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ABSTRACT Escherichia coli is a Gram-negative bacterium that is found in humans
and animals as both a commensal organism and a pathogen. This report describes
the isolation of Sciku, a siphophage infecting E. coli 4s, with 73 protein-coding
genes. Genome comparisons suggest that Sciku is related to phages within Guern-
seyvirinae.

Escherichia coli is a Gram-negative commensal bacterium found in the intestinal
microflora of certain animals, including humans. However, not all strains are harm-

less, and they can cause diseases in humans, other mammals, and birds with intestinal
or extraintestinal pathologies (1). Some E. coli strains carry virulence factors involved in
the colonization of the intestinal tract required to develop pathology. Phage therapy is
considered a viable strategy for treating E. coli infection in place of antibiotics, and to
this end, we isolated bacteriophage Sciku (2).

Phage Sciku was isolated from filtered (0.2 �m) wastewater treatment sludge
samples collected in College Station, Texas, using an E. coli 4s strain as the bacterial host
(3). Both the phage and its host were grown aerobically at 37°C in Luria broth (BD), and
standard soft-agar overlay methods were used in the isolation (4). Phage Sciku’s
genomic DNA was purified with a Promega Wizard DNA cleanup system with the
shotgun library preparation modifications described by Summer (5). The sequencing
library was prepared with a TruSeq Nano low-throughput kit and sequenced by
Illumina MiSeq with v2 500-cycle chemistry. The 565,076 total sequence reads from the
index containing the phage genome were quality controlled with FastQC (www
.bioinformatics.babraham.ac.uk/projects/fastqc) and assembled with SPAdes v3.5.0 at
698.9-fold contig coverage after trimming using the FastX toolkit v0.0.14 (http://
hannonlab.cshl.edu/fastx_toolkit/) (6). PCR (forward primer, 5=-GGCACAGAAACCGTGT
AATCT-3=; reverse primer, 5=-TGGACTCTGCCGCAAATATC-3=) and Sanger sequencing
were used to close the phage genome. The Galaxy and Web Apollo instances hosted
by the Center for Phage Technology (https://cpt.tamu.edu/galaxy-pub/) contain all
the tools used for annotation; these were run at default parameters. For gene calling,
we used GLIMMER v3.0 and MetaGeneAnnotator v1.0, along with ARAGORN v2.36 for
the detection of tRNAs (7–11). Rho-independent termination sites were annotated from
TransTermHP v2.09 (12). Gene function was predicted using InterProScan v5.33-72 and
BLAST v2.2.31 at default settings with a maximum expectation value of 0.001 versus the
NCBI nonredundant and UniProtKB Swiss-Prot and TrEMBL databases (13–15). Trans-
membrane domains were predicted using TMHMM v2.0 (16). Structural similarities were
identified using the HHsuite v3.0 tool HHpred (multiple sequence alignment generation
with HHblits using the ummiclus30_2018_08 database and modeling with the PDB_m-
mCIF70 database) (17). Genome-wide DNA sequence similarity was calculated with
progressiveMauve v2.4.0 (18). For phage morphology, samples were negatively stained
with 2% (wt/vol) uranyl acetate and viewed by transmission electron microscopy at the
Texas A&M Microscopy and Imaging Center (19).
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Sciku is a siphophage with a 43,130-bp genome, 50.1% G�C content, and 93.8%
coding density. Our analysis assigned Sciku 73 protein-coding genes, with 34 ascribed
a function, but no tRNAs. PhageTerm predicted headful packaging for Sciku, and the
genome was opened in front of the small terminase subunit (20). Sciku has the highest
similarity to the Escherichia phage VB_EcoS-Golestan (GenBank accession number
MG099933) of Guernseyvirinae, with 56 similar unique proteins and 66.37% nucleotide
identity. As seen in other Guernseyvirinae, Sciku has a large self-splicing intein with a
Hint domain (InterProScan IPR036844) within one of its helicases (NCBI accession
number QEG06907) (21).

Data availability. The genome sequence and associated data for phage Sciku
were deposited under GenBank accession number MK931439, BioProject accession
number PRJNA222858, SRA accession number SRR8893626, and BioSample accession
number SAMN11414580.
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