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Abstract
The use of deep learning (DL) to improve cone-beam CT (CBCT) image quality
has gained popularity as computational resources and algorithmic sophistica-
tion have advanced in tandem. CBCT imaging has the potential to facilitate
online adaptive radiation therapy (ART) by utilizing up-to-date patient anatomy
to modify treatment parameters before irradiation.Poor CBCT image quality has
been an impediment to realizing ART due to the increased scatter conditions
inherent to cone-beam acquisitions. Given the recent interest in DL applications
in radiation oncology, and specifically DL for CBCT correction, we provide a
systematic theoretical and literature review for future stakeholders. The review
encompasses DL approaches for synthetic CT generation, as well as projection
domain methods employed in the CBCT correction literature. We review trends
pertaining to publications from January 2018 to April 2022 and condense their
major findings—with emphasis on study design and DL techniques. Clinically
relevant endpoints relating to image quality and dosimetric accuracy are sum-
marized, highlighting gaps in the literature. Finally, we make recommendations
for both clinicians and DL practitioners based on literature trends and the current
DL state-of -the-art methods utilized in radiation oncology.
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1 INTRODUCTION

Artificial intelligence (AI) is expected to both disrupt
and transform standard practices in healthcare. Radia-
tion oncology has traditionally been at the forefront of
medical technology adoption, a tradition that demands
expertise in both theoretical and practical aspects of a
given technology.1 Hence, this review aims to broaden
both clinicians’and researchers’understanding of state-
of -the-art (SoTA) deep learning (DL) methods currently
employed in cone-beam CT (CBCT) image correc-
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tion, summarize clinically relevant results, and offer
constructive considerations in advancing the research.

Adaptive radiation therapy (ART) has shown tremen-
dous promise in improving patient outcomes by
sparing healthy tissues and escalating dose-to-tumor
volumes.2–5 CBCT-driven dose monitoring enables the
recalculation of the dose on updated patient anatomy
prior to irradiation. Hence, clinicians can monitor the
validity of the plan and decide to trigger an adap-
tive protocol if dosimetric deviations from the ini-
tial prescription are deemed clinically relevant. The
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irradiation parameters are then modified, either online
or offline, to achieve optimal tumor coverage whilst min-
imizing dose to healthy tissues. Online ART has not
been widely adopted into the clinical workflow due to
practical limitations involving the integration of special-
ized tools for patient assessment, plan adoption, and
quality assurance.6 Of critical importance to the first
consideration is CBCT image quality. In their most rudi-
mentary implementation, CBCT images are unable to
reproduce accurate tissue density, suffer from artifacts
capable of undermining subsequent clinical application,
and have inferior contrast relative to diagnostic grade
CT imaging.7 The focus of this investigation is to review
DL methods for correcting CBCT image quality, plac-
ing emphasis on methodological novelties such as loss
functions and architectural/model design.

The article is divided into five parts consisting of back-
ground information, methods, results, discussion, and
conclusion. Background information introduces readers
to fundamental DL components necessary to under-
stand SoTA approaches in medical image synthesis,
along with detailed descriptions of the most common
evaluation metrics for assessing image quality and dose
accuracy. The methods section outlines what criteria
were used in compiling the review. The results section
summarizes the most salient trends throughout the lit-
erature, whereas the discussion section draws on these
trends to make recommendations for both clinicians and
DL practitioners.

2 BACKGROUND

A theoretical understanding of the basic components
that underlies SoTA algorithms provides a foundation for
researchers to build on and allows clinicians to appreci-
ate the technology that could underpin future workflows.
What follows is a brief discussion introducing the con-
cept of DL (1), convolution operations and layers (2),
model optimization and the role of loss functions (3),
and a description of the most popular image synthesis
architectures (4). Table 1 summarizes the strengths and
limitations of these architectures.

2.1 Deep learning

Machine learning (ML) is a field of computer science
interested in developing algorithms that accomplish
complex tasks without being explicitly programed to do
so by observing data. DL is a subfield of ML that specif-
ically uses artificial neural networks—computational
units inspired by biological synaptic responses—to pro-
cess data into desired outputs.8 The stacking of many
such neuronal hidden layers gives “depth” to the net-
work, thus reflecting the term “deep” in DL. The convolu-
tional neural network (CNN) is a specialized framework

TABLE 1 Benefits and limitations of three common deep
learning (DL) architectures: U-Net, GAN (generative adversarial
network), and cycle-GAN

Architecture Strengths Limitations

U-Net ∙ Simplest
implementation

∙ Stable
convergence

∙ Fastest training

∙ Paired data only
∙ Anatomic

misalignments
reduce model
accuracy and image
realism

GAN ∙ Paired or
unpaired training

∙ Improved image
realism due to
adversarial loss

∙ Model tunability

∙ Moderate
implementation
difficulty

∙ Unstable
convergence

∙ Slower training
∙ Poor structure

preservation for
unpaired data

Cycle-GAN ∙ Paired or
unpaired training

∙ Model tunability
∙ Improved image

realism due to
adversarial loss

∙ Good structure
preservation

∙ Complex
implementation

∙ Unstable
convergence

∙ Slowest training
∙ Highest hardware

requirements

that excels in computer vision problems. The interested
reader can refer to Yamashita et al.9 for an accessible
overview of general mechanisms and building blocks
comprising CNNs in the radiological context.

In the context of medical image synthesis (also
termed image-to-image translation or domain transfer),
four major components are required, namely, the convo-
lution layer, a model architecture, and the loss function
and optimizer.

2.2 The convolution layer

The convolution operation—not limited to DL—is a
linear function used for image-based feature extrac-
tion. For example, early attempts at modeling scatter
from primary signals in radiographic systems used a
convolution-filtering method.10 Figure 1a depicts how
image features are extracted by convolution between the
image and filter (also known as kernel). During convolu-
tion, an element-wise multiplication between the kernel
and image is followed by a summation over each of the
values. The convolution output, also known as a feature
map, contains the results of all convolution operations.
The spatial dimensions of the feature map depend on
the image padding,size of the filter,and stride of the filter.
The stride controls the distance between two adjacent
convolutions (stride = 3 in Figure 1a).The filter size con-
trols how much information is extracted per convolution,
with smaller feature maps resulting from larger filters.
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F IGURE 1 (a) The convolution output (feature map) results from element-wise multiplication followed by summation between the filter and
image. Note how image information is encoded into a reduced spatial dimension. (b) Depiction of the U-Net architecture. Note how the input
spatial dimensions are progressively reduced, whereas the feature dimension increases with network depth. (c) The GAN architecture
comprising a generator and discriminator. Generators are typically U-Net-type architectures with encoder/decoder arms, whereas discriminators
are encoder classifiers. (d) The Cycle-GAN network comprising two generators and discriminators capable of unpaired image translation via
computation of the cycle error. The orange arrows indicate the backward synthesis cycle path.

Finally, image dimensions may be increased by applying
border padding (typically zero pixels), enabling a pre-
cise control of the output feature map spatial dimension.
The choice of padding,filter size,and stride are hyperpa-
rameters set by the practitioner and remain unchanged
during training. Conversely, the parameters contained
within the filters are learned during the optimization
stage.11

The convolution layer, whose task is to extract mean-
ingful features, is defined by the application of an
arbitrary number of these filters per layer, each followed
by a nonlinear processing unit (or activation function).
Chemical synapses activate by forming a potential dif-
ference between junctions and breaching a threshold
voltage.12 So to do neurons in a CNN “activate” by
satisfying a nonlinear function—the simplest being the
rectified linear unit (ReLU). ReLU outputs zero (no sig-
nal) if the input is a negative value, else mapping the
input as output. Each filter contained in a layer outputs
a unique feature map, which is stacked into a 3D fea-

ture map volume ready to be processed by a deeper
convolutional layer. Hence, deeper convolution layers
extract hierarchically more complex feature representa-
tions, where each filter in deeper layers has a “depth”
dimension matching the input feature map depth. The
impressive expressivity of neural networks stems from
the combined use of such nonlinear functions and deep
network architectures.9

Equally important in the image translation litera-
ture is the transposed convolution layer. Typically, a
series of convolution layers will downsample the spatial
dimensions of an image (by virtue of the convolution
operation), whilst increasing the feature dimensions
(controlled by the number of filters per layer). The role
of transposed convolutions is to upsample the feature
map spatial dimensions such that we may return an
output image with the same dimensions as the input. In
transposed convolution, each element of the kernel is
multiplied by a single element in the input feature map
for a given position. The result is stored in the output
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feature map before moving to the next input feature map
element. Any overlapping regions of each transposed
convolution operation are summed to form the final out-
put feature map.Furthermore, in transposed convolution
the padding decreases the output spatial dimensions,
whereas the stride determines the number of zero
elements inserted between each input element, hence
increasing the output dimensions.Finally, a larger kernel
size will form a larger transposed convolution output,
thereby increasing the output feature map dimensions.11

2.3 Loss function and optimization

Training a model requires discovering the optimal
parameters that process the input data into a satisfac-
tory output. Hence, the model must have a measure
of how wrong its predictions are—the loss function;
and a strategy to adjust its parameters to minimize this
loss—gradient descent optimization. The loss function
computes a distance metric between the model pre-
diction and the ground-truth data which it is trying to
approximate. A typical loss function for paired training
arrangements is the mean absolute error (MAE), also
known as L1 distance. Here, the average absolute mag-
nitude difference between predicted and ground-truth
data is computed on a per-pixel basis.This loss is a func-
tion of the millions or billions of trainable parameters
contained in the model, and each unique configura-
tion of the parameters in turn has its own loss value.
Hence, the loss with respect to each parameter can be
thought of as a hyperdimensional plane, which contains
local peaks and troughs and a global minimum and
maximum.13

In gradient descent optimization, the task is to adjust
the network parameters in the direction that reduces
the loss. Ideally, we stop training when model weights
arrive at the global minimum, which represents the low-
est achievable loss value for the given dataset and
architecture. In practice, the model may not reach the
global minimum but a local trough. Regardless, gradient
descent operates by computing the partial derivative of
each parameter with respect to the loss. This indicates
the local slope of the loss with respect to that param-
eter. A given parameter is then updated by subtracting
it with its partial derivative, which effectively moves the
model state toward a lower loss state. The learning rate
is a hyperparameter that controls the size of steps taken
toward that minima.13

2.3.1 U-Net

With the basic building blocks and optimization frame-
works in mind, it becomes possible to define the most
widely used medical DL architecture, U-Net, as depicted
in Figure 1b. Based on the autoencoder architecture,

U-Net is suitable for both classification or regression
tasks, capable of pixel-wise predictions (as opposed to
image-wide) by utilizing skip connections and a fully
convolutional framework. The encoding portion of the
network passes the input image through consecutive
convolution layers with serially increasing numbers of
output feature maps. The image is encoded in a com-
pressed latent space with a reduced spatial dimension
but increased feature dimension. The decoding portion
of the network reassembles an output image using con-
secutive transpose convolution layers that restore the
input spatial image dimensionality while reducing fea-
ture dimensions. U-Net differs from autoencoders by
enabling the accurate reconstruction of spatial informa-
tion during upsampling by the use of skip connections
from encoder-side convolution layers to the correspond-
ing decoder-side layers. These connections, which con-
catenate encoder feature maps to the decoder side,
propagate spatial and contextual information across
the network to help the decoder reassemble a more
accurate output using queues from the input. The fully
convolutional structure of U-Net means that no fully con-
nected dense layers are needed at the output,drastically
reducing model parameters while enabling a per-pixel
prediction.Hence,more computational resources can be
directed to expanding model depth, in turn, increasing
predictive capacity.14

U-Net-based image translation tasks typically require
pixel-wise loss functions for supervision; hence, input
and target domain images must be paired to achieve
satisfactory results. In the medical context, perfectly
aligned imaging data is only attainable through post-
processing corruption of the target domain to resemble
the input domain.15 Alternatively, same-day scans offer
the best anatomical match but are logistically difficult to
acquire.Else,data pairing is achieved through a rigid and
deformable registration of same-patient scans. When
coupled with per-pixel losses, anatomical discrepancies
in the training data imbed an unavoidable error into the
model that is propagated to future predictions typically
manifesting as a loss of boundary sharpness or false
anatomy artifacts.16–19

2.3.2 Generative adversarial networks

Unlike U-Net, which can be considered a single gen-
erator constrained by hand-crafted loss functions, the
generative adversarial network (GAN) instead con-
sists of two networks: a generator and a discriminator
that each minimizes their own loss in a competitive
two-player setting.20 In a GAN framework (shown in
Figure 1c), the discriminator is a classification network
whose task is to discern real from generated sam-
ples, meanwhile the generator is tasked with generating
samples that can fool the discriminator. During a sin-
gle pass, GAN training is performed sequentially: First,
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the discriminator is trained to minimize its classification
loss between real and generated samples (discriminator
loss). Next, the generator is trained to maximize the like-
lihood that a generated sample will be classified as real
by the discriminator (adversarial loss). In turn, the dis-
criminator loss and adversarial loss are dynamic as each
network improves and provides impetus for the other.
GAN optimality is reached when a Nash equilibrium is
established:where a networks loss cannot be minimized
further without altering the other networks parameters.21

At this equilibrium, the discriminator will equally clas-
sify real and generated samples with a probability
of 0.5.22

The GAN framework discussed so far has been purely
generative in nature: synthesizing realistic outputs from
input noise. For the special case of medical image syn-
thesis, conditional GANs are introduced. They function
in the same way but accept images as input rather than
noise.23

Compared with U-Net, the GAN framework has sev-
eral advantages. For one, the adversarial loss minimizes
differences in the data distribution and deep features
between the two domains. Consequently, paired training
data is not required, and the resulting synthetic images
are perceptually more realistic. In practice, unsuper-
vised GAN implementations are highly unconstrained
as the set of realistic generator outputs that can fool
the discriminator is large. This is problematic for med-
ical image synthesis as the patient anatomy may not be
preserved, or density information may not be retained
even if the style of the target image is attained. To rem-
edy this, a GAN may be constrained using paired data
and per-pixel losses. Other issues associated with GAN
optimization include difficulty balancing generator and
discriminator hyperparameters for stable training,uncer-
tainty as when to cease training as Nash equilibrium
convergence rarely manifests, longer training,and higher
hardware requirements.

2.3.3 Cycle-GAN

Cycle-GAN is a variant of the conditional-GAN frame-
work that introduces forward and backward domain
synthesis to enforce a “cycle-consistency”loss using two
generators and two discriminators.24 The major bene-
fit of cycle-consistency is the preservation of anatomic
information during synthesis for unpaired datasets.
Figure 1d demonstrates the cycle-loss for the CBCT
and CT wings of the network. For a given CBCT image,
generator A outputs a synthetic CT (sCT), after which
generator B transforms the sCT back into a cycle-
synthetic CBCT. By enforcing a pixel-wise loss between
the original CBCT and cycle-synthetic CBCT, anatomic
preservation is encouraged during the initial generator
A transformation. The same set of transformations is
applied to the input CT.

Cycle-GAN achieves SoTA performance on unpaired
data owing to the combination of cycle-consistency and
adversarial losses.However, cycle-consistency is a strict
regularization technique that constrains the generator
to output images that can be easily inverted to the
original domain.Although desirable for anatomic preser-
vation, cycle-consistency becomes problematic where
large changes to the output are desired,25 such as in the
presence of motion artifacts.In these instances,the gen-
erator preserves aspects of the artifact as a prompt to
recover them during the backward synthesis cycle.26,27

Generally, the issues that inflict GANs are present for
cycle-GAN, albeit more severely as greater computa-
tional resources are required, more precise fine-tuning
of hyperparameters is needed, and training times are
further increased.

2.4 Evaluation metrics

Typical evaluation metrics for assessing image qual-
ity between ground truth and corrected image sets are
presented in Table 2. Ground-truth data consists of CT
images that have undergone deformable image regis-
tration (DIR) to the CBCT, or CBCT images that have
been scatter corrected using Monte Carlo (MC) or a
previously validated CT-prior method.28–30 The most
cited metric is MAE, which linearly compares the aver-
age absolute pixel-wise error deviations over the entire
image or within specific regions of interest (ROI) or
the patient body contour. Mean error (ME) and (root)
mean squared error ((R)MSE) assess the degree of
systematic error shift, and prominence of large error
deviations, respectively. The peak signal-to-noise ratio
(PSNR) is a measure used to quantify the magnitude
of noise relative to signal affecting the CBCT in compar-
ison to the ground truth. Finally, the structural similarity
(SSIM) index is used to assess perceptual qualities of
corrected and ground-truth images based on statisti-
cal measures of luminance, contrast, and structure.31

Recently, the Dice similarity score,32 used to quantify
segmentation accuracy, has been used as a surro-
gate metric for image quality. The Dice score measures
the area of overlap between ground truth and auto-
mated segmentations. In the context of CBCT image
quality, automated segmentations performed on cor-
rected and non-corrected CBCT images are compared
to manual or automatic segmentations performed on
DIR CT.

The ART process can involve the recalculation of
treatment dose on the corrected CBCT images. In
investigating the suitability of corrected CBCT images
for ART, the dosimetric accuracy can be validated by
applying the same clinical plan used during treatment
planning on the ground-truth CT and corrected CBCT
images. A variety of metrics such as dose difference
pass rate (DPR),dose–volume histogram (DVH) metrics,
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TABLE 2 Summary of common image and dose based similarity metrics

Metric Formula

Image
similarity

MAE/ME ↓
1

n

n∑
i = 1

|CBCTi − CTi |/ 1

n

n∑
i = 1

(CBCTi − CTi)

MSE/RMSE
↓

1

n

n∑
i = 1

(CBCTi − CTi)2/
√

MSE

PSNR ↑ 20 log10

(
MAXCT

RMSE

)

SSIM ↑
(2𝜇CBCT𝜇CT+c1)(2𝜎CBCT, CT+c2)(
𝜇2

CBCT+𝜇
2
CT+c1

)(
𝜎2

CBCT+𝜎
2
CT+c2

)

with 𝜇x = mean; 𝜎2
x = variance; 𝜎x,y = covariance; c1 = (k1L)2 ;

c2 = (k2L)2 ; L = luminance; k1 = 0.01; k2 = 0.03

DICE ↑
2 |AreaCBCT∩AreaGround Truth|
|AreaCBCT |+|AreaGround Truth|
with ∩ = intersection

Dosimetric
similarity

DPR ↑ Fraction of voxels where DD ≤ x%
with DD =

DCBCT − DCT

DCT
Δ 100 where D = dose

DVH ↑ Cumulative histogram of dose–volume frequency distribution for a
given volume

GPR ↑ Fraction of voxels where 𝛾 ≤ 1

Note: Arrows indicate better result.
Abbreviations:DPR,dose difference pass rate;DVH,dose–volume histogram;GPR,gamma pass rate;MAE,mean absolute error;ME,mean error;MSE,mean squared
error; PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity.

and Gamma pass rates (GPR) are commonly used.The
DPR is a pixel-wise metric that quantifies the percent-
age of pixels that satisfy a set dose difference threshold
between corrected and ground truth images. The DVH
compares the cumulative dose to different structures as
a function of volume.33 Comparisons to clinically rele-
vant criteria can be made, such as the volume of tissue
receiving a given prescription dose, the percentage dif-
ference of which can be compared between corrected
and ground truth volumes. Finally, the Gamma index is a
composite function of dose difference and distance-to-
agreement criteria used to gauge the similarity of two
dose distributions. Calculated in either 2D or 3D, the
GPR measures the percentage of points that satisfy the
specified criteria.34

3 METHODS

PubMed, Scopus, and Web of Science were searched
using the terms and inclusion/exclusion criteria outlined
in Figure 2. The goal was to review the CBCT-specific
literature and include any investigations that used DL to
improve image quality suitable for ART.Criteria were nar-
rowed to exclude CBCT acquisitions that do not comport
with ART, for example: Studies using low-dose scans
that do not explicitly strive for ART, 4D scans, and C-arm
or dental modalities. We did not limit our investigation
to methods that only sought to generate sCT images
using DL as alternative approaches in the projection
domain show promising results and are worthy of dis-
cussion. Finally, we restricted our criteria to only include
peer-reviewed journal articles.

An initial selection screening was performed based on
the title and abstract of the articles returned after the
database search. Duplicate results or items that did not
meet the inclusion criteria were removed. Post screen-
ing, the full-text articles were retrieved for a review.
The methods of each investigation were reviewed and
information pertaining to model architecture, loss func-
tions, cohort size and split, anatomical region, training
configuration, augmentations, and preprocessing were
extracted. When available, the corresponding results
that reported image similarity metrics (MAE, (R)MSE,
SSIM,ME,PSNR) and dose accuracy (GPR,DVH,DPR)
were also extracted. The information is summarized
in separate tables under categories “sCT generation”
(Tables 3a–c) and “projection based” (Table 4) based
on the authors’ aims. Studies defined under “sCT gen-
eration” set their target domain as CT images, whereas
studies under “projection based” employ a range of DL-
driven scatter correction techniques to improve CBCT
image quality.

4 RESULTS

4.1 Study identification

The initial identification search returned 218 investiga-
tions on Scopus, 119 on PubMed, and 180 on Web of
Science for a total of 517 investigations. After screening
for eligibility, 40 studies qualified, of which 34 investi-
gated sCT generation and 6 utilized projection domain
approaches. The distribution of the total number of
investigations per year is presented in Figure 3 and
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F IGURE 2 Flowchart of study selection process

F IGURE 3 Distribution of total and per architecture investigations per year

is further broken down into network type. The num-
ber of investigations in DL-based CBCT correction has
grown each year, with the first investigations performed
in 2018. U-Net was the preferred architecture in 2018;
however, preference for cycle-GAN grew rapidly in 2019

which kept it tied with U-Net from 2019 to 2020, there-
after becoming the most popular architecture. Figure 4
depicts the share of anatomic regions investigated by
percentage, with the pelvic and head-and-neck (HN)
region being the most thoroughly covered, both making
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F IGURE 4 Pie chart of distribution of anatomic sites
investigated

up 70% of all sites.The thoracic region made up 23% of
all studies includes both lung and breast patients. The
least investigated region was the abdomen comprising
just 7% of all studies.

4.2 sCT generation

4.2.1 Network architectures

Tables 3a–c show that a total of nineteen studies inves-
tigated sCT generation primarily using cycle-GAN for
their translation task,19,35–52 compared to eight utiliz-
ing U-Net,53–60 three implementing GANs,15,18,61 three
exploring deep-CNNs,62–64 and one study utilizing a
novel architecture called artifact disentanglement net-
work (ADN).27 Deep-CNNs maintain the input image
dimensions as the feature maps flow through the net-
work. ADN, originally used for metal artifact reduction
in CT imaging, has been utilized for sCT generation.
By “disentangling”domain-specific features correspond-
ing to style, whilst mapping a common structure feature
space between CT and CBCT data, a transformation
can be learnt that decomposes CBCT style from struc-
ture then reassembles an sCT image using CT style and
CBCT structure.

The most objective comparisons of image quality can
be found in studies that compare multiple architectures
or correction techniques for generating sCT images
using the same datasets.18,19,27,35,39,41,44,47,49,57,60,61,63

Where DL methods were compared to classical CBCT
correction methods,Barateau et al.61 demonstrated that
their GAN sCT achieved a lower MAE than DIR of
the CT (82.4 ± 10.6 vs. 95.5 ± 21.2 HU), which was
found to be consistent with the results in Thummerer
et al. (36.3 ± 6.2 vs. 44.3 ± 6.1 HU).57 Similarly in
Liang et al.,39 cycle-GAN showed improved image qual-

ity metrics over DIR of the CT when a saline-adjustable
phantom was used in a controlled experiment. In terms
of photon dosimetry, Barateau et al.,61 Lemus et al.,52

and Maspero et al.42 concluded that sCT images per-
form similarly to deformed CT images for HN, lung, and
breast regions, whereas Thummerer et al.57 found that
the same was also true for proton plans in the HN region.

When comparisons were made between architec-
tures,Liang et al.39 reported an improved MAE for cycle-
GAN over two GAN implementations (29.85 ± 4.94 vs.
39.71± 10.79 and 40.64± 6.99 HU),along with superior
anatomical preservation for an adjustable saline-fillable
HN phantom. Likewise, Sun et al.47 showed that their
cycle-GAN could produce lower MAE than an equivalent
GAN (51.62 ± 4.49 vs. 56.53 ± 5.26 HU) and resulted
in better Dice score agreement for various structures.
Gao et al.49 also demonstrated a lower MAE for their
unpaired cycle-GAN implementation over a paired GAN
network (43.5 ± 6.69 vs.53.4 ± 9.34 HU).Visual inspec-
tion showed bone, air, and certain lung structures were
incorrectly synthesized for the GAN, with poor structural
continuity along sagittal and coronal images.

Liu et al.41 compared U-Net to Cycle-GAN and noted
a substantial reduction in MAE (66.71 ± 15.82 vs. 56.89
± 13.84 HU) and reduced artifact severity for the lat-
ter network. Similarly, Tien et al.44 reported better HU
agreement within lung region ROIs for cycle-GAN over
U-Net and undertook a blind observer test which scored
cycle-GAN sCT images at 4.5/5 and U-Net sCT images
at 1.3/5 based on image realism.

Xue et al.19 and Zhang et al.18 tested cycle-GAN,
GAN, and U-Net on the same datasets and demon-
strated the lowest MAE for cycle-GAN over GAN when
model configurations were kept constant (23.8 ± 8.6 vs.
24.3 ± 8.0 HU19 and 8.9 ± 3.1 vs. 9.4 ± 1.2 HU18).
The U-Net-based models, however, performed notice-
ably worse with MAEs increasing to 26.8 ± 10.0 HU
in Xue et al.19 and 19.2 ± 6.4 HU in Zhang et al.18

Aside from image quality, Xue et al.19 showed explic-
itly the anatomy preserving capacity of cycle-GAN
over GAN and U-Net: Structures pertaining to con-
trast enhancement solution present in CT images were
falsely generated on U-Net/GAN sCT images but were
suppressed in cycle-GAN sCT images.

Liu et al.27 demonstrated the effectiveness of their
unpaired ADN network over three variants of cycle-GAN.
Their approach to image disentanglement reduced
CBCT MAE from 70.56 ± 11.81 to 32.70 ± 7.26 HU,
whereas three cycle-GAN approaches resulted in sCT
MAEs of 42.04 ± 8.84 HU (base cycle-GAN), 43.90 ±

8.23 HU (cycle-GAN with larger generator), and 36.26 ±
7.00 HU (cycle-GAN with attention gating).Furthermore,
visual inspection showed reduced noise and motion
artifacts for ADN over the cycle-GAN variants.

Figure 5 shows the mean percent improvement in sCT
MAE over the base CBCT for different networks when
a common dataset was used. The greatest disparity
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F IGURE 5 Percent mean absolute error (MAE) improvement per
network for studies utilizing common data

F IGURE 6 Percent mean absolute error (MAE) improvement for
cycle-generative adversarial network (GAN) models trained with
paired or unpaired datasets, controlling for pelvic, head and neck
(HN), and all anatomical regions, as well as training set sizes within
four patients

was observed between cycle-GAN and U-Net (51.0% vs.
36.8% respectively, p = 0.37),18,19,41 whereas a smaller
difference was noted between cycle-GAN and GAN net-
works (58.3% vs.51.5% respectively,p = 0.24).18,19,39,49

4.2.2 Training configuration

Ten cycle-GAN studies were trained with paired train-
ing configurations, whereas eight were not. Figure 6
shows the mean percentage MAE improvement for
the two most common anatomical regions, as well as
the overall percentage improvement for all studies that
reported the original CBCT and sCT MAE metric.For the
pelvic region,two studies used paired data,35,45 whereas
three utilized unpaired images to train their cycle-
GAN.37,46,50 Subsequently, three investigations focusing
on the HN region used paired data,19,35,38 whereas two
used unpaired.39,42 The paired studies showed a greater

improvement (61.41% vs.51.35%,p= 0.32) in the pelvic
region, whereas the unpaired networks performed bet-
ter in the HN region (65.38% vs. 47.24%, p = 0.04).
Comparing all studies that trained either with paired
or unpaired data, unpaired implementations recovered
a better improvement in MAE on average (55.98% vs.
47.61%,p= 0.16).However, it must be noted that among
other network nuances, unpaired networks were trained
on an average of ∼54 patients, compared to an aver-
age of ∼33 for paired networks. By selecting studies
with training set sizes within ±4 patients between the
two groups,19,35,37,38,42,45,48,49 the difference between
paired and unpaired networks is reduced, with paired
networks performing slightly better (53.65% vs. 51.83%,
p = 0.29).

Most networks were trained using axial 2D slices,with
the exception of35,38,41,47 that utilized 3D patch-based
training, and Dahiya et al.15 who used entire 3D vol-
umes. The main advantage of 3D training is improved
feature extraction as medical images are volumetric in
nature. Zhang et al.18 trained in 2.5D, utilizing adjacent
axial slices to help the model predict the central slice.
Alternatively, Thummerer et al.56,57 trained three sep-
arate models on the same data organized in sagittal,
coronal, and axial planes. The median value for a given
pixel was taken as the prediction.

Within the GAN literature, all studies were performed
using paired data, with Barateau et al.61 training in 2D,
Zhang et al.18 in 2.5D, and Dahiya et al.15 in 3D. The
respective improvement in MAE over the original CBCT
was 69.09%, 46.12%, and 81.99%, suggesting that the
use of 3D convolutions on entire image volumes is highly
advantageous. Interestingly, in the Zhang et al.18 study,
no difference was observed between training in 2D and
2.5D.

For studies utilizing cycle-GAN, the mean
percentage improvement in MAE for 2D
approaches19,37,39,42,45,46,48–50,52 was slightly higher
than 3D-patch based approaches35,38,41 (52.08% vs.
49.83%,p= 0.41).When controlling for training set sizes
within ± 4 patients, a similar trend was observed with
2D networks37,42 still slightly outperforming patched
3D networks35,38,41 (51.51% vs. 49.83%, p = 0.46). On
the contrary, Sun et al.47 did note a slight increase in
PSNR of their patched 3D cycle-GAN over a 2D imple-
mentation (30.70 ± 0.78 vs. 29.72 ± 0.59), although
the analysis was not comprehensive and lacked other
image quality analyses.

One novel approach by Chen et al.54 used a dual-
channel input U-Net to create sCT images using
intensity information from CT images and structural
information from CBCT images. Having access to orig-
inal planning CTs and same-day replan CT images, the
authors created a dual channel dataset containing the
RR CBCT and corresponding planning CT images. This
dataset was fed into the network,with replan CT images
used as the ground truth for optimization. The authors
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noted a visual reduction in artifacts using the dual chan-
nel over the standard approach, with percentage MAE
improvement increasing from 50.68% to 56.80%.

4.2.3 Preprocessing

Image registration and resampling is used to bring
images into the same coordinate space such that vox-
els between two datasets contain compatible biological
information. Hence, image registration is necessary to
provide the most anatomically accurate ground truth
for both training and inference. As such, image regis-
tration is used ubiquitously, with DIR being used for
training in most U-Net and deep-CNN architectures,
with the exception of55,58,60 which used RR only. GAN-
based studies all used DIR given their susceptibility
of generating false anatomies. Cycle-GAN, originally
designed for unpaired data, was most commonly cou-
pled with RR, for both paired19,35,38,40,45,52 and unpaired
approaches36,37,42,46,49.Alternatively,Liu et al.41 and Qiu
et al.48 applied DIR to their training set for better anatom-
ical correspondence, whereas Liang et al.39 and Dong
et al.50 did not apply any registration to their training
data, only resampling to the same grid. Liu et al.41 was
the only cycle-GAN study to investigate the impact of
DIR and RR preprocessing on the same dataset and
found that DIR produced slightly better HU agreement
(56.89 ± 13.84 vs. 58.45 ± 13.88 HU), with substantially
less noise and sharper organ boundaries upon visual
inspection.41 Some authors applied a secondary inter-
subject RR to a common patient such that all volumes
were closely centered, allowing for substantial trunca-
tion of air regions to reduce the computational load.35,38

Meanwhile Uh et al.45 performed a novel body nor-
malization technique to equalize the extent of pediatric
patients’ lateral anatomy that significantly reduced the
MAE of their composite model (47 ± 7 vs. 60 ± 7 HU, p
< 0.01).

Other than registration, the most common
preprocessing techniques involved clipping and
normalizing HU values to between [0,1] or
[−1,1],15,19,27,36,39,40,42,44,46,49,50,54,60 or alternatively
standardizing18 intensities to minimize biasing gra-
dients. Dong et al.50 investigated slice-wise versus
patient-wise normalization and found the former
resulted in slice discontinuity artifacts, whereas the lat-
ter resulted in superior image quality. Another common
technique was to replace voxels outside the patient
body contour with air to minimize the impacts from
nonanatomical structures.19,36,37,42,45,46,50,53,56,57,59,60

4.2.4 Loss metrics

With the exception of Xie et al.,63 all U-Net- and deep-
CNN-based architectures were constrained by pixel-

wise loss functions with the most common being L1 loss.
Chen et al.54 applied the SSIM image quality assess-
ment metric as a loss function. SSIM computes statis-
tical terms corresponding to structure, luminance, and
contrast31 and discovered that SSIM alone improved
the percentage MAE by 47.05%, whereas L1 loss alone
increased it to 50.68%. By utilizing both losses, the per-
cent improvement increased to 51.15% suggesting an
additive relationship that was corroborated in a natural
image restoration study.65

Of the studies investigating cycle-GAN, four made no
alterations to the standard loss,37,42,45,51 whereas fif-
teen made substantial alterations.19,35,36,38–41,44,46–50,52

Networks considered unmodified used the default adver-
sarial and cycle losses. The percent MAE improvement
for cycle-GAN networks using standard versus extended
loss functions was 49.08 ± 21.85 and 49.90 ± 14.37 HU,
respectively (p = 0.46). The perceptual SSIM metric is
better able to quantify changes in image appearance
relating to artifacts and image realism. The percentage
SSIM improvement for networks using standard versus
extended loss functions was 10.5 ± 5.95% and 12.8
± 5.73%, respectively (p = 0.35), suggesting that sCTs
from the latter networks were perceptually closer to real
CT images.

Extensions to the cycle-GAN global loss included
identity loss,19,39,49,50 gradient loss,35,36,44,46–48,52 syn-
thetic loss,35,38,40,41,44,48 L1.5 loss,35 histogram match-
ing loss,48 idempotent loss,36,52 air loss,36 total variation
loss,36,52 feature matching loss,18 and perceptual loss.48

The identity loss19,39,49,50 aids network stability and gen-
erator accuracy by ensuring no additional effect occurs
to real images when they are input into generators
tasked to output images in the same domain. In their
larger ablation experiment, Zhang et al.18 compared
cycle-GAN with and without the identity loss, demon-
strating a slight improvement in sCT MAE (8.9 ± 3.1 vs.
9.2 ± 1.5 HU).

The gradient loss is used to either preserve structural
details during conversion or enhance edge sharpness.
One approach uses the Sobel operator66 to compute the
gradient map of sCT and CBCT images during optimiza-
tion.The pixel-wise error between the two gradient maps
is then minimized to maintain the same edge boundaries
between CBCT and sCT images. The second approach
attempts to equalize the neighboring pixel-wise intensity
variations between cycle/real and synthetic/real image
pairs, thereby maintaining the same level of noise and
edge sharpness in both cycle and synthetic images as
real images.35,47 This technique was utilized by Sun
et al.47 resulting in a noticeable visual improvement in
edge sharpness in sCT images generated by a network
trained with and without gradient loss.

In cases where data is paired and well registered,
the synthetic loss is applied in a similar fashion to
U-Net implementations to enforce pixel-wise simi-
larity between generated and target domain images,
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typically using the L1 distance. Alternatively, the his-
togram matching loss used in Qiu et al.48 attempts
to maximize the similarity between input and cycle-
synthetic histogram distributions globally, further
constraining the model parameters to output accu-
rate tissue densities. Their cycle-GAN network trained
with histogram matching achieved an sCT MAE of 66.2
± 8.2 HU compared to 72.8 ± 11.5 HU without the loss.
Visual inspection confirmed a more uniform soft tissue
distribution reflecting real tissue densities.

Tien et al.44 incorporated both gradient and synthetic
losses into their cycle-GAN model and performed a
blind observer test to assess how closely sCT per-
ceptual image quality matched the CT. The unmodified
cycle-GAN achieved 3.3/5 in the blind test, whereas the
proposed method scored 4.5/5.

The L1.5 loss used in Harms et al.35 merges the
benefits of L1 and L2 losses. L1 loss may lead to
inconsistent HU reproduction as it is more difficult to
optimize (tends toward sparse solutions and results in
a noncontinuous optimization function). Conversely, L2
is easier to solve as solutions to all parameters lie on
a continuous function in optimization space. However,
heightened sensitivity to outliers results in blurring of
anatomical boundaries primarily because outliers lie at
the boundaries. The L1.5 norm produces a more sta-
ble optimization function whilst not weighing outliers as
heavily as L2 norm, resulting in greater model stability
and increased output accuracy.35,67,68

The idempotent, air, and total variation losses were
introduced in Kida et al.36 The idempotent loss is similar
to the identity loss, but functions by minimizing the dif-
ference between a synthetic image,and the same image
fed through a generator tasked to output images in the
same domain as the original synthetic image. The air
loss is a piece-wise function that encourages the preser-
vation of air pockets and the body contour by penalizing
mismatches.The function equals zero if respective den-
sities of both sCT and CBCT images are greater than
−465 HU, else the output error is equal to the density
of the L1 norm of CBCT and sCT density differences.
The total variation loss is used as an image denoising
technique that works by minimizing the absolute differ-
ence of pixel intensities in an image and its vertically
and horizontally translated version.

Zhang et al.18 introduced the feature matching loss
that modifies the typical adversarial loss used in GANs.
Instead of using the classification output of the dis-
criminator as the minimization target for the generator,
intermediate level feature maps for real and synthetic
inputs at the discriminator are extracted and used as
a minimization criterion while optimizing the generator.
Hence, the network can be optimized by exploiting lev-
els of abstraction and not just the image domain, in turn
aiding network stability.69

Finally, Qiu et al.48 and Barateau et al.61 incorpo-
rated a content-based perceptual loss function into their

model, whereas Zhang et al.18 combined a style and
content-based function in their perceptual loss.Content-
based perceptual loss is said to minimize the structure or
content differences between two images based on their
deep feature representations, rather than in the image
domain. The loss is computed by finding the L2-norm of
selected deep feature maps contained in a pretrained
CNN that is fed both images. The style-based percep-
tual loss is based on the same principle;however,spatial
information is lost by first computing the Gram matrix
of selected feature maps, followed by the minimization
of the Frobenius norm between the Gram matrix of
each image.70,71 The MAE for a cycle-GAN trained with
and without the content-based perceptual loss improved
from 82.0 ± 17.3 to 72.8 ± 11.5 HU in the work by Qiu
et al.,48 whereas Zhang et al.18 found their style and
content-based perceptual loss disturbed training and
resulted in an increased MAE from 8.1 ± 1.3 to 9.2 ±

1.5 HU. This was likely because Qiu et al.48 used a seg-
mentation CNN pretrained on medical images, whereas
Zhang et al.18 used VGG-16 (Visual Geometry Group)
pretrained on natural images that failed to adequately
capture feature peculiarities of medical images.

4.2.5 Network blocks

CNNs typically contain parameter counts in the order
of tens or hundreds of millions. However, a major
issue resulting from high parameter counts is the
degradation of network performance in proportion
to network depth—a phenomenon not caused by
overfitting.72 Hence, deeper models are more difficult
to optimize and may converge at a higher error than
shallower models. The residual block,72 used by many
authors,27,35–38,44–47,52,55,64,73–75 solves the degenera-
tion of deep models by introducing a skip connection
that circumvents one or more convolution layers by
transmitting upstream signals downstream via element-
wise addition. Hence, the residual block encourages the
local mapping, H(x), to learn a residual function, F(x) =
H(x) − x, if x is the upstream signal. It is empirically
shown that learning the residual version of the mapping
is easier than learning an unreferenced mapping as the
optimal function tends to be close to an identity mapping,
necessitating only a small response in H(x).72

The inception block was designed to detect features
at different scales by extracting image information using
multiple kernel sizes.76 Typically, a single convolution fil-
ter size is used throughout the network. With inception
blocks,multiple filters are arranged in parallel.For exam-
ple, Tien et al.44 combined 1 × 1, 5 × 5, 9 × 9, and 13
× 13 filters in to extract features at multiple resolutions,
concatenating the results into a single feature map vol-
ume, and performing dimensionality reduction using a 1
× 1 convolution. In addition, the inclusion of 1 × 1 con-
volutions enables the network to learn cross-channel
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patters. The resulting operation has a higher capac-
ity to extract useful features hence improve network
performance.76

Attention gates give priority to salient anatomical
information while suppressing feature responses per-
taining to noise or background information. Integrated
into the U-Net architecture, attention gates operate
along the skip connections that propagate encoder-side
features to the decoder.The skip connections may prop-
agate many redundant features that compromise the
accuracy of the decoder. The attention gate learns to
suppress redundant features by applying an element-
wise multiplication of incoming encoder-side feature
maps with attention coefficients that range between [0,
1]. These coefficients are learnt during backpropaga-
tion, thereby allowing only relevant information to reach
the decoder.41,47,77 The impact of attention-gated cycle-
GAN was analyzed in Liu et al. (2020)41 and Liu et al.
(2021).27 In both studies, the addition of attention gates
over an unmodified cycle-GAN improved the MAE from
63.72 ± 10.55 to 56.89 ± 13.84 HU41 and 42.04 ± 8.84
to 36.26 ± 7.00 HU.27

Gao et al.49 infused attention guidance into their GAN
to prompt the network to pay more attention to specific
problematic regions. The decoder arm of their gen-
erator outputs both foreground attention masks and
background attention masks.Foreground masks prompt
the network to focus on image regions that change
during synthesis, whereas background masks contain
unchanging regions. By separating network attention
to changing and unchanging regions, network perfor-
mance improved over a base cycle-GAN from 47.1 ±

6.65 to 43.5 ± 6.45 HU.

4.2.6 Cohort size

The impact of cohort sizes can most readily be appreci-
ated by examining studies that used the same model.
Yuan et al.58 conducted an explicit analysis on the
impact of training sizes where they trained a U-Net using
different permutations of 50, 40, and 30 patients. The
authors split the 50 patients into 5 groups of 10 and sub-
sequently trained 5 models with 50 patients (all data), 5
models with 40 patients (omitting one group of 10 for
each model), and 5 models with 30 patients (omitting 2
groups of 10 for each model) for a total of 15 models.
The authors concluded that 30 patients were insufficient
to obtain a well-trained model as significant differences
were noted between using 30 compared to 40 and 50
patients (p < 0.05). Conversely, no significant difference
was observed between models trained with 40 or 50
patients (p > 0.1). Mean MAE across models trained
with 50, 40, and 30 patients were 53.90 ± 0.79, 53.20 ±

1.06, and 54.65 ± 0.43 HU respectively, indicating that
larger training sets do not necessarily result in lower
MAE.

Eckl et al.40 investigated training a cycle-GAN model
on HN and pelvic images. The mean MAE for HN sCT
images was 77.2 ± 12.6 HU for a model trained on
25 patients, whereas the same model trained on 205
pelvic patients achieved an MAE of 41.8 ± 5.3 HU.
Although the HN region incurs less scatter contamina-
tion and anatomical variability compared to the pelvis,
the pelvic sCT images were of higher absolute qual-
ity as a result of the eightfold increase in training
data.

The mean number of training and testing patients
for all studies and studies broken down into anatomic
regions is presented in Table 5, along with the mean
CBCT MAE, mean sCT MAE, and relative percentage
MAE improvement of the sCT.Note that the asterisk sig-
nifies only studies that reported base CBCT and sCT
MAE. For all studies reviewed, the size of training sets
ranged from 8 to 205 for any given anatomic region,
with an average of 47.74 ± 47.11 patients. Testing sets
ranged from 3 to 34 and had a mean of 11.02 ± 7.90
patients. Studies investigating the HN region utilized
on average the smallest training size (45.63 ± 39.38)
but produced the largest percent improvement in MAE
(58.67 ± 10.75%). Investigations of the pelvic and tho-
racic region used more training data (62.63 ± 43.20
and 59.00 ± 56.18, respectively) but resulted in simi-
lar improvements in MAE to the HN region. However,
studies focusing on the abdomen typically used less
than half of the training data as other regions (20.33
± 7.36) and produced the lowest percent MAE improve-
ment of 41.33 ± 19.51% on average. In absolute terms,
HN studies started with the lowest CBCT MAE of 106.59
± 84.63 HU and likewise synthesized CT images with
the lowest MAE of 36.13 ± 21.76 HU. The pelvic region
had a slightly higher sCT average of 41.58 ± 22.73 HU,
followed by the abdomen at 51.78 ± 5.59 HU, and the
thorax at 54.12 ± 20.47 HU.

To analyze the impact of training set sizes and model
performance across studies, the scatter plot in Figure 7
presents the best linear fit to the data. The regression
line shows a small but positive relationship between
training set size and relative MAE improvement, but
large variability between studies. The small r-squared
value indicates that training set size alone is a poor
predictor for model performance. Majority of points are
concentrated between 15 and 45 patients and show a
high variance. The variance decreases at higher cohort
sizes, whereas MAE improvements are marginal. This
suggests a saturation of model performance with dimin-
ishing returns as training set size increases beyond
50.

Figure 8 lists the absolute MAE for every publica-
tion ordered from highest to lowest. Superimposed for
each study is the number of training patients used,
along with information pertaining to network architec-
ture, training arrangement, network modifications, and
anatomical site.No clear relationship between sCT MAE
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F IGURE 7 Scatter plot demonstrating the relationship between training cohort size and percent mean absolute error (MAE) improvement

F IGURE 8 Absolute synthetic CT (sCT) mean absolute error (MAE) ordered from highest to lowest compared against training set size.
Publication format describes: (model architecture/supervision type + additional loss functions and/or 3D training) | anatomical region.+,
additional loss functions/3D input; A, abdomen; ADN, artifact disentanglement network; C, cycle-GAN; CNN, convolutional neural network; D,
deep CNN; G, GAN; GAN, generative adversarial network; HN, head and neck; P, paired training; P, pelvis; T, thorax; U, U-Net; Un, unpaired training.
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TABLE 5 Mean cohort size and model performance statistics for all publications

Training size (no
patients)

Testing size (no.
patients) CBCT MAE (HU) sCT MAE (HU)

% MAE
improvement

All studies 47.74 ± 47.11 11.02 ± 7.90 – 46.83 ± 22.23 –

All studies* 51.27 ± 44.27 11.77 ± 8.77 114.66 ± 75.84 45.13 ± 22.01 54.60 ± 17.90

Pelvis* 62.63 ± 43.20 10.88 ± 6.11 117.47 ± 93.73 41.58 ± 22.73 57.97 ± 19.68

HN* 45.63 ± 39.38 12.13 ± 10.17 106.59 ± 84.63 36.13 ± 21.76 58.67 ± 10.75

Thorax* 59.00 ± 56.18 14.17 ± 9.46 134.52 ± 49.45 54.12 ± 20.47 57.54 ± 12.65

Abdomen* 20.33 ± 7.36 4.67 ± 2.62 98.34 ± 30.35 51.78 ± 5.59 41.33 ± 19.51

Note: * indicates studies which reported CBCT and sCT MAE values.
Abbreviations: CBCT, cone-beam CT; HN, head and neck; MAE, mean absolute error; sCT, synthetic CT.

F IGURE 9 Percentage mean absolute error (MAE) improvement ordered from lowest to highest compared against training set size.
Publication format describes: (model architecture/supervision type + additional loss functions and/or 3D training) | anatomical region.+,
additional loss functions/3D input; A, abdomen; ADN, artifact disentanglement network; C, cycle-GAN; CNN, convolutional neural network; D,
deep CNN; G, GAN; GAN, generative adversarial network; HN, head and neck; P, paired training; P, pelvis; T, thorax; U, U-Net; Un, unpaired training

and training size is evident given that raw MAE values
are strongly influenced by the original CBCT image qual-
ity, anatomical site, and whether or not the MAE was
calculated over the entire image or the body contour.
Figure 9 looks at the percentage improvement in MAE
for every publication that listed the original CBCT MAE
ordered from lowest to highest, along with the training
set size. Aside from noting that the top two networks
by Wu et al.64 and Dahiya et al.15 used relatively large
cohorts of 90 and 140 patients, respectively (compared
to the mean of 51.27 ± 44.27), no discernible trend
could be noted among the other works, corroborating
the relationship in Figure 7. Figure 10 visualizes the
percentage SSIM improvement against training set size
to assess whether perceptual image quality improved

with greater training cohorts. Once again, no clear rela-
tionship presents itself as the performance of a model
seems less dependent on training set size compared to
other study nuances.

4.2.7 Augmentation

Augmentation of training data is a strategy used
to synthetically increase the number of examples to
prevent overfitting to the specific variance of the train-
ing set and improve model generalizability. The most
popular augmentation techniques were random hor-
izontal flips,18,27,37,42,44,48,55,57,60 followed by random
rotations.15,18,44,60,61,63 The addition of noise,18,36,46
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F IGURE 10 Percentage structural similarity (SSIM) improvement ordered from lowest to highest compared against training set size.
Publication format describes: (model architecture/supervision type + additional loss functions and/or 3D training) | anatomical region. *, low
dose CBCT;+, additional loss functions/3D input; A, abdomen; ADN, artifact disentanglement network; C, cycle-GAN; CNN, convolutional neural
network; D, deep CNN; G, GAN; GAN, generative adversarial network; HN, head and neck; P, paired training; P, pelvis; T, thorax; U, U-Net; Un,
unpaired training

translational shifts,55,57,61 random crops,37,42,44 random
shears,15,61 and scaling15 were also utilized in the lit-
erature. Although most augmentation strategies consist
of simple linear transformation of the image, the addi-
tion of random noise at every iteration degrades image
quality yet aids in the learning of salient features by
making the network more robust to overfitting (small
changes in latent space do not alter the output) while
improving generalizability (multiple representations of
the same feature are mapped to same output).78 Ran-
dom crops present a more functional augmentation
strategy that simultaneously increases training set size
whilst reducing computational load by reducing input
image dimensions.

4.2.8 Model generalizability

Of the studies that examined multiple anatomies, sev-
eral authors further investigated whether composite
models (trained/tested using multiple anatomic sites)
could generalize as well as intra-anatomy models
(trained/tested using single anatomic site).42,45 Other
authors explored whether inter-anatomy models (tested
on different anatomic site) would improve image qual-
ity at all.18,39 In Maspero et al.,42 the composite models
were outperformed by intra-anatomy models by a very

small margin (51 ± 12 vs. 53 ± 12 HU), leading the
authors to conclude that a single composite model could
generalize as well as intra-anatomy models.On the con-
trary, Uh et al.45 found that a single composite model
outperformed their intra-anatomy model (47 ± 7 vs.51 ±
8 HU), suggesting that single-composite models benefit
from training on multiple anatomic regions.

Liang et al.39 and Chen et al.54 showed that their
HN trained models could generalize well on pelvic data,
demonstrating a percent MAE improvement of 58.10%
and 55.11%, respectively. Meanwhile, Zhang et al.18

used their pelvic trained GAN on HN data to recover
a 25.39% improvement in MAE. This implies that the
HN rather than pelvic region contains richer features
for more generalizable inter-anatomic models. Further-
more,Chen et al.54 utilized transfer learning by retraining
the intra-anatomy HN model weights on a small subset
of inter-anatomy pelvic data and compared that strat-
egy to no model tuning. The transfer learning strategy
further reduced sCT MAE from 46.78 to 42.40 HU.

4.2.9 Segmentation accuracy

Segmentation accuracy can be thought of as a
proxy measure for image quality and a useful met-
ric for assessing the extent of anatomical preservation
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during image synthesis. To compare the preservation
of anatomical structures, Lemus et al.52 manually con-
toured CBCT, sCT, and DIR CT images of abdominal
patients, with the CBCT used as reference. The sCT
images consistently outperformed the DIR CT for each
anatomical structure, with a mean Dice coefficient of
0.92 ± 0.04 for the sCT and 0.82 ± 0.06 for the DIR CT.

Eckl et al.40 compared a manual segmentation per-
formed on the sCT to the one performed on the CT
image and later deformed to the sCT as an indirect
measure of image quality. The HN region scored the
lowest Dice scores ranging from 60.6 ± 10.4 to 79.3
± 5.8, whereas thoracic and pelvic regions did not go
below 81.0%, with the exception of the seminal vesi-
cles. The mean Dice for HN, thoracic, and pelvic regions
was 73.33 ± 7.83, 87.03 ± 10.30, and 81.03 ± 18.50,
respectively. This suggests that smaller structures in the
HN and pelvis were more prone to errors, with the sem-
inal vesicles scoring 66.7 ± 8.3. However, it is difficult to
differentiate image quality from improper DIR.

Sun et al.47 and Zhao et al.46 compared automati-
cally generated segmentations of organs at risk (OAR)
to manual delineations for the pelvic region. In Sun
et al.,47 auto-segmentation Dice scores for sCT images
generated by cycle-GAN did not fall below 87.23 ±

2.01, with a mean of 89.89 ± 1.01 when compared
to manually segmented structures on the CT. In com-
parison, the mean Dice coefficient for a GAN was
87.84 ± 1.23. Zhao et al.46 also reported high Dice
scores for the pelvic region using an auto-segmented
ground truth CT, with a mean of 0.93 ± 0.03, whereas
auto-segmentation performed on CBCT images rou-
tinely failed to segment certain structures. When the
same sCT auto-segmentation was compared to a man-
ually segmented ground truth dataset, the Dice score
improved to 0.96 ± 0.04, suggesting that only small
modifications are necessary. Dai et al.51 trained a sepa-
rate segmentation network on sCT and CT images with
respective manually generated ground truth labels for
the thoracic region.The sCT and CT datasets performed
comparably, with sCT Dice scores ranging from 0.63 ±

0.08 to 0.95 ± 0.01, compared to CT Dices scores of
0.73 ± 0.08 to 0.97 ± 0.01. Importantly, the mean Dice
score for the CTV was 0.88 ± 0.03 for the CT and 0.83
± 0.03 for the sCT.

4.2.10 sCT dosimetry

The dosimetric accuracy of sCT images is a clinically
important endpoint for ART. Table 6 summarizes the
number of investigations above and below a 95% GPR
threshold for differing anatomical sites, gamma criteria,
and radiation modalities.

The HN site was the most investigated region for
both photon and proton plans and recorded no rates
below 95%.19,39,40,42,55–57,61 Furthermore, it was the

only region to be assessed under a 1%/1-mm stringency
and pass for photon plans.39,55 Meanwhile,multiple stud-
ies showed the acceptability of proton plans in the HN
region for both 2%/2- and 3%/3-mm criteria.56,57

The pelvic region was validated for photon40,47 and
proton plans,37,45 showing acceptable pass rates for
both 3%/3- and 2%/2-mm criteria.

A single study reported passing 3%/2-mm GPR for the
abdominal region for photon plans52;however,Liu et al.41

did conduct a DVH analysis on OAR and PTV volumes
for pancreatic cancer and concluded that there was no
significant difference between sCT and DIR CT plans.
The abdominal region was investigated once for pedi-
atric proton patients in Uh et al.45 with passing 2%/2-mm
rates.

Photon breast cancer plans failed under the 2%/2-
mm criteria in Maspero et al.42; however, the more
permissible 3%/3-mm criteria passed in their investi-
gation. Conversely, Dai et al.51 reported failing plans
at 3%/3 mm. No proton dosimetric analyses were
conducted for the breast region.

The lung site was well validated for photon
plans40,42,49 for a 3%/3-mm criteria; however, two
investigations noted failing 2%/2-mm rates. A single
study by Thummerer et al.59 investigated the lung site
for proton ART and reported passing rates only for
3%/3-mm criteria.

4.3 Projection domain corrections

A total of six projection domain–based CBCT correction
methods are summarized in Table 4. Studies operating
strictly in the projection domain attempted to approxi-
mate the scatter signal contained in raw projections by
using either MC-derived scatter maps,79,80 or a CT-prior-
based correction approach as the ground truth.73,75,81

Meanwhile,one study looked at predicting MC-corrected
CBCT images from uncorrected CBCT images.74 For
all studies, U-Net was used as training was performed
using paired data.

Nomura et al.79 utilized a U-Net to learn how
the scatter distribution within five simulated non-
anthropomorphic phantom projections generalized to
patient projections simulated using MC. The DL
approach was compared to an analytical kernel-based
scatter correction method fASKS82 and was shown
to significantly improve the resulting MAE. Similarly,
Rusanov et al.81 trained a network to learn the scatter
distribution resulting from four anthropomorphic phan-
toms. When applied on real patient scans, the MAE
improved compared to vendor reconstructions (74 vs.
117 HU). Residual learning72 of the scatter signal
rather than the corrected projection was hypothesized
by Nomura et al.79 to be a more efficacious training
strategy, a fact later confirmed by Lalonde et al.80 in
their patient-based MC study (13.41 vs. 20.23 HU), and
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TABLE 6 Studies reporting mean gamma pass rates for different anatomical regions and radiation modalities

Head and neck Pelvis Abdomen Breast Lung
γ3 γ2 γ1 γ3 γ2 γ1 γ3/2 γ2 γ1 γ3 γ2 γ1 γ3 γ2 γ1

Photon [2, 0] [5, 0] [2, 0] [1, 0] [2, 0] – [1, 0] – – [1, 1] [0, 1] – [3, 0] [1, 2] –

Proton [2, 0] [2, 0] – [1, 0] [2, 0] – – [1, 0] – – – – [1, 0] [0, 1] –

Note: Mean gamma rates above 95% are considered clinically acceptable. Reporting format: [N > 95%, N < 95%] with N = number of evaluations. γ3 = 3%/3 mm; γ2

= 2%/2 mm; γ1 = 1%/1 mm; γ3/2 = 3%/2 mm. Light green = 1 validation; medium green = 2 validations; dark green = 3+ validations.

Rusanov et al.81 in their scatter correction study (74
vs. 77 HU). These authors also investigated the use of
MSE and MAE loss functions, with Lalonde et al.80 and
Rusanov et al.81 both reporting an improved MAE for
the latter loss (13.41 vs. 15.48 HU and 74 vs. 86 HU,
respectively). Nomura et al. concluded that MAE penal-
ized anatomic regions more than MSE, which tended to
penalize noisy regions primarily in air, thereby leading to
more inaccurate scatter correction in anatomic regions.

The a priori scatter correction technique is well val-
idated in the CBCT literature28–30,83 and has served
as the ground truth for the Hansen et al.73 and Landry
et al.75 studies investigating projection domain correc-
tion. The technique is predicated on simulating virtual
projections of the planning CT through forward pro-
jection using the scanning geometry of the CBCT. CT
projections are assumed to be scatter-free and are
used to estimate the scatter signal in raw CBCT projec-
tions by extracting the low frequency signal contained
in the residual projection. In both studies, raw projec-
tions were synthesized into synthetic a priori corrected
projections that, once reconstructed, deviated in MAE
from the ground truth by 51 HU for Landry et al.75 and
48 HU for Hansen et al.73 Landry et al.75 further com-
pared projection domain synthesis to two image domain
synthesis approaches: transforming uncorrected CBCT
images to a priori corrected CBCT images, and gen-
erating sCTs. In terms of MAE, the projection domain
approach performed best (51-HU projection vs. 88-HU
sCT and 58-HU a priori image). However, in terms of
proton dosimetry, the sCT produced the highest mean
2%/2-mm GPR (96.1%), followed by synthetic a priori
(95.3%),and projection domain synthesis (93.0%).Even
though the ground truth was a priori corrected CBCTs,
the sCT produced the best dosimetric agreement, likely
due to the more uniform HU and smooth distribution
unlike the other two approaches.

Lalonde et al.80 and Jiang et al.74 used MC to create
scatter-free ground-truth data for their image synthe-
sis studies. Although Lalonde et al. trained a network to
predict the scatter contribution in raw projections, Jiang
et al. synthesized MC-corrected CBCTs from input-
uncorrected CBCTs. As ground truth and input CBCT
images show perfect alignment, a one-to-one mapping
can be learned using U-Net without suffering blurring
and artifact-related shortcomings common in sCT gen-
eration. Their proposed network outperformed the a

priori28–30 correction method in terms of RMSE (18.8
vs. 30.3 HU). Lalonde et al.80 found good agreement
between U-Net-corrected CBCTs and MC-synthesized
images for proton HN plans (2%/2-mm gamma mean of
98.89%). When the same model was compared against
real patient HN scans using the a priori correction as
ground truth, the 2%/2-mm GPR dropped to 78.15%.
This result is lower than what was reported in Landry
et al.75 for the same criteria (2%/2-mm gamma > 85%),
possibly because MC simulations do not model sys-
tem realism to the same degree achieved in a priori
corrections.

5 DISCUSSION

This review has sought to provide an in-depth summary
of the current state of the literature involved with CBCT-
based sCT generation and projection-based scatter
correction using DL. Studies from 1 January 2018 to
1 April 2022 were reviewed with a focus on DL meth-
ods and relevant clinical endpoints relating to image
quality, dosimetry, and segmentation accuracy. The pri-
mary motivation for improving CBCT image quality is
to provide accurate pretreatment anatomical informa-
tion to facilitate online ART.By minimizing inter-fractional
anatomic uncertainty, clinical benefits accrue from the
reduction of dose to OAR and escalation of dose to tar-
get volumes.3,4,84–87 The following discussion aims to
summarize best practices that may be of interest to DL
practitioners and inform clinicians on the current state
of CBCT-based ART.

5.1 Recommendations for researchers

The literature summary showed that among studies
that controlled for training data, cycle-GAN generally
outperformed GAN-based approaches by 6.81% and U-
Net by 14.25% in terms of relative MAE improvement
(see Figure 5). In terms of anatomical preservation,
cycle-GAN was explicitly compared to GAN models in
Gao et al.49 and Liang et al.39 using anthropomorphic
phantoms as true ground truth data. In both studies,
GAN-based sCT images failed to preserve the underly-
ing anatomy. Importantly, phantom inserts were erased
and false anatomic information such as the heart and



DL DRIVEN CBCT CORRECTION: A REVIEW 6047

bronchioles were superimposed in Gao et al.,49 show-
ing that GAN-based synthesis produces the most likely
anatomy based on the specific context of the region,
rather than explicitly maintaining the structure from the
input. Given that GANs are trained to approximate the
probability density distribution of the target domain,20

without further constraints such as cycle consistency,
this result is not surprising.U-Net-based synthesis relies
on data alignment to learn a direct mapping using a
hand-crafted loss function. In the absence of perfectly
paired data, the resulting sCT is blurred as boundary
differences are averaged and perceptually unrealistic
given the simplicity of the loss function.16–19 Although
the resulting sCT images may be viable for dose calcu-
lations, their MAE is generally higher than GAN-based
architectures and they may fall short in downstream
tasks necessary for ART such as manual or automatic
segmentation that requires sharp organ boundaries.

One other unpaired translation network was investi-
gated, ADN, which outperformed cycle-GAN in terms of
MAE (32.70 ± 7.26 vs. 42.04 ± 8.84 HU),27 and scored
the highest percentage SSIM improvement out of stud-
ies not using low-dose CBCTs as input (see Figure 10).
ADN does not rely on cycle-consistency to enforce
anatomical information, rather, image content and style
are disentangled using multiple encoders. A common
content feature space is established between CT and
CBCT images, whereas style embeddings relating to
CBCT and CT images are separated. It then becomes
possible to combine CT style with CBCT content. One
advantage of the ADN network, and disentangled unsu-
pervised image translation approaches in general, is
that their outputs do not depend on the strict cycle-
consistency constraint, in turn producing more realistic
images.Although cycle-consistency helps maintain con-
tent information, it also encourages the preservation
of some artifacts during sCT generation such that the
backward cycle has useful prompts to accurately recre-
ate the cycle images (which contain those artifacts).88 A
recent work aimed to loosen the cycle loss constraint by
replacing the pixel-wise error between input and cycle
images with another discriminator. The authors show
that this strategy provides sufficient constraints for the
generators to maintain the input structure while minimiz-
ing any residual prompts in the synthetic image.89 In the
DL literature,many supervised and unsupervised image
translation architectures exist, but only a small subset
have been applied to medical data. A more complete
review of these architectures can be found in Alotaibi
et al.90 and Pang et al.,91 with benchmarks of various
networks on some of the most common datasets in
Saxena et al.92

Interestingly, unpaired training configurations outper-
formed paired training for cycle-GAN in terms of relative
MAE improvements (see Figure 6; 55.98% vs. 47.61%,
p = 0.16). However, the results narrowed when studies
with similar training set sizes were compared,with paired

implementations performing slightly better (53.65% vs.
51.83%, p = 0.29). Given that all studies used CBCT
and CT data from the same patients, similar levels
of variance, and therefore model performance, should
exist whether paired or unpaired configurations were
applied. However, it is anticipated that faster conver-
gence could be achieved using paired data, as dis-
criminators are better able to determine real from fake
samples when anatomic position is controlled for.Hence,
domain-specific features such as artifacts may be eas-
ier to identify when real and fake data distributions are
structurally similar.

Similarly, no clear advantage was observed for cycle-
GAN studies utilizing patch-based 3D networks over
2D variants (52.08% 2D vs. 49.83% 3D, p = 0.41). It
is suspected that the benefits of 3D feature represen-
tations are somewhat negated by two factors: (1) 3D
networks contain more trainable parameters than their
2D counterparts; hence, more training data is required
to avoid overfitting and to capture the increased data
complexity. (2) Creating patch-based volumes destroys
the global feature representations otherwise available at
the encoder-decoder bottleneck, thereby losing access
to important contextual information for modeling long
range dependencies. To overcome these drawbacks,
the GAN used in Dahiya et al.15 used full 3D image
volumes and was trained on a large cohort of 140
patients. Accordingly, the authors achieved the second-
best relative MAE improvement of 81.99%, likely due to
addressing the abovementioned concerns.

Whether using paired or unpaired data,preprocessing
images using intra-patient RR is always beneficial as it
allows excess air regions to be truncated. It is hypoth-
esized that network performance may further increase
with inter-patient RR as the extent of each patient’s
anatomy is grouped to a common center, similar to
the improvement in results in Uh et al.45 after pedi-
atric body normalization (47 ± 7 vs. 60 ± 7 HU, p <

0.01). The only study to compare the use of DIR and
RR on training a cycle-GAN concluded that minimal
benefits accrue in terms of MAE improvement (56.89
± 13.84 HU DIR vs. 58.45 ± 13.88 HU RR); however,
visual inspection showed noticeably less noise, fewer
motion artifacts, and superior boundary preservation
for the model trained with DIR pre-processing.41 Finally,
applying normalization on a patient-wise level is recom-
mended over slice-wise normalization,as demonstrated
by Dong et al.50 in which the latter resulted in intensity
discontinuity between slices.

Data augmentation is used to prevent overfitting
and improve model generalization when limited data is
available. One important augmentation strategy is the
addition of Gaussian noise during optimization, which
has been shown to improve the learning of salient
features.78 A further benefit of noise injection relates
closely to the phenomenon described earlier regarding
the preservation of artifacts during the forward cycle in
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cycle-GAN. Bashkirova et al.26 showed how generators
imbed a low amplitude structured noise in synthetic
images that is used during the backward cycle as a
prompt to reproduce the input domain more accurately.
The addition of this structured noise, which is imper-
ceptible by humans, is like cheating and prevents the
generator from learning the optimal translation param-
eters. The authors discovered that the addition of low
amplitude Gaussian noise during training inhibits the
generators capacity to cheat, encourages the learning
of more robust features, leads to visually more realistic
images, and reduces model sensitivity to noise pertur-
bations by a factor of 6. As a result, their cycle-GAN
trained with noise augmentation produced synthetic
images with an MSE 31.86% lower than the baseline.26

Virtually no difference in percent MAE improvement
was observed between studies utilizing the standard
cycle-GAN loss compared with extended loss configura-
tions (49.08 ± 21.85-HU standard vs. 49.90 ± 14.37-HU
extended, p = 0.35). However, for studies investigating
different loss functions, perceptual and MAE improve-
ments in image quality were reported for identity, SSIM,
feature matching, gradient, synthetic, histogram, and
perceptual losses.18,44,47,48,54 Furthermore, the SSIM—
a perceptual image quality metric—improved by a
greater margin in studies using additional loss functions
over studies using baseline losses (10.5 ± 5.95% vs.
12.8 ± 5.73%, p = 0.35). As a consequence for ART,
automatic segmentation models (pre-)trained on CT
images should perform better on sCT images that are
perceptually more similar to CT images. Hence, more
time-effective ART protocols requiring fewer manual
corrections could be achieved if perceptual differences
are minimized.

For this reason, it is important to adopt more sophis-
ticated perceptual image quality metrics alongside
SSIM, which has been shown to fail under certain
circumstances.93 The Fréchet inception distance (FID)
is the most common metric used in the DL commu-
nity to measure image quality in the absence of a
ground truth image.94 FID uses a pretrained inception
v3 network to extract features from real and generated
data. Statistical measures are then compared between
deep feature maps to assess image similarity, a tech-
nique shown to correlate well with the human visual
system.95 Another benefit of FID is that data alignment
is not required, thereby removing the bias entrenched
in MAE assessments that are highly dependent on
anatomical correspondence. Newer and more robust
deep-feature-based perceptual metrics include LPIPS
(Learned Perceptual Image Patch Similarity)95 and
DISTS (Deep Image Structure and Texture Similarity),96

both of which are commonly used to compare gener-
ative model image quality. Hence, using these metrics
as optimization criteria or merely to compare models
can aid in the selection of the most suitable sCT data in

terms of CT/sCT feature similarity for downstream ART
auto-segmentation tasks.

One shortcoming of fully convolutional networks is
their inability to model long range dependencies well.
This is due to the use of small convolution kernels
that can only “see” a portion of the image at any given
time. The use of inception blocks, as in Tien et al. to
merge smaller and larger kernels, is one method to
capture features at different resolutions.44 Alterna-
tively, global attention mechanisms such as attention
gating used in Liu et al. aim to downweigh less rele-
vant spatial regions.27,41 Recently, the emergence of
vision transformers (ViT) has challenged the notion that
convolutions are the best way to drive learning-based
computer vision tasks.97 Based on patch-tokenization
of the image, ViTs are capable of modeling global con-
textual information, in effect learning how each patch
relates to every other patch directly.97 The downside,
however, is that local information is coarsely mod-
eled, which motivated researchers to create hybrid
models that utilize ViTs to model global information
in the encoder wing, while synthesizing high resolu-
tion outputs using a CNN decoder wing.98 Currently,
segmentation-based networks such as Trans-U-Net
use this configuration to outperform comparable pure
CNN architectures.98 The first hybrid image synthesis
architecture, ResViT, utilizes a series of ViTs at the
encoder-decoder bottleneck to better aggregate global
features.99 The authors noted that SSIM and PSNR for
ResViT (0.931 ± 0.009 and 28.45 ± 1.35) improved
over Trans-U-Net (0.914 ± 0.009 and 27.76 ± 1.03),
attention U-Net (0.913 ± 0.004 and 27.80 ± 0.63),
and pix2pix GAN (0.898 ± 0.004 and 26.53 ± 0.45)
for an MRI to CT synthesis task.99 Hybrid architecture
approaches to image synthesis offer a new and exciting
research direction; however, issues around higher ViT
training data requirements still need to be addressed.

That learning-based models benefit from increased
trained set sizes is well known. As evident in Figure 7,
a small but positive relationship was found between
training cohort size and relative improvement in MAE.
The relationship was poorly modeled by linear regres-
sion; however, a moderate upward trend is seen from 11
to 46 patients, which then forms a plateau as further
increases in cohort size offer diminished, or no ben-
efit. Comparable MAE reductions, around ∼70%, were
achieved using anywhere from 15 to 46 patients; how-
ever, less variance in model performance was observed
for higher cohort sizes indicating a stronger relationship.
The two largest improvements in MAE used 90 and 140
patients, respectively, showing that much larger training
sets can push the SoTA. Although reliance only upon
data size is not guaranteed for success, as seen by
studies that showed comparable improvements using
sub 40 and greater than 120 patients. In general, the
interplay between model performance and training set
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size follows this pattern across different medical tasks
such as segmentation100,101 and classification102,103:
rapid improvements with high variance initially, followed
by saturation with any further increases in training set
size.104 The optimal number of training cases is unique
for every class of problem and dependent on the qual-
ity of the data itself. Nevertheless, given the high cost
of medical data collection, suitable sCT image qual-
ity can be achieved using anywhere between 15 and
46 patients, with preference for higher cohort sizes if
reasonably possible.

Table 5 shows the thoracic, pelvic, and HN regions
were widely investigated and showed similar levels of
MAE improvement (57.54 ± 12.65%, 57.97 ± 19.68%,
58.67± 10.75% respectively).These may be considered
well validated in the context of image quality. However,
studies investigating the abdominal region accounted for
only 7% of all sites and also showed the lowest rela-
tive MAE improvement (41.33 ± 19.51%) while using
less than half of the training data of other sites. Given
the large extent of motion artifacts present in abdomi-
nal scans,larger training cohorts and more sophisticated
translation approaches such as in Dahiya et al.15 may be
necessary. There, CBCT-specific artifacts were infused
into CT images using a physics-based augmentation to
create perfectly aligned training data which aided sCT
synthesis for the artifact-prone thoracic region.15

Beyond sCT generation, projection domain correc-
tions warrant further attention given the impressive
results in Landry et al.75 which showed that DL-driven
a priori corrected images possessed lower MAE than
sCT images (51 HU a priori vs. 88 HU sCT), and com-
parable proton dose accuracy (96.1% sCT vs. 93.0% a
priori). Performing corrections in the projection domain
has several advantages over the image domain: First,
scatter and associated intensity deviations are well
localized in each projection,whereas these errors mani-
fest non-trivially in the image domain making them more
difficult to learn. Thus, projection data compliments how
convolution operations extract features locally. Second,
projection data is far more numerous than reconstructed
data for a given patient—a beneficial characteristic for
DL. Unpaired translation networks have not yet been
investigated in the projection domain. The a priori cor-
rection currently requires well-aligned CT and CBCT
data to mitigate high-frequency errors during recon-
struction. Alternatively, the use of unpaired data with
cycle-GAN mitigates the need to perform any smoothing
operations during a priori correction, allowing the net-
work to learn both low and high frequency sources of
intensity errors—a characteristic not possible under the
original a priori implementation.28–30,83

The use of DL techniques for CT reconstruction
has predominantly involved sparse-view and low-dose
acquisitions as there is no ideal tomographic ground
truth for learning strategies.105–110 Iterative reconstruc-
tion (IR) applications utilizing DL can be categorized

into “plug-and-play” and “unrolling” methods.109 Plug-
and-play methods utilize a CNN that is first trained in
the image domain to act as a regularizer during IR.111

Unrolling methods aim to model the various compo-
nents of a reconstruction algorithm using convolutional
and fully connected networks (FCN).107 For example,
Wurfl et al.107 explicitly modeled the discrete Feldkamp–
Davis–Kress (FDK)112 algorithm using convolutional
and neuronal neural network components. Direct recon-
struction using DL has been achieved by utilizing
FCN,105 or a combination of CNN and FCNs.107,110 In
these latter approaches, raw data is first preprocessed
with CNNs then reconstructed by utilizing an FCN that
connects each pixel in the measured domain to all voxels
in the image domain to learn a direct domain trans-
formation mapping. For example, Li et al.110 performed
reconstruction directly on sinogram data previously
preprocessed by a CNN. Specifically for cone-beam
reconstruction, global FCN mapping showed to be com-
putationally expensive; hence, Lu et al.105 developed
a geometry-guided framework containing an array of
much smaller FCNs, each of which connects a pixel
in the projection domain to a beamlet in the image
domain based on the specific beamlet geometry incident
from the X-ray source. Thus, each beamlet traversing
the object is modeled by a small FCN. Chen et al.113

showed that a pretrained natural image denoising CNN
could denoise real cone-beam projections. The CNN
replaced classical hand-crafted regularization terms in
statistical-IR reconstruction and resulted in reduced
artifacts compared to total-variation114 and FDK112

reconstructions. Meanwhile Han et al.115 proposed a
novel reconstruction method using differentiated back-
projection (DBP). Projection data is first transformed to
a DBP form,116 with coronal and sagittal views fed into
a CNN that learns to solve a Hilbert transform deconvo-
lution task. The output consists of coronal and sagittal
reconstructed images that exhibit higher image quality
than FDK and CNN-aided FDK reconstructions.

Adhering to good practices in the reporting of results
will help standardize the literature and make compar-
isons more consistent. Dose distribution comparisons
of clinical plans between ground truth and corrected
CBCTs should be performed using the recommen-
dations defined by regulatory bodies such as AAPM
(American Association of Physicists in Medicine). The
latest AAPM Task Group 218 guidelines suggest using
the 3%/2-mm GPR criteria, calculated using a 10%
low-dose threshold for comparing dose distributions.117

Evaluating image quality is typically assessed using
MAE; however, authors are sometimes ambiguous on
how the metric is calculated. Most authors report MAE
over the entire image volume, yet, these approaches
can be biased against volumes with large amounts
of air that artificially reduce the MAE. Recently, some
authors have calculated MAE within the patient body
contour,37,40,41,45,48,51,56,57,59,61 whereas others went a
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step further and found the MAE for specific anatomic
regions such as bone or soft tissue.40,44 We recommend
good practice in data reporting by defining all pixel-wise
metrics within the patient body contour to eliminate bias.
Furthermore,reporting uncorrected CBCT image quality
is necessary to gauge the relative improvement. Sim-
ilar recommendations were recently echoed for SSIM:
The authors recommended reporting the average SSIM
within the patient body contour and ensuring that an
appropriate dynamic range is used.118 As previously
discussed, the FID is a popular image quality metric
used in assessing generative models that lack a ground
truth.94 The distance metric compares the distribution of
deep features between two datasets irrespective of their
pixel-wise alignment, thereby addressing the inherent
flaw of using MAE.

5.2 Recommendations for clinicians

A recent review of AI applications in radiotherapy listed
sCT generation as one of the top three most popular use
cases—and provided practical steps in commissioning,
clinical implementation,and quality assurance.119 A best
practice workflow for AI,and sCT generation specifically,
is many years away given the rapid pace of technical
progress; however, clinicians have begun investigating
novel ways of ensuring quality control (QC). For exam-
ple, as suggested by Thummerer et al.59 and shown
in Oria et al.,120 proton range probing fields can be
used as a QC tool by comparing the difference between
simulated and CT/sCT mean relative range errors in ret-
rospective patient scans. Hence, in vivo data may be
preferable to using conventional image quality phan-
toms for QA/QC applications as training data used for
sCT generation does not contain any phantoms.

The preferred method for implementing CBCT-based
dose monitoring protocols has relied on DIR of the plan-
ning CT to the CBCT.121–123 With the emergence of
sCT generation, the authors have demonstrated bet-
ter agreement in terms of MAE39,57,61 and anatomical
accuracy52 over using deformed planning CTs, whilst
maintaining comparable dose accuracy for proton and
photon plans.42,52,61 Hence, the use of sCT for dose
monitoring will enhance the accuracy of research con-
clusions and result in improved decision-making for both
online and offline ART.

The acceptance criteria outlined in AAPM-TG 218 for
tolerance and action limits are defined as greater than
95% and less than 90% for a 3%/2-mm GPR criterion,
respectively.117 In adopting these thresholds, the current
literature has thoroughly demonstrated adequate sCT
dose accuracy for photon and proton plans in the HN
region.19,39,40,42,55–57,61 (see Table 6) Likewise,multiple-
photon40,47 and proton37,45 studies in the pelvic region
demonstrated pass rated above 95% for the stricter

2%/2-mm criterion. The abdominal, breast, and lung
regions were less researched. Proton45 and photon52

abdominal plans were validated once, and a single-
photon lung plan was validated for the stricter 2%/2-mm
criteria.49 However, no study has investigated sCT accu-
racy for proton breast plans, whereas the single study
that analyzed proton lung plans failed to demonstrate
sufficient dosimetric accuracy.59

Automatic segmentation is an important intermediary
step toward the development of online CBCT-guided
ART workflows. Although not the focus of this review,
several authors did analyze the performance of sCTs in
auto-segmentation tasks. The suitability of sCT images
for autosegmentation was compared to CT images in
the thoracic region by training a separate model for each
dataset.Dice scores indicated comparable performance
on both datasets, with CT images retaining slightly
higher mean CTV overlap.51 Generally, good auto-
segmentation performance is achieved if results are as
good or better than interobserver variability, which was
shown to range from 0.8 to 0.99 for the pelvic region.124

Consequently, Sun et al. and Zhao et al. demon-
strated Dice score agreement greater than 0.89 for the
pelvic region.46,47 Recently, segmentation-specific stud-
ies have compared the performance of CBCT-derived
sCT images for abdominal segmentations, reporting
Dice scores above 0.8.125,126 The validation of sCT-
based auto-segmentation for all anatomic regions is an
important step toward online ART.

The nascent field of sCT generation is attracting
attention from vendors, with Elekta releasing a research
version of their Advanced Medical Image Registra-
tion Engine (ADMIRE) (Elekta AB, Sweden) software
capable of producing sCT images using their imple-
mentation of cycle-GAN.40 The model must be trained
locally to adhere to consistent CT acquisition param-
eters. To this end, the recent retrospective study by
Eckl et al.127 demonstrated the benefits of sCT-driven
ART using ADMIRE for stereotactic prostate cancer
patients, showing statistically significant improvements
in target coverage and organ sparing. Plan adaption
varied from 2.6 ± 0.3 to 19.4 ± 4 min, depending on the
ART protocol. Alternatively, the specialized ART module
Ethos released by Varian (Varian Medical Systems,Palo
Alto, CA, USA)128 does not generate sCT for replanning
but utilizes DL for rapid contour generation. A recent
analysis showed that Ethos could improve CTV and
PTV coverage whilst significantly reducing dose to
all OAR in prostate cancer patients, with an average
clinical treatment time of 19 min.129 Looking forward,
one may envision several DL models that make up
the backbone of an ART engine that can quickly and
accurately generate sCT images, automatically con-
tour structures, predict new optimal dose distributions,
and conduct QA assessments with minimal manual
intervention.
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6 CONCLUSION

Methods for improving CBCT image quality using DL
have been reviewed, with emphasis placed on exploring
the technical aspect of the current state of the art. Lit-
erature summaries and recommendations for DL practi-
tioners and clinicians alike are made, ensuring that best
practices are established in model development and
clinical deployment moving forward. CBCT-based sCTs
were shown to accurately reflect real CT density infor-
mation for the HN, pelvic, and thoracic regions, whereas
the abdominal site received less attention. Cycle-GAN
models, on average, outperformed both U-Net and GAN
approaches in terms of image quality and anatomical
preservation.Dosimetric performance of sCTs was thor-
oughly validated in the pelvic, and HN regions for both
photon and proton plans, whereas other regions were
less researched. Preliminary auto-segmentation results
demonstrate comparable performance for CT and sCT
datasets alike. Looking ahead, large multicenter studies
are needed to report their firsthand experiences imple-
menting ART workflows, which include sCT generation,
auto-segmentation,plan adaption,and QA to help inform
future protocols and highlight weaknesses.
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