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Structural basis for the recognition of complex-type
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Endoglycosidase S (EndoS) is a bacterial endo-β-N-acetylglucosaminidase that specifically

catalyzes the hydrolysis of the β-1,4 linkage between the first two N-acetylglucosamine

residues of the biantennary complex-type N-linked glycans of IgG Fc regions. It is used for the

chemoenzymatic synthesis of homogeneously glycosylated antibodies with improved ther-

apeutic properties, but the molecular basis for its substrate specificity is unknown. Here, we

report the crystal structure of the full-length EndoS in complex with its oligosaccharide G2

product. The glycoside hydrolase domain contains two well-defined asymmetric grooves that

accommodate the complex-type N-linked glycan antennae near the active site. Several loops

shape the glycan binding site, thereby governing the strict substrate specificity of EndoS.

Comparing the arrangement of these loops within EndoS and related endoglycosidases,

reveals distinct-binding site architectures that correlate with the respective glycan specifi-

cities, providing a basis for the bioengineering of endoglycosidases to tailor the che-

moenzymatic synthesis of monoclonal antibodies.
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Therapeutic immunoglobulin G (IgG) antibodies are a
prominent and expanding class of drugs used for the
treatment of several human disorders including cancer,

autoimmunity, and infectious diseases1–3. IgG antibodies are
glycoproteins containing a conserved N-linked glycosylation site
at residue Asn297 on each of the constant heavy chain 2 (CH2)
domains of the fragment crystallizable (Fc) region (Fig. 1)4. The
presence of this N-linked glycan is critical for IgG function5,6,
contributing both to Fc γ receptor binding and activation of the
complement pathway7,8. The precise chemical structure of the N-
linked glycan modulates the effector functions mediated by the Fc
domain9. IgG antibodies including those produced for clinical use
typically exist as mixtures of more than 20 glycoforms, which
significantly impacts their efficacies, stabilities and the effector
functions10,11. To better control their therapeutic properties, the
chemoenzymatic synthesis of homogeneously N-glycosylated
antibodies has been developed12–14.

Endoglycosidase S (EndoS) secreted from Streptococcus pyo-
genes is a 108 kDa enzyme that specifically catalyzes the hydro-
lysis of the β-1,4 linkage between the first two N-
acetylglucosamine residues of the complex-type N-linked glycan
located on N297 of the Fc region of IgG antibodies (Fig. 1)15,16.
This structural modification ablates the effector functions of the
host IgG antibodies, markedly contributing to immune evasion by
this bacterium17 because (i) EndoS deglycosylates only IgG gly-
coforms and no other glycoproteins, and (ii) EndoS glycosynthase
variants efficiently transfer predefined complex-type N-linked
glycans to intact IgG, this endoglycosidase plays a central role in
glycoengineering strategies to develop IgG antibodies with
improved therapeutic potential12–16. Recently, we have described
the X-ray crystal structure of a truncated version of EndoS
(98–995) in its unliganded form18. However, the molecular
mechanism by which EndoS specifically recognizes biantennary
complex-type glycans linked to N297 of IgG remains unclear,
prohibiting the full exploitation of this enzyme in therapeutic
antibody engineering.

Here X-ray crystallography, small-angle X-ray scattering
(SAXS), site-directed mutagenesis, enzymatic activity, and com-
putational methods are used to define the molecular basis of
substrate specificity of EndoS, as well as that of other GH18
endoglycosidase family members.

Results
Overall structure of full-length EndoSD233A/E235L-G2 complex.
For our structural studies, we used a catalytically inactive version
of EndoS, in which the residues D233 and E235 are mutated to
alanine and leucine, respectively (EndoSD233A/E235L, see below for
further details). The crystal structure of the full-length catalyti-
cally inactive EndoSD233A/E235L (residues 37–995; residues 1–36
correspond to the signal peptide) in complex with G2 product
was solved by molecular replacement methods (EndoSD233A/
E235L-G2 thereafter; Fig. 2; Supplementary Figs. 1 and 2;

Supplementary Table 1 and Methods section)18. EndoSD233A/E235L
crystallized in the P21 space group, with one molecule in the
asymmetric unit and diffracted to a maximum resolution of 2.9 Å
(Supplementary Table 1). The full-length EndoS comprises six
different domains from the N- to the C-terminus: (i) the
N-terminal domain (residues 37–97) determined by the
EndoSD233A/E235L-G2 crystal structure adopts a three-helix bundle
domain (N-3HB) that is connected to the previously reported
(ii) glycosidase domain (residues 113–445) by a proline-rich, 15
residue-long loop (residues 98–112; Fig. 2); (iii) a leucine-rich
repeat domain (residues 446–631); (iv) a hybrid Ig domain
(residues 632–764) that comprises two subdomains that are
topologically intertwined, a typical Ig subdomain structurally
similar to the interleukin-4 receptor (PDB code 1IAR; Z-score=
5.2) with an insertion of a smaller subdomain between the second
and third β-strands; (v) a carbohydrate binding module (residues
765–923), and (vi) a C-terminal three-helix bundle domain
(C-3HB; residues 924–995)18. The structural comparison between
the full-length EndoSD233A/E235L-G2 and the truncated unli-
ganded version ΔN-3HB-EndoS suggests an important con-
tribution of the N-3HB domain to stabilize the GH domain and
generate a completely competent glycan binding site (Supple-
mentary Fig. 3a–d). Supporting this notion, the calculated-buried
surface area between the N-3HB and GH domains is 464 Å2 19.
Specifically, Q91 and E94 at the end of α3 form hydrogen bonds
with the main chain of Y157 of loop 2 and K162 of α4, respec-
tively. In addition, S57 at the end of α2 forms hydrogen bonds
with D156 of loop 2. This interface region is further stabilized by
hydrophobic interactions mediated by F64, L56, L95, Y157, and
L159 (Supplementary Fig. 3e). To study the thermostability of the
full-length EndoSD233A/E235L and ΔN-3HB-EndoS, we performed
differential scanning fluorimetry (DSF). ΔN-3HB-EndoS shows
two well-separated unfolding transition states with melting tem-
perature (Tm) of 45 and 51 °C, whereas the full-length
EndoSD233A/E235L only displays one transition at 51 °C (Supple-
mentary Fig. 3f), consistent with the notion that the N-3HB
domain contributes to stabilize EndoS.

The N-3HB was previously suggested to be an oligomerization
domain18. However, EndoSD233A/E235L-G2 crystallized as a
monomer, and this monomeric state was confirmed to occur in
solution, both in the presence and absence of the oligosaccharide
G2 product by SAXS (Supplementary Fig. 4). The radius of
gyration (Rg) values obtained for EndoSD233A/E235L in presence
(43.9 Å) and absence (43.2 Å) of the G2 product revealed a slight
reduction of the Rg value of about 0.7 Å. In addition, we observed
a similar fit of the SAXS data in the presence and absence of the
G2 product in the solution-scattering profile calculated from the
crystal structure of EndoSD233A/E235L-G2 product complex,
suggesting that the overall shape of the enzyme remains
unchanged (Supplementary Table 2; Supplementary Fig. 4 and
Methods section). The N-3HB domain is structurally similar to
the Staphylococcal protein A (SpA) C domain (PDB ID code
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Fig. 1 Schematic representation of EndoS hydrolytic activity and glycosynthase activity of EndoS mutant. EndoS specifically hydrolyzes the β-1,4 linkage
between the first two N-acetylglucosamine residues of the complex-type N-linked glycan located on Asn297 of the Fc region of IgG antibodies. The N-
linked glycan is represented exposed on the exterior of the Fc domain to facilitate its visualization. EndoS mutant (EndoSD233Q) efficiently transfers
fucosylated and afucosylated biantennary complex-type N-linked oligosaccharide from complex-type sugar oxazoline as a donor substrate
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4ZNC; Z-score= 6.6), a 42-kDa protein that contains five highly
homologous extracellular Ig-binding domains in tandem, desig-
nated domains are E, D, A, B, and C. The SpA C domain binds
between the CH2 and CH3 domain of the Fc region of IgG20. In
addition, the SpA D domain also binds to the human Fab-heavy
chain of the VH3 family, assisting Staphylococcus aureus in
evading the immune system20,21.

The G2 product binding site. The EndoS glycosidase domain
adopts a (β/α)8-barrel topology with a long cavity that runs
parallel to the protein surface in which one molecule of the G2
glycan product is unambiguously identified in the crystal struc-
ture (Figs. 2–4). Specifically, the G2 glycan product binding site is
located in the central region of the β-barrel and is flanked by α2
and α3 helices from the N-3HB domain, as well as the connecting
loops β1–β2 (loop 1; residues 120–145), β2–α4 (loop 2; residues
151–158), β3–α5 (loop 3; residues 185–206), β4–α6 (loop 4;
residues 235–247), β5–α7 (loop 5; residues 281–289), β6–α8 (loop
6; residues 304–306), β9–α10 (loop 7; residues 347–380), β10–α11
(loop 8; residues 403–413), and α11–α12 (loop 9; residues
420–434).

The reducing end of the core Manβ1–4GlcNAc disaccharide is
located at the end of the long cavity flanked by loops 4, 5, 6, and
7, and several residues from the β-barrel core (Fig. 3a, b). Two
well-defined asymmetric grooves accommodate each of the
complex-type N-linked glycan antennae: the Galβ1–
4GlcNAcβ1–2Manα1–6 and Galβ1–4GlcNAcβ1–2Manα1–3 arms
occupy grooves 1 and 2, respectively, both attached to the
disaccharide Manβ1–4GlcNAc of the G2 product (Fig. 3a–c).

Specifically, the O6 atom of the first GlcNAc (−1) residue
interacts with the side chains of E349, N356, and W358, whereas
O1 interacts with the side chains of Q303 and Y305 (Fig. 3d). The
O2 atom of the Man (−2) residue interacts with the side chains of
E349 and Y402, while its O4 atom makes a hydrogen bond with
the indole nitrogen of W153 and F150 stacks against the sugar
ring of Man (−2). W153 is positioned in such a way as to engage
the entire G2 trimannose core including the central Man (−2),
the α(1–6)-linked Man (−3) and the α(1–3)-linked Man (−7).
The O3 atom of the Man (−3) residue interacts with the side
chains of R186 and D237, whereas the O6 atom makes a
hydrogen bond with the main chain of H151. In addition, the O3
atom of the Man (−7) residue interacts with R119 and E350,
while the O4 and O6 atoms make a hydrogen bond with the main
chains of E350 and A352, respectively. W121 also stacks against
the sugar ring of the Man (−7) residue. The terminal GlcNAc
(−4 and −8) and Gal (−5 and −9) residues of each arm adopt
two alternative conformations into the crystal structure. In one
state, the GlcNAc (−4 and −8) and Gal (−5 and −9) residues
protrude away from grooves 1 and 2, which may reflect the
release of the G2 product from the active site (Fig. 4a); in the
other state, these carbohydrates reside within their corresponding
grooves, likely reflecting the binding mode of the G2 substrate
(Fig. 4c).

Although we were unable to co-crystallize EndoS in the
complex with the S2G2 substrate (Fig. 5a), the three-dimensional
structure suggests the possible binding mode for the first GlcNAc
(+1) and the last Neu5Ac (−6 and −10) residues (Fig. 4b, d).
Molecular docking calculations placed the GlcNAc (+1) residue
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Fig. 2 Overall structure of the EndoSD233A/E235L-G2 complex. a Cartoon representation showing the general fold and secondary structure organization of
EndoSD233A/E235L, including the N-3HB (yellow), glycoside hydrolase (GH; orange), leucine-rich repeat (green), hybrid IgG (magenta), carbohydrate
binding module (cyan), and C-3HB (gray) domains. The G2 product is shown in light brown. b Surface representation of the EndoSD233A/E235L-G2 complex
showing the location of the G2 product binding site and catalytic site
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within a region located at the end of the long cavity comprising
β6 and loops 4, 5, 6, and 7, and the last two Neu5Ac (−6 and
−10) residues of the S2G2 substrate extending beyond the glycan
binding grooves 1 and 2, respectively (Fig. 4b, d). The O6 atom of
GlcNAc (+1) makes a hydrogen bond with the side chain of
T281, whereas the O1 atom and the carbonyl oxygen of the N-
acetamido group of sugar interacts with the main chain of Q303
and Y305, respectively. The GlcNAc (+1) is also stabilized by
hydrophobic interactions mediated by Y305 and W358 (Fig. 5b).
EndoS belongs to family GH18, for which a substrate-assisted
mechanism, with retention of the anomeric configuration, has
been proposed22–25. During the first step, the binding of the
substrate generates a distortion of GlcNAc (−1), preceding the
transfer of a proton from a protonated carboxylic acid residue to
the anomeric oxygen, and the nucleophlic attack at the anomeric
center by the carbonyl oxygen of the N-acetamido group to result
in the formation of an oxazolinium intermediate22–26. A second
carboxylate residue is thought to orient and enhance the
nucleophilicity of the acetamido group that attacks the anomeric
center by formation of a hydrogen bond25. During the second

step, the general acid residue in the first step is proposed to
deprotonate an incoming water. This water molecule promotes
the departure of the 2-acetamido group, releasing the sugar
hemiacetal product with overall retention of stereochemistry22.
Critical residues are preserved in EndoS, strongly supporting a
common catalytic mechanism (Fig. 5c and Supplementary Fig. 5).
In that context, E235 base/base, whereas D233 stabilizes the
intermediate in a substrate-assisted hydrolysis mechanism, in
which the carbonyl group of the C2-acetamido of GlcNAc (−1)
acts as the nucleophile (Fig. 5b)22. For that reason, we have
replaced both D233 and E235 residues by alanine and leucine,
respectively, in order to obtain a catalytically inactive enzyme
(EndoSD233A/E235L) for further use in our structural studies. In
addition, D231 provides a negative charge that keeps D233-E235
protonated, whereas Y402 stabilize the transition state27.

To further investigate the mechanism of substrate specificity of
EndoS at the molecular level, we mutated the loops that decorate
the β-barrel core of EndoS and contact the G2 product glycan in
our crystal structure, and studied their ability to process the N-
linked glycan on Rituximab, a chimeric monoclonal antibody
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bearing a human IgG1 Fc region and approved for the treatment
of B-cell lymphoma (Fig. 6). Specifically, we made alanine
mutations of the key residues in loop 1 (R119, E130, and K133),
loop 2 (W153), loop 3 (R186 and N193), loop 4 (D237 and K241),
loop 6 (Q303 and Y305), and loop 7 (S346, E349, E350, and E356;
Fig. 3c, d and Fig. 6a). As depicted in Fig. 6b, mutations in loops
1, 6, and 7 completely abolished the hydrolytic activity of the
enzyme. Loop 6 mediated the interaction of EndoS with GlcNAc
(+1), while loop 1 and 7 did so with the antenna 2 of the
complex-type N-linked glycan. Mutations in loop 3 significantly
decreased the hydrolytic activity of the enzyme, whereas the
mutations in the solvent exposed-loop 4 variant were less
impactful. Both of these loops were involved in the recognition
of antenna 1 of the complex-type N-linked glycan (Fig. 6b).
Collectively, the mutational analysis of the EndoS loops that
contact the glycan indicated that of the two antennae of G2,
interactions with antenna 2 (loops 1 and 7) were critical for
glycan recognition, while those with antenna 1 (loops 3 and 4)
were nearly dispensable. Finally, the replacement of W153,
located in loop 2, with alanine significantly reduced the hydrolytic
activity of EndoS, consistent with the position of its side chain
that bisected grooves 1 and 2 (Figs. 3c, d and 4a, b;
Supplementary Fig. 3c, d). The deletion of the N-3HB domain
flanking the extremities of both grooves also resulted in a
substantial reduction of the glycoside hydrolase activity and the
binding affinity to Rituximab (Fig. 6b)18. Altogether, these
structural data certainly contributed to define the structural basis
for the biantennary complex glycan specificity of EndoS.

Discussion
To further advance the understanding of EndoS glycan specificity,
we performed a structural analysis in the context of the GH18
family of endoglycosidases. A search for structural homologues
using the DALI server revealed five endoglycosidases of the GH18
family with significant structural similarity to EndoS: (i) EndoF3
from Elizabethkingia meningoseptica (PDB code 1EOM; DALI Z-
score of 21.9; r.m.s.d. value of 2.7 Å for 234 aligned residues; 18%
identity)28,29, (ii) EndoT from Trichoderma reesei RUT-C30
(PDB code 4AC1; Z-score of 19.0; r.m.s.d. value of 3.1 Å for 242
aligned residues, 12% identity)30, (iii) EndoH from Streptomyces
plicatus (PDB code 1C8Y; Z-score of 16.5; r.m.s.d. value of 2.7 Å
for 214 aligned residues; 18% identity)31, (iv) EndoF1 from E.
meningoseptica (PDB code 2EBN; Z-score of 15.1; r.m.s.d. value
of 3.1 Å for 213 aligned residues; 13% identity)32 and (v) EndoBT
from Bacteroides thetaiotaomicron VPI-5482 (PDB code 3POH;
Z-score of 13.2; r.m.s.d. value of 3.3 Å for 210 aligned residues;
13% identity; Supplementary Fig. 5). A structural comparison of
EndoS with the other five members of the GH18 family of
endoglycosidases highlights the unique specificity of this enzyme.
The glycoside hydrolase domains adopt a (β/α)8 topology, with a
series of loops that decorate the β-barrel and build the majority of
the carbohydrate binding site, defining substrate specificity
(Fig. 7). The crystal structure of EndoF3 was solved in both its
unliganded form and in complex with the G2 product, whereas
the structures of EndoT, EndoH, EndoF1, and EndoBT were
solved in their unliganded forms. EndoF3 hydrolyzes both bian-
tennary and triantennary complex-type N-linked glycans of IgG
Fc regions and other glycoproteins33. A detailed comparison of
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the EndoSD233A/E235L-G2 and EndoF3-G2 product complexes
clearly explains how EndoF3 accommodates the same biantennary
product, while also accepting triantennary glycans. As depicted in
Fig. 8, the G2 product binds to a wide, solvent exposed cavity of
ca. 1160 Å3 volume in EndoF3, whereas the same product is
buried deep into a well-defined cavity of ca. 2960 Å3 in EndoS.
EndoF3 and EndoS exhibit a strong resemblance in their catalytic
sites. EndoF3 residues D126, E128, and Y213 lie in equivalent
positions as D233, E235, and Y305 in EndoS. Moreover, residues
that interact with the innermost part of the G2 product including
the GlcNAc (−1), Man (−2), Man (−3), and Man (−7) core are
also conserved between the two enzymes. The side chains of Q211
and E245 interact respectively with the O6 atom of GlcNAc (−1)
and O2 atom of Man (−2) in EndoF3 as the equivalent to Q303
and E349 in EndoS. The aromatic rings of F39 and Y472 interact
respectively with the GlcNAc (−1), Man (−2), and Man (−3)
core, and O2 atom of Man (−2), equivalent to F150 and Y402 in
EndoS. The terminal GlcNAc (−4 and −8) and Gal (−5 and −9)
residues interact with EndoF3 and EndoS through a completely
different network of hydrogen bonds and hydrophobic interac-
tions. The most important differences are observed in loops 2 and
7 (Figs. 7 and 8). EndoF3 displays a long loop 2 (residues 41 to 64)
including a 1.5 turn α-helix, which is absent in the shorter version
of the equivalent loop in EndoS. In EndoF3, loop 2 only interacts
with antenna 1 of the G2 product, whereas the corresponding
loop in EndoS clearly interacts with both antennae of the G2
product, bisecting the binding cavity into two grooves. In addi-
tion, loop 7 in EndoF3 is markedly shorter than that observed in
EndoS. As depicted in Fig. 8, EndoF3 exhibits a cavity sufficient to
accommodate antenna 3, and the extra antenna cannot be
accommodated into the EndoS grooves due to steric hindrance
(Methods section). Thus, EndoS contains a particular groove 2,
significantly different from EndoF3, which allows the enzyme to

selectively recognize the biantennary complex-type N-linked
oligosaccharides. Altogether, these structural features of EndoF3
and EndoS certainly explain the unique hydrolytic specificity of
each enzyme.

Inspection of the EndoT, EndoH, and EndoF1 crystal struc-
tures, all high-mannose type-specific endoglycosidases, revealed
substantial differences in the architecture of the putative oligo-
saccharide binding cavity when compared to that of EndoS: (i)
loop 1 is structurally ordered; (ii) loop 2 adopts a β-hairpin
conformation that extends away from the central core of the
enzyme, likely involved in the recognition of antenna 1 of the
high-mannose-type N-linked glycans34,35; and (iii) loop 7 is
markedly shorter (Fig. 7). Molecular docking calculations placed
a high-mannose-type oligosaccharide into the putative oligo-
saccharide binding cavity (Fig. 9a–d). The calculated volume of
the cavity was ca. 2047, 1865, and 1672 Å3, for EndoT, EndoH,
and EndoF1, respectively. Antenna 1 of the high-mannose-type
oligosaccharide makes contacts with residues of loop 2 and 3;
antenna 2 interacts with residues of loop 4; and antenna 3 makes
contacts with loop 1 and 9 residues. The crystal structure of
EndoBT, a putative endoglycosidase of unknown function, was
solved in its unliganded form (PDB code 3POH). In contrast to
EndoT, EndoH, EndoF1, and EndoF3, EndoBT contains and
additional carbohydrate binding module domain (Supplemen-
tary Fig. 6). By performing the same analysis as depicted in
Fig. 7, the architecture of loops 1, 2, and 7 in EndoBT were found
to be most similar to those observed in EndoT, EndoH, and
EndoF1, strongly suggesting that the enzyme is an endoglycosi-
dase specific for high-mannose-type oligosaccharides. We
therefore determined the ability of EndoBT to hydrolyze bian-
tennary complex-type N-linked glycans and/or high-mannose-
type N-linked glycans from IgG1 antibodies. As predicted from
our structural analysis, these assays revealed that EndoBT
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hydrolyzes high-mannose-type IgG1 but not biantennary
complex-type IgG1 (Fig. 9e).

Altogether, our data provide critical insights into the structural
determinants of complex-type N-linked glycan specificity of
EndoS, a key event for S. pyogenes to evade the host immune

system. Moreover, the identification of the loops surrounding the
carbohydrate binding site that are responsible for the bianntenary
complex-type N-linked glycan specificity of EndoS, together with
the structural comparison of these loops in the framework of
GH18 endoglycosidases with different glycan specificities,
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provides the basis for the bioengineering of endoglycosidases
towards more efficient and customizable chemoenzymatic
synthesis of therapeutic monoclonal antibodies.

Methods
Purification of EndoS wild-type and EndoS mutants. EndoSD233A/E235L-CPD,
EndoS wild-type and EndoS mutants were purified as previously described with the
following modifications18. Single-point mutations were made using the FastClon-
ing36 method, and full sequences were confirmed by GeneWiz (https://www.
genewiz.com). BL21(DE3) (Novagen) cells transformed with the corresponding
modified form of the pCPD vector (pCPD-L) containing the C-terminal fusion
protein from Vibrio cholerae MARTX toxin cysteine protease domain (CPD)37

were grown in Luria broth (LB) medium supplemented with 50 μg ml−1 ampicillin.
Cultures were grown at 37 °C to an OD600 of 0.6–0.8, at which point the tem-
perature was lowered to 22 °C over 1 h. Induction was triggered with 0.5 mM
isopropyl-D-1-thio-galactopyranoside (IPTG) at 22 °C overnight. Cells were har-
vested by centrifugation and lysed by sonication using 50 mM Tris-HCl pH 7.5,
500 mM NaCl, 10% glycerol (solution A) containing protease inhibitors (Complete
EDTA-free, Roche). The supernatant was applied to a HisTrap Chelating column
(1 ml, GE HealthCare) equilibrated with solution A. The column was then washed
with solution A until no absorbance at 280 nm was detected. For EndoSD233A/E235L,
elution was performed with a linear gradient of 40–500 mM imidazole in 50 mM
Tris-HCl pH 7.5, 500 mM NaCl at 1 ml min−1. The C-terminal CPD tag of
EndoSD233A/E235L was not hydrolysed and this enzyme was further purified by size-
exclusion chromatography using a Superdex 200 10/300 GL column (GE Health-
care) equilibrated in 20 mM Tris-HCl pH 7.5, 50 mM NaCl. The eluted protein was
concentrated to 10 mgml−1 using Amicon-15 centrifugal filter (Millipore) unit,
with a molecular cut off of 100 KDa at 4000×g. The resulting preparation displayed
a single protein band when run in 10% SDS/PAGE stained with Coomassie Blue.
EndoS wild-type and the other EndoS mutants were treated with 1 mM phytic acid
overnight on the HisTrap column to hydrolyze the CPD tag. Proteins were then
buffer exchanged into PBS, pH 7.4 and further purified by size-exclusion chro-
matography in a Superdex 200 10/300 GL column (GE Healthcare) equilibrated in
PBS, pH 7.4. The eluted proteins were concentrated to at least 0.2 mg ml−1 using
the same procedure explained above, diluted to 50 nM stocks, and then stored at 4 °
C.

EndoSD233AE235L-G2 crystallization and data collection. The crystal of
EndoSD233A/E235L-G2 was obtained by mixing 0.25 μl of the protein (10 mgml−1)
in 20 mM Tris-HCl pH 7.5, 50 mM NaCl and 2.5 mM G2 product with 0.25 μl of a
mother liquor containing 100 mM sodium HEPES/MOPS pH 7.5, 100 mM amino

acid mixture (L-Na-glutamate, alanine (racemic), glycine, lysine HCL (racemic),
serine (racemic)), 20% (w/v) PEG 500 MME and 10% (w/v) PEG 20,000 using the
sitting drop vapor diffusion method. The crystal appeared after 21 days and was
washed with the mother liquor and frozen under liquid nitrogen. X-ray diffraction
data was collected on a EIGER X 9M photon-counting area detector (2000 Hz max.
frame rate) at the microfocus PROXIMA 2—A beamline (λ= 0.9801 Å—SOLEIL,
France, see Supplementary Table 1 for details). Data were integrated and scaled
with XDS following standard procedures38.

EndoSD233AE235L-G2 structure determination and refinement. Structure deter-
mination of EndoSD233AE235L-G2 was resolved using as a template the previously
reported EndoS structure (unmodified PDB 4NUZ)18 and molecular replacement
methods implemented in Phaser39 and the PHENIX suite40. Model rebuilding was
carried out with Buccaneer41 and the CCP4 suite42. The final manual building was
performed with Coot43 and refinement with phenix.refine44. The structure was
validated by MolProbity45. Data collection and refinement statistics are presented
in Supplementary Table 1. Atomic coordinates and structure factors have been
deposited with the Protein Data Bank, accession code 6EN3. Molecular graphics
and structural analyses were performed with the UCSF Chimera package46.

SAXS measurements. Synchrotron X-ray scattering data for recombinant purified
EndoSD233A/E235L were collected on the B21 beamline of the Diamond Light Source,
UK. Data collection was performed in batch mode. The sample volume loaded was
30 μL (1.5 mm diameter capillary with 10 μm wall thickness). Data were collected
using a Pilatus2M detector (Dectris, CH) at a sample-detector distance of 3914 mm
and a wavelength of λ= 1 Å. The range of momentum transfer of 0.1 < s < 5 nm−1

was covered (s= 4πsinθ/λ, where θ is the scattering angle). Scattering patterns were
measured with a 0.5-s exposure time (18 frames) for protein samples at a minimum
of three different protein concentrations ranging from 0.5 to 4 mgml−1. To check
for radiation damage, 20–50 ms exposures were compared; no radiation damage
was observed. EndoS at 1, 2, and 4 ml min−1 in 50 mM Tris, pH 7.5, 100 mM NaCl
and 2% glycerol were incubated with G2 product at 0.625, 1.25, and 2.5 mM before
data collection for 30 min. Data were processed and merged using standard pro-
cedures by the program package ScÅter47 and PRIMUS48. Concentration depen-
dent effects were not observed by comparing the curves obtained from the three
different concentrations. Scattering curves at multiple concentrations were then
scaled and merged into a single scattering curve for further analysis. Using CRY-
SOL49, we fitted the SAXS data in the presence and absence of the oligosaccharide
G2 product to the solution-scattering profile calculated from the crystal structure
(6EN3). Analyses of potential conformational transitions were conducted using an
elastic network procedure implemented in the program SREFLEX50. The better fit
obtained using SREFLEX and the normalized Kratky plot suggest the protein show
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some flexibility in solution51. The maximum dimensions (Dmax), the interatomic
distance distribution functions (P(r)), and the radii of gyration (Rg) were computed
using GNOM52. The molecular mass was determined using ScÅter47,53. The low-
resolution structures of EndoSD233A/E235L in presence and absence of G2 product
were calculated ab initio by using GASBOR54. The results and statistics are sum-
marized in Supplementary Table 2.

Chemical synthesis of G2 product. The desialylated complex-type glycan (CT, 5)
was obtained from sialylglycoprotein (SGP, 1) isolated from egg yolk (Supple-
mentary Fig. 7)55. SGP (100 mg, 34.9 µmol) was dissolved in phosphate buffer (50
mM, pH 6.5, 5 ml) and then treated with wild-type EndoM endoglycosidase (500
µg, 0.1 µg µl−1) at 37 °C overnight. Upon monitoring using high pH anion
exchange chromatography (HPAEC), the reaction was deemed complete and the
crude purified on reverse-phase HPLC. The glycan-positive fractions were desalted
on a Sephadex G10 gel filtration column with DI H2O as the eluent. The pooled
glycans comprised a mixture of sialylated (2), monosialylated (3) and mono-
sialylated degalactosylated (4) glycoforms which were further purified using anion
exchange chromatography to give the pure sialylated glycoform (SCT, 2). The
sialylated glycoform (2, 20 mg, 9.9 µmol) was dissolved in citrate buffer (50 mM, 5
mM CaCl2, 200 µl) and incubated at 37 °C in the presence of sialidase (50 U). The
reaction was monitored using HPAEC and was complete in 6 h followed by
treatment with Dowex resin (H+ form). The crude was centrifuged and the
supernatant desalted using a Sephadex G10 gel filtration column eluting with DI
H2O. The glycan fractions were pooled then lyophilized to furnish the product
asialo complex-type glycan (5) as a white powder (13 mg, 92%). The product was
characterized using HPAEC and ESI mass spectrometry. ESI MS: calcd. M=
1437.51; found (m/z): 1438.52 [M+H]+, 719.76 [M+ 2H]2+.

Thermal stability assays. Melting temperatures for purified proteins were
determined using differential scanning fluorimetry56. EndoSWT and EndoS98-995
were diluted to a final concentration of 0.5 mgmL−1 in PBS pH 7.4, and mixed
with 5000× Sypro Orange (Sigma) to a final concentration of 5× in a 96 White
TempPlate with semi-skirt (USA Scientific). Melting curves were measured on an
iQ5 Multicolor Real Time PCR Detection System (Bio-Rad). Data were obtained
from 25 to 95 °C with 1 °C intervals and 1-min dwell time at each temperature
before measuring fluorescence.

EndoS and EndoBT enzymatic activity assay. Reactions were set up using 5 nM
EndoS or EndoS mutants, or 100 nM EndoBT and 5 µM Rituximab or high-
mannose-type IgG1 in PBS pH 7.4 at room temperature. Rituximab, a chimeric
anti-human CD20 monoclonal antibody approved for treatment of B-cell lym-
phoma in adults, is produced in mammalian cell (Chinese Hamster Ovary) culture
with the most abundant glycoforms being G0F, G1F, and G2F (antibody purchased

from Premium Health Services, Inc.)57. At various time intervals, 10 µl aliquots of
the reaction were taken in duplicate and quenched with 1.1 µl of 1% trifluoroacetic
acid. The quenched reaction was then mixed with 50 mM TCEP, and analyzed by
LC-MS using an Accela LC System attached to a LXQ linear ion trap mass spec-
trometer (Thermo Scientific, Waltham, MA). Relative amount of the substrate and
the hydrolysis products were quantified after deconvolution of the raw data and
identification of the corresponding MS peaks using BioWorks (Thermo Scientific,
Waltham, MA). The data were plotted in GraphPad Prism, and fit with a one-phase
exponential decay curve.

Structural analysis and sequence alignment. Structure based sequence align-
ment analysis were performed using Chimera46. Protein pocket volume was cal-
culated using HOLLOW58. Z-score values were produced by using DALI29.
Domain interface analysis was performed using PISA19. Conserved and similar
residues were labeled using BoxShade server (http://embnet.vital-it.ch/software/
BOX_form.html).

Molecular docking calculations. The first GlcNAc (−1) and the last Neu5Ac (6
and 10) residues of the S2G2 substrate; and the Man9GlcNAc product were
modeled using GLYCAM-Web website (Complex Carbohydrate Research Center,
University of Georgia, Athens, GA (http://www.glycam.com))59. Ligand docking
was performed using AutoDock Vina employing standard parameters60.

Purification of EndoBT. EndoBT (BT_3987 (B. thetaiotaomicron VPI-5482)) in
pSpeedET vector was purchased from DNASU plasmid repository (https://dnasu.
org/DNASU/Home.do). EndoBT was expressed in BL21(DE3) (Novagen) in LB
medium supplemented with 50 μl ml−1 ampicillin. Cultures were grown at 37 °C to
an OD600 of 0.6–0.8, at which point the temperature was lowered to 22 °C during 1
h. Induction was triggered with 0.5 mM IPTG at 22 °C overnight. Cells were
harvested by centrifugation and lysed by sonication using PBS, pH 7.4 and 10%
glycerol (solution A), containing protease inhibitors (Complete EDTA-free,
Roche). The supernatant was applied to a HisTrap Chelating column (1 ml, GE
HealthCare) equilibrated with solution A. The column was then washed with
solution A until no absorbance at 280 nm was detected. Elution was performed
with a linear gradient of 40–500 mM imidazole in PBS at 1 ml min−1. EndoBT was
further purified by size-exclusion chromatography using a Superdex 200 10/300 GL
column (GE Healthcare) equilibrated in PBS, pH 7.4. The eluted protein was stored
at −80 °C.

Purification of high-mannose IgG1. CD4-induced IgG1 plasmid61 was transiently
expressed in HEK293T cells (ATCC) using polyethylenimine as transfection
reagent, and in the presence of kifunensine. Kifunensine is a potent inhibitor of the
mannosidase I enzyme, which drastically reduces the complexity of the
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carbohydrates by blocking the oligosaccharide at the stage of high-mannose type62.
After transfection, cells were cultured for 96 h in Free-style F17 medium supple-
mented with GlutaMAX and Geneticin (Thermo FisherScientific). High-mannose
IgG1 was purified from culture supernatants by protein A chromatography using
20 mM sodium phosphate buffer pH 7.0 as binding buffer and 100 mM sodium
citrate buffer pH 3.0 as elution buffer. All the fractions were neutralized with 1 M
Tris pH 9.0, pooled and dialyzed against PBS at pH 7.5.

Data availability. Atomic coordinates and structure factors data that support the
findings of this study have been deposited in the PDB with the accession code
6EN3 (https://www.rcsb.org/structure/6EN3). All other data that support the
findings of this study are available from the corresponding authors on reasonable
request.
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