that are in apoptotic phase because
of exposure to severe DNA damage stress, YAP activates the
transcription of proapoptotic genes through binding to the p73
transcription factor that is a p53-like tumor suppressor. This
process is moderated by phosphorylation of YAP at the Tyr357
position through c-Abl protein, which provides a higher affinity
of YAP compared to p73 (89, 91).

ROLE OF HIPPO PATHWAY IN INTESTINE

It is confirmed that YAP/TAZ enhances regeneration of tissues
in the mammalian intestine (92). Accordingly, Yui et al.
demonstrated that YAP/TAZ is associated with the expression of
Sca1, which is a cell surface protein representing a marker for the
repairing epithelium (93). YAP/TAZ has two different roles in the
renewal of the intestinal epithelium: one is ISCs’ proliferation that
happens through collaboration of YAP/TAZ with transcription
factor TEADs (94) and the other role is encouraging goblet
cells differentiation by cooperation with transcription factor klf4
(95, 96). The activity of MST1/2 gets higher, as cells move
from the crypts toward the lumen, so MST1/2 has decreased
activity in the crypts (97). Contrarily, YAP is plentiful in the
nucleus of the cells, which are located in lower crypts; however,
this molecule is also found in cytoplasm of upper cells in the
villi (97). In general, the expression of YAP in the nucleus of
cells diminishes as cells move from the crypts to the villi; in
contrary, expression of YAP in cytoplasm surges (16). Deletion of
MST1/2 inmouse intestinal epithelium cells induces an improved
amount of nuclear YAP; as a result, it increases proliferation of
undifferentiated ISCs and lack of secretory cells both in the small
and large intestines (16). In another study, it is demonstrated that
in IECs, conditional knockout of MST1/2 results in disorganized
villus structures, increased undifferentiated cells, and dysplastic
epithelia (98). It is also reported that in mouse gut, deficiency
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of SAV1 induces enlargement of crypt structures (92). YAP
modulates the regeneration of mucus both in the patients with
IBD and the DSS-induced colitis mouse model (99). Moreover,
previous studies conducted by Ou et al. illustrated that YAP/TAZ
expression is linked with promotion of fibrosis in patients with
CD by activating intestinal fibroblasts (100). To sum up, YAP in
the nucleus has a positive role in the regeneration of intestinal
epithelium in IBD and may provide a novel therapeutic target
for IBD.

ROLE OF HIPPO PATHWAY IN IMMUNE
SYSTEM

Recent studies have shown that the Hippo pathway plays an
important role in themodulation of immune system.MST1/2 has
a pivotal role in mediating, migration, adherence, and survival of
T cells by its downstream effectors, such as LATS1/2, NDR1/2,
and YAP (101). MST1/2 promotes the function of regulatory
T-cell (Treg) through modulating Foxp3 acetylation (16, 102).
It is shown the deficiency of MST1/2 leads to impairment of
Foxp3 expression and Treg cell development and its function
in mice (16, 102). It is also illustrated that the deficiency of
MST1/2 might induce the lack of naïve T cells, which could
lead to autoimmune demonstrations or resulting in recurrent
bacterial or viral infections (103, 104). Additionally, in a study
by Geng et al., it has been found that the TAZ is able to determine
the fate of a T cell to become a proinflammatory T-helper (Th)
17 cell or an immunosuppressive Treg cell (105). Particularly,
lack of TAZ improves the differentiation of Treg cells; however,
activation of TAZ enhances Th17 cell differentiation (105). On
the other hand, YAP inmacrophages was shown to deteriorate the
IBD, since it negatively affects M2 polarization of macrophages,
which is induced by IL-4/IL-13 and promotes the activation of
M1 macrophages that is caused by lipopolysaccharide (LPS) or
interferon-γ (IFN-γ) (19).

CROSSTALK BETWEEN WNT, NOTCH,
AND HIPPO SIGNALING PATHWAYS IN
INFLAMMATORY BOWEL DISEASE

There is an interplay among the proliferation signaling pathways,
including Hippo, Wnt, and Notch, in intestinal regeneration
(Figure 1) and imbalance among these pathways results in
different problems, which are associated with different diseases,
including IBD.

Once the Hippo pathway gets activated, it negatively affects
the Wnt signaling pathway by cytoplasmic and phosphorylated
YAP/TAZ; however, deactivation of the Hippo pathway has a
positive effect on the expression of Wnt target genes by nuclear
and dephosphorylated YAP (20). Additionally, it is reported
that β-catenin activates and upregulates YAP and TAZ (106,
107). Imajo et al. illustrated that the YAP/TAZ regulates Wnt
signaling that relies on the state of phosphorylation and cellular
localization of YAP/TAZ proteins (108). Cytoplasmic YAP/TAZ
downregulates the Wnt signaling through the regulation of
nuclear translocation and activation of β-catenin (108, 109).
This is in contrast to nuclear YAP, which stabilizes β-catenin

and resulting in the improved expression of Wnt target genes
(110, 111). It is shown that YAP and β-catenin grow in nucleus
within regeneration following inflammation. Once the nuclear
YAP is overexpressed, it enhances Wnt/β-catenin signaling and
significantly leads to the improvement of the IECs’ healing
ability, thereby demonstrating that nuclear YAP improves the
IECs’ proliferation by the activation of Wnt/β-catenin signaling
pathways (112). In addition, within intestinal regeneration
following tissue damage, cytoplasmic YAP restricts Wnt signals,
interrupts the ISCs, and decreases the stem cells’ growth,
which induce abnormal migration of Paneth cells and reduction
of ISCs (97).

In previous studies, it is reported that the Hippo pathway
is able to regulate Notch signaling. In intestine, conditional
knockout of MST1/2 leads to increased amount of NICD in
nucleus (16). Reduction of MST1/2 results in activation of Notch
signaling through decreasing of phosphorylation and increasing
the abundance of nuclear accumulation of YAP (16). Intrinsically,
the YAP molecules, which are located in nucleus, facilitate Notch
signaling (98). Moreover, it is shown that administration of
gamma-secretase inhibitors (GSIs), which restrict YAP-activating
Notch, induce colitis (98, 113). In general, the Hippo pathway is
able to downregulate Notch signaling via phosphorylation and
suppression of the YAP.

Wnt and Notch signaling pathways are so intertwined that it
has been suggested that they established an integrated signaling
termed as “Wntch” (114). An accurate balance between Wnt
and Notch is required for the homeostasis of intestine, as
their dysregulation may result in inflammation, colitis, and
tumorigenesis. It is demonstrated that activation of Notch
pathway upregulates the expression of β-catenin (115). On
the other hand, Kay et al., by utilizing chemical reaction
network theory (CRNT), found that Wnt-mediated actions
on Hes1 promoter are able to change dynamic transition of
Notch signaling pathway from multistability to monostability,
highlighting the role of β-catenin in modulating Notch
signaling pathway (116).

DISCUSSION

In this short article, we aimed to overlook on three proliferation
pathways playing important roles in intestine and immune
system. We also reviewed some of their impacts on pathogenesis
of IBD. In the process of wound and mucosal healing in a
healthy condition, adjacent cells to the lesion start to proliferate
and migrate to retrieve the columnar polarity of the epithelial
cells (24). This process is faulty in the intestine of patients with
IBD, particularly those who have UC. Multiple factors contribute
in this flaw, but it is shown that one of the most important
factors is the dysregulation of proliferation pathways, such as
Hippo,Wnt, andNotch, and also an imbalance among them (27).
Moreover, dysregulation of these pathways leads to an imbalance
of cell lineages in intestine. Importantly, this dysregulation results
in depletion of goblet cells and Paneth cells, which leads to
impaired secretion of mucus and defensins and invasion of
various bacteria to epithelial cells (26). Accordingly, this results in
massive responses of the immune system and inflammation that
cause tissue damage and ulcers, which are the clinical symptoms
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FIGURE 1 | Wnt, Hippo, and Notch signaling in an intestinal stem cell [inflammatory bowel disease (IBD) condition]. The disrupted intestinal epithelial barrier promotes

a leaky gut in inflammatory conditions, such as IBD. In this state, differentiation-related pathways, such as Wnt, Hippo, and Notch, are dysregulated in intestinal stem

cells. The Wnt signaling pathway plays a vital role in the intestinal epithelium and downregulation of β-catenin disrupts the differentiation of secretory cells in IBD. The

Hippo pathway regulates cell proliferation, survival, apoptosis, and stemness. An improved amount of nuclear YAP/TAZ occurred in IBD and increased the proliferation

of undifferentiated intestinal stem cells (ISCs) and a lack of secretory cells. In contrast, cytoplasmic YAP/TAZ overexpression is seen in inflamed tissue. Also, MST1/2 is

downregulated and disorganized villus structures and increased undifferentiated cells and dysplastic epithelia. However, it is controversial that Hippo pathway is

upregulated or downregulated in IBD. The Notch pathway regulates the differentiation and development of cells, tissues, and organs by interactions among nearby

cells. Upregulation of the Notch pathway in IBD inhibits differentiation of secretory cell lineages and abnormality in the expression of NICD in ulcers reduces the

quantity of goblet cells in patients with ulcerative colitis (UC). Red arrows show crosstalk between these three pathways and dotted lines display downregulated

pathways and molecules. Abbreviations: low-density-lipoprotein-related protein (LRP), adenomatosis polyposis coli (APC), glycogen synthase kinase 3 beta (GSK3β),

casein kinase 1α (CK1α), T-cell factor (TCF), lymphoid enhancer factor (LEF), FERM domain-containing protein 6 (FRMD6), mammalian Sterile 20-related 1 and 2

kinases (MST1 and MST2), Salvador 1 (SAV1), Large tumor suppressor 1 and 2 kinases (LATS1 and LATS2), Mps One Binder Kinase Activator-Like 1A (MOB1),

Yes-associated protein 1 (YAP), PDZ-binding motif (TAZ), TEA domain family member (TEAD), Fat-related atypical cadherins 1-4 (FAT 1-4), A Disintegrin and

metalloproteinase domain-containing protein 10 (ADAM 10), Notch intracellular domain (NICD), meprin A-5 protein (MAM) and CBF1, Suppressor of Hairless, Lag-1

(CSL). The figure has drawn by BioRender (www.Biorender.com).

of IBD (117). These signaling pathways also play important roles
in various immune cells, including dendritic cells, macrophages,
and T cells. These signaling pathways could impact immune
cells to differentiate to a particular type that it could attenuate
or strengthen immune responses (117). Moreover, there is a
crosstalk between these signaling pathways and inflammatory
signaling pathways, such as NF-κB, JAK-STAT3, andMAPK, that
could influence an immune cell to produce proinflammatory
or anti-inflammatory cytokines (104). Dysregulation in these
pathways in immune cells is reported to be important in immune
responses to inflammation in patients with IBD (117).

FUTURE PERSPECTIVE

This study needs more investigation in different aspects. First,

a precise analysis of the relationship among these three
pathways needs to be more investigated. By doing so, we

will be able to understand the impact of different molecules
of signaling pathways on each other. In addition, current
findings demonstrated the role of these pathways in several

immune cells yet not all of them. More experiments could
be done in finding their role in other immune cells. Finally,
these proliferation pathways can be a potential target for
medications. More studies are required to develop efficient drugs
for triggering epithelial cells to regulate these pathways. The
results of prospective studies can dwindle the morbidity and
mortality linked to IBD, hence reduce the worldwide incidence of
this disease.
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