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Background. ,e anatomical landmarks contain the characteristics that are used to guide the gastroenterologists during the
endoscopy. ,e expert can also ensure the completion of examination with the help of the anatomical landmarks. Automatic
detection of anatomical landmarks in endoscopic video frames can be helpful for guiding the physicians during screening the
gastrointestinal tract (GI).Method. ,is study presents an automatic novel method for anatomical landmark detection of GI tract
from endoscopic video frames based on semisupervised deep convolutional neural network (CNN) and compares the results with
supervised CNN model. We consider the anatomical landmarks from Kvasir dataset that includes 500 images for each class of
Z-line, pylorus, and cecum. ,e resolution of these images varies from 750× 576 up to 1920×1072 pixels. Result. Experimental
results show that the supervised CNN has highly desirable performance with accuracy of 100%. Also, our proposed semi-
supervised CNN can compete with a slight difference similar to the CNN model. Our proposed semisupervised model trained
using 1, 5, 10, and 20 percent of training data records as labeled training dataset has the average accuracy of 83%, 98%, 99%, and
99%, respectively. Conclusion. ,e main advantage of our proposed method is achieving the high accuracy with small amount of
labeled data without spending time for labeling more data. ,e strength of our proposed method saves the required labor, cost,
and time for data labeling.

1. Introduction

According to the World Health Organization (WHO), in
2018, stomach and colorectal cancer was among the 5 most
common cancers in the world. Altogether, stomach and
colorectal cancer accounted for about 2.8 million new cases
and 1.6 million deaths in 2018 [1].

According to the development of minimally invasive
surgeries (MIS), endoscopy is used to examine the upper
gastrointestinal tract (GI), including the esophagus, stom-
ach, and the first part of the small bowel [2].

,e anatomical landmarks contain the characteristics
that are used to guide the gastroenterologists during the
endoscopy [3]. ,e expert can also ensure the completion
of examination with the help of the anatomical landmarks
[3]. ,ey are of necessity as a guideline to describe the

location of a lesion [3]. Landmarks in the upper GI tract
include Z-line and pylorus. Also, one of the landmarks in
the lower GI tract is cecum [4]. Z-line is also known as the
squamocolumnar junction (SCJ) is a place that the
squamous mucosa of the esophagus transitions to the
columnar mucosa of the stomach [5, 6]. It works like a
border between the esophagus and the stomach. Exami-
nation of the Z-line is very useful for measuring the gastric
mucosal fold and illustrating sign of reflux [6]. ,e py-
lorus is also known as a muscular valve that is around the
stomach and the duodenal bulb (or the first part of the
small bowel). Both sides of the pylorus must be examined
to detect abnormalities like ulcer or erosion [5, 7]. With
screening GI tract, the physician can ensure that the
pylorus can control the motion of food by condensing
muscles [8].
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Automatic detection of anatomical landmarks from
numerous endoscopic video frames is a main prerequisite
task for many endoscopic video analysis applications [9]. For
example, detecting and localizing the anatomical landmarks
automatically can be helpful to improve the accuracy and
speed of physicians in classifying the landmarks [9].
Moreover, diagnosis of anatomical landmarks can be used
for following the guidelines that are necessary for screening
the GI tract [3]. ,e report of the physician should include a
brief description of anatomical landmarks and image doc-
umentation of them [7].

Automatic detection of anatomical landmark has been
considered in many previous studies [4, 8, 10].

In the previous studies, the lack of training sample makes
the models prone to overfitting and some data would be
misclassified. In this study, we try to overcome this problem
by proposing semisupervised deep neural networks.

,e main objective of this study is proposing an auto-
matic method for landmark detection from the endoscopic
video frames. For this purpose, the Kvasir dataset is analyzed
in this study.

,e main differences of our proposed approach com-
pared with the previous studies which have been analyzed in
Kvasir dataset are proposing a semisupervised deepmodel to
reduce the required labeled video frames.

,emain novelties of our study andmethod lie in several
folds including the following:

(i) Proposing a novel method for anatomical land-
marks detection from endoscopic video frames

(ii) Proposing a novel semisupervised CNN to over-
come the lack of labeled data

(iii) Designing the semisupervised convolutional neural
network (SSCNN) on Kvasir dataset

(iv) Comparing the experimental results of supervised
and semisupervised CNNs for anatomical landmark
detection on Kvasir dataset

,is paper is organized as follows. In Section 2, the
related works are reviewed. Section 3 is for describing the
dataset and the main step of research methodology in this
study. ,e evaluation of performance metrics and showing
how our proposed method works are presented in Section 4.
And Section 5 concludes and gives a view for future work.

2. Related Works

,is section is divided into two folds. At first, the previous
studies related to the image processing on endoscopic video
frames are considered. Since our aim in this study is to
present a semisupervised learning method for classifying the
endoscopic video frames, the summary of semisupervised
methods is presented in the second fold. More details of each
fold will be described in the following sections.

2.1. Previous Studies Related to Endoscopic Video Frame
Processing. Previous studies focusing on endoscopic video
analytics can be divided into methods relying on conven-
tional machine learning methods and deep neural networks

[11]. Conventional machine learning methods have
extracted handcrafted features from the video frames and
then have classified them based on the corresponding
extracted feature vectors [12–14]. Deep neural networks can
be used as the feature extractor and/or end-to-end classifiers
without requiring prior feature extraction from video frames
[10, 15, 16].

2.1.1. Previous Methods Relying on Conventional Machine
Learning Methods. One of the first researches that has used
image processing techniques in endoscopic video frames
proposed edge detection methods to find ulcer on GI tract in
1988 [12].

Different previous studies have used image processing
techniques for automatic segmentation, classification, de-
tection, and localization of anatomical landmarks and/or
diseases [4, 11].

Some of the diseases in GI tract such as polyp [17], tumor
[13], cancer [14], ulcer [12], bleeding [18], and esophagitis
[19] have been diagnosed in the previous studies based on
automatic image processing techniques. Different methods
of feature extraction have been used for this purpose in the
related works to detect and classify GI tract abnormalities
[11]. Color [20], texture [21], and shape [12] descriptors have
been extracted and exploited [2] on the spatial or frequency
domain [22]. In recent years, deep neural networks have
been used for feature extraction from images [23].

Although there are different researches on image pro-
cessing, they cannot identify which feature is best for
demonstrating abnormalities in endoscopic video frames
[11]. Different methods for feature extraction have been
proposed, but they have not been generalized [11]. ,ere-
fore, end-to-end methods have been introduced and helped
to represent images efficiently [11].

2.1.2. End-to-End Classification using Deep Neural Networks.
Another application of deep neural networks is end-to-end
classification of images and video frames without requiring
prior feature extraction and heavy image preprocessing
activities [11, 24].

A previous study has proposed a framework based on
convolutional neural networks (CNN) for classifying images
using small amount of data [15]. Another model has been
presented consisting of a residual neural network (ResNet)
followed by a faster region-based CNN (faster R-CNN) [16].
But the authors have mentioned that their proposed
framework has shown some limitations for discriminating
some classes from others [16].

One of the recent studies has proposed a pipeline in-
cluding multitype feature extraction method, feature
merging, and selection for automatically diagnosis of ab-
normalities in GI tract [23].

Previous studies have demonstrated that the classifica-
tion performance has been reduced when the number of
classes is increased [23]. Moreover, different classes which
have been mostly similar to each other have been mis-
classified in the previous studies. A proposed solution in the
previous studies to overcome this challenge has been
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increasing the number of training data records [10]. More
researches on endoscopic video frames are summarized in
Table 1 presented in Appendix A.

As we realized from the previous studies, the lack of
enough training samples makes some images misclassified
[10]. ,e solution to addressing this challenge is increasing
the number of training data but accessibility to labeled data
needs more time and labor [10]. Also, sometimes it is not
possible to use domain expert to assign labels to the images
accurately. Semisupervised learning has this advantage that
need less much labeled data compared to supervised learning
methods [25].

,erefore, in this study, we propose a semisupervised
method for anatomical landmark identification from en-
doscopic video frames. In the next section, we summarize
semisupervised method.

2.2. Previously Proposed Semisupervised Methods.
Inaccessibility to labeled data is very common because the
expert must spend a large amount of time to assign labels to
data records [25].,erefore, Semisupervised Learning (SSL),
which requires a small percent of data records to be labeled
previously, can be helpful [25].

As mentioned earlier, sometimes the lack of labeled data
makes good performance not achieved onmodel [26], so SSL
method can solve this problem. If we use semisupervised
deep learning, we can use the benefit of them to increase the
model performance. ,ere are researches that use these
methods [27, 28].

SSL is one of the machine learning approaches that lies
between supervised and unsupervised learning [29, 30]. ,e
main advantage of SSL methods is that they require smaller
volume of labeled dataset for training the models [29, 30].
,ey use both labeled and unlabeled data records simulta-
neously for SSL training phase [29, 30].

,ere are some important assumptions in SSL. ,e first
assumption is about data distribution smoothness [29, 30].
,e second assumption says that the marginal region be-
tween two different classes has low density [29, 30]. In the
input space with higher dimensions, the data records usually
lie on manifolds having lower dimensions with a smooth
shape [29, 30]. Finally, the similar data records should have
similar class labels [29, 30].

Different previously proposed SSL methods have
exploited two different learning modes, including inductive
and transductive learning [31]. Inductive learning methods
predict the class label of the unlabeled data records which
have not been presented to the model during its training
[31]. In the concept of transductive learning introduced by
Vapnik and Sterin [32], both labeled and unlabeled training
data records have been fed to the model during its training
[25].

Inductive SSL methods include self-training [33], co-
training [34], and Expectation Maximization (EM) with
generative mixture model [35]. Recently because of the
powerful performance of deep learning models in supervised
learning, the SSL methods are focused on them [26]. ,ere
are very different architectures of deep learning model like

convolutional neural network (CNN) [36], recurrent neural
network (RNN) [37], autoencoders [38], and generative
adversarial networks (GANs) [39].

Semisupervised Support Vector Machines (S3VMs) [32]
and graph-based method [40] are examples of transductive
SSL methods.

Inductive methods make a classifier model cover the
entire input space but transductive methods do not [30].,e
prediction abilities of the transductive methods have been
limited to the training samples and have been prone to
overfitting and loss of generalization ability [30].

,erefore, inductive methods are used in this study to
make a classifier that can classify any object in input space
with high accuracy and not limited to the data that has been
seen in training phase [30].

A previous study has proposed a semisupervised con-
volutional neural network (SSCNN) model with an iterative
manner in which the labeled data and unlabeled data that have
high prediction confidence score in the previous iteration have
been used as the training sample for the next iteration [26].

Another research has used active learning to find the
reliable data from unlabeled data to add into training data set
and then has developed semisupervisedmethods by adding a
novel term into loss function of CNN [41].

In [42], the researchers have designed and used a graph-
based SSL method to learn the class label of unlabeled data
records. Moreover, for overcoming the model overfitting,
the data augmentation using GANs has been performed to
enrich the training dataset.

A previous study has designed an ensemble model to
combine the results of the feedforward designed convolu-
tional neural networks (FF-CNNs) to improve the perfor-
mance of SSL learning [43].

Another SSCNNmodel has been designed and proposed
in a previous study to extract the features and classify the
images.,e network determines the probability of each class
by using a Soft-max activation function in the output layer
[44].

Table 1: CNNs architecture for anatomical landmark detection
from endoscopic video frames.

Layer Output shape Parameters
Input layer (None, 32, 32, 3) 0
Conv2D (None, 32, 32, 32) 896
MaxPooling (None, 16, 16, 32) 0
Batch-normalization (None, 16, 16, 32) 128
Dropout (None, 16, 16, 32) 0
Conv2D (None, 16, 16, 64) 18496
LeakyReLU (None, 16, 16, 64) 0
MaxPooling2D (None, 8, 8, 64) 0
Batch-normalization (None, 8, 8, 64) 256
Dropout (None, 8, 8, 64) 0
Conv2D (None, 8, 8, 64) 36928
MaxPooling2D (None, 4, 4, 64) 0
Flatten (None, 1024) 0
Dense (None, 128) 131200
Batch-normalization (None, 128) 512
Dropout (None, 128) 0
Dense (None, 3) 387
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3. Materials and Methods

,is section is divided into three folds. At first, we introduce
the details of Kvasir dataset. ,e second fold describes our
designed and proposed semisupervised method. Finally,
evaluation metrics are presented. More details about each
fold are described in the next sections. We use the Cross-
Industry Process for Data Mining tasks (CRISP-DM)
methodology for designing our research method as shown in
Figure 1 [45]. CRISP-DM is a standard framework for data
mining projects introduced byWirth andHipp for designing
the process of data mining problem [45].

3.1. Dataset Description. In this section, we first introduce
our analyzed dataset of annotated endoscopic video frames.
,e dataset used in this study is Kvasir dataset that includes
4000 images captured from inside the GI tract [7]. ,e video
frames of Kvasir are classified into 8 classes based on an-
atomical landmark and pathological findings.,e classes are
esophagitis, polyps and ulcerative colitis, and polyp removal
including the dyed and lifted polyp and the dyed resection
margins [7]. In this study, the anatomical landmark images
that are analyzed include 500 images for each class of Z-line,
pylorus, and cecum [7].,e resolution of these images varies
from 750× 576 up to 1920×1072 pixels [7]. Figure 1(a)
illustrates different classes of video frames in Kvasir dataset.

3.2. Our Proposed Classification Method. Our proposed
method, as shown in Figure 1, consists of two different
classification methods based on supervised and semi-
supervised learning. More details about each method are
described in the following sections.

3.2.1. Supervised Learning. At first, we design and propose a
supervised end-to-end CNN trained based on all training
dataset considering their class labels. CNNs have been ap-
plied to solve different problems in machine learning [46].
,e important advantage of using CNNs is that they can
learn hierarchical local and global features from high-di-
mensional raw data without needing any prior method for
segmentation and/or feature extraction from the data [47].
More details about CNNs are explained in Appendix B.

Before designing CNNs, the data is partitioned into
original training and test datasets with a ratio of 80 : 20.
,en, the original training dataset is partitioned into
training and validation subsets with a ratio of 75 : 25.
Training subset is used for training the classifier and the
validation subset is used for tuning the hyperparameters of
the model to address issues such as overfitting. For this
purpose, grid search method is used for tuning the hyper-
parameters. ,en, the performance is evaluated by applying
the classifier into the validation subset to choose the best
combinations of the hyperparameters’ values.

Different architectures for CNN are examined and the
architecture that has the best performance for training and
validation subsets is selected as shown in Figure 1(c).

Table 1 shows the architecture of CNN model for an-
atomical landmark detection from endoscopic video frames.

CNNs are trained for 60 epochs with Adam optimizer
with learning rate of 0.001 and batch size of 8. ,e activation
function for all layers except last layer is ReLU.,e last layer
uses Soft-Max.

3.2.2. Semisupervised Learning. We use SSL methods in this
study to overcome the lack of training data. ,e architecture
of our proposed and designed SSL method is illustrated in
Figure 2.

As shown in Figure 2, the main steps of our proposed
and designed SSCNN are described in Algorithm 1.

,e main step for calculating the confidence score is
explained in Algorithm 2.

3.3. Evaluation Metrics. ,e performance of the model can
be evaluated by performance metrics like accuracy, preci-
sion, recall, F1-score, and Area under Receiver Operating
Characteristics (ROC) curve (AUC) [48].

,e value of accuracy shows the classifier’s predictive
abilities as follows [48]:

Accuracy �
TP + TN

N
, (1)

where TP is abbreviation of true positives, TN is abbrevi-
ation of true negatives, and N is the all number of data
records.

Precision denotes how many data assigned the positive
label by the model and the real class label is positive [48].
,is measure is calculated as follows:

Precision �
TP

TP + FP
. (2)

Recall is also known as true positive rate denoted in
equation (3) and it shows that the ratio of samples is cor-
rectly identified as positive class.

Recall �
TP

TP + FN
, (3)

where FP is abbreviation of false positives and FN is ab-
breviation of false negatives.

,e F1-measure is the harmonic mean of precision and
recall, as show in the following equation [48]:

F1 − measure � 2 ×
precision × recall
precision + recall

. (4)

Some of these measures are suitable for binary classi-
fication but for multiclass classification; the measure per-
formances are calculated as equations (5)–(10) [49]:
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micro − averaged precision �
􏽐

NOC
c�1 TPc

􏽐
NOC
c�1 TPc + 􏽐

NOC
c�1 FPc

, (5)

micro − averaged recall �
􏽐

NOC
c�1 TPc

􏽐
NOC
c�1 TPc + 􏽐

NOC
c�1 FNc

, (6)

micro − averagedF1 − score � 2 ×
micro − averaged precision × micro − averaged precision
micro − averaged precision + micro − averaged precision

, (7)

macro − averaged precision �
1

NOC
× 􏽘

NOC

c�1

TPc

TPc + FPc

, (8)

macro − averaged recall �
1

NOC
× 􏽘

NOC

c�1

TPc

TPc + FNc

, (9)

macro − average d F1 − score �
1

NOC
× 􏽘

NOC

c�1
2 ×

TPc/TPc + FPc( 􏼁 × TPc/TPc + FNc( 􏼁

TPc/TPc + FPc( 􏼁 + TPc/TPc + FNc( 􏼁
. (10)

In the above equations, NOC is the number of different
classes.

Input: Endoscopic video frames for GI tract
Output: Class labels describing anatomical landmarks shown in the input video frames
Main Steps of Algorithm 1:

(1) Partition the original dataset into training and test datasets.
(2) Divide training dataset into labeled dataset (LDS) and unlabeled dataset (UDS) with ratio ofm:(100 − m), wherem is the percent of

labeled data records, which model is trained using them.
(3) Repeat the steps (a)–(d) until UDS will be empty:

(a) Train CNNmodel with LDS for K epochs (in this study, K� 16) with an optimizer (in this study, Adam optimizer is used)
and batch size of B (in this study, B� 16).
(b) Apply the trained CNN model to UDS data records to assign class labels to them.
(c) Calculate the confidence score as described in Algorithm B for each data record belonging to UDS based on SOFTMAX
scores generated by CNN.
(d) Add data records having highest confidence scores and their class labels assigned by CNN to LDS and exclude them from

UDS.
(4) Apply the final trained CNN to test dataset to predict their class label.

ALGORITHM 1: ,e steps for training SSCNN.

Input: Labels predicted for UDS using SS-CNN
Output: Index of UDS which should be added to LDS and excluded from UDS
Main Steps of Algorithm 2:
(1) Get the SOFTMAX score matrix for predicted labels (SCPL) for UDS data records, which is generated by the SOFTMAX layer
of SS-CNN model.
(2) For each data record in UDS, calculate the maximum value of the corresponding row of SCPL matrix and save it to MVSC
array.
(3) Find and return the row indices of the data records in UDS having the maximum value of MVSC array as the output of
Algorithm B.

ALGORITHM 2: ,e steps for calculating the confidence score.
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Table 2: ,e performance measures of the proposed model for anatomical landmark identification from endoscopic video frames.

Performance metrics Supervised CNN SSCNN (m� 20%) SSCNN (m� 10%) SSCNN (m� 5%) SSCNN (m� 1%)
Accuracy 100.00 99.00 99.00 98.00 83.00
Micro-precision 100.00 99.00 98.98 98.00 83.16
Micro-recall 100.00 99.00 98.98 98.00 83.16
Micro-F1-score 100.00 99.00 98.98 99.45 83.16
Micro-AUC 100.00 99.98 99.96 98.00 92.43
Macro-precision 100.00 99.00 99.00 98.00 84.00
Macro-recall 100.00 99.00 99.00 98.00 83.00
Macro-F1-score 100.00 99.00 99.00 98.00 83.00
Macro-AUC 100.00 99.98 99.97 99.52 91.91

Table 3: ,e macro performance measure of proposed model for anatomical landmark identification from endoscopic video frames.

Anatomical landmarks Model Accuracy Precision Recall F1-score AUC

Z-line

Supervised CNN 100.00 100.00 100.00 100.00 100.00
SSCNN (m� 20%) 99.00 98.00 100.00 99.00 99.99
SSCNN (m� 10%) 99.00 100.00 98.00 99.00 100.00
SSCNN (m� 5%) 98.00 99.00 98.00 98.00 99.97
SSCNN (m� 1%) 83.00 79.00 75.00 77.00 89.80

Pylorus

Supervised CNN 100.00 100.00 100.00 100.00 100.00
SSCNN (m� 20%) 99.00 100.00 97.00 98.00 99.95
SSCNN (m� 10%) 99.00 99.00 99.00 99.00 99.93
SSCNN (m� 5%) 98.00 95.00 99.00 97.00 99.55
SSCNN (m� 1%) 83.00 73.00 81.00 77.00 86.58

Cecum

Supervised CNN 100.00 100.00 100.00 100.00 100.00
SSCNN (m� 20%) 99.00 99.00 100.00 100.00 100.00
SSCNN (m� 10%) 99.00 98.00 100.00 99.00 99.98
SSCNN (m� 5%) 98.00 100.00 97.00 98.00 99.03
SSCNN (m� 1%) 83.00 100.00 94.00 97.00 99.35
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Figure 3: ,e confusion matrix for different model. (a) Supervised CNN, (b) SSCNN (m� 20%), (c) SSCNN (m� 10%), (d) SSCNN
(m� 5%), and (e) SSCNN (m� 1%).
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4. Results and Discussion

In this section, the performance measures of each proposed
model are reported to know which model can better identify
and classify the anatomical landmarks.

SSCNN model is trained for 1, 5, 10, and 20 percent of
labeled data and the performance metrics are reported in
Table 2. Table 2 illustrates the average of the performance
measures for each model for anatomical landmarks iden-
tification from endoscopic video frames.

As shown in Table 2, the best performance belongs to the
supervised CNN model. Our aim is to find the best per-
formance in SSCNN model, which can compete with the
supervised CNN.

Results listed in Table 2 show that training the SSCNN
model with small amount of labeled data has acceptable
performances like supervised CNN model, but the perfor-
mance of the last SSCNN model which is trained with 1
percent of labeled data, is decreased.

Table 3 indicates the macro performance measures of the
proposed model for anatomical landmarks detection from
endoscopic video frames separately for each class.

As illustrated in Table 3, supervised CNN has the best
performance to detect each class. On the other hand, the
proposed SSCNN models except the last one, which is
trained by 1 percent of labeled data, have acceptable
performances.

Figure 3 demonstrates the confusion matrix of each
model. As depicted in Figure 3, the supervised CNN model
classifies anatomical landmarks correctly. In the confusion
matrix of SSCNN which is trained by 20 percent of labeled
data, only 3 video frames out of 300 are classified wrongly. In
the SSCNN model which is trained by 10 percent of labeled
data, only 3 video frames out of 297 are misclassified. In the
SSCNN model, that 5 percent of labeled data participates in
training the model; 6 video frames out of 300 are mis-
classified. But in the last model, misclassified video frames
are increased to 50 video frames out of 297.

Figure 4 illustrates the accuracy and loss functions per
epochs for each model. As shown in Figure 4, the accuracy
and loss functions of each model except the last model for
training and test dataset, overfitting has not occurred during
training the models. As depicted in Figure 4(d), the last
model is at the risk of overfitting.
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Figure 4: Training and validation curves (accuracy and loss function per epoch). (a) Supervised CNN, (b) SSCNN (m� 20%), (c) SSCNN
(m� 10%), (d) SSCNN (m� 5%), and (e) SSCNN (m� 1%).
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Figure 5: ,e accuracy and loss function per epoch for LDS and UDS during the train SSCNN models. (a) SSCNN (m� 20%), (b) SSCNN
(m� 10%), (c) SSCNN (m� 5%), and (d) SSCNN (m� 1%).
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Figure 6: Continued.
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Figure 5 shows the accuracy and loss function of LDS
and UDS during training the SSCNN models. At each step,
only one data of each class that has highest confidence score
in their class is added to the LDS. So, the different colors in
Figure 5 depict the number of epochs that SSCNN model is
run to discharge the UDS.

Figure 6 demonstrates the ROC curve of each model. As
illustrated in Figure 5, the AUC of each model except the last
one is highly desirable.

To compare supervised CNN model with our proposed
models, Figure 7 demonstrates the accuracy and loss
function per epoch of each model.

Table 4 indicates the processing time details for each
model in this study, which is calculated by “Google Colab.”
In this platform, the maximum amount of RAM is 12.76GB
and the maximum amount of disk is 68.40GB, which is
allocated to users. ,e GPU models that can be used in
“Google Colab” are NVIDIA K80, P100, P4, T4, and V100
GPUs.

,e main aim of this study is proposing the semi-
supervised model that has good performance to detect the
anatomical landmarks from endoscopic video frames. Our
proposed model has the best performance and its perfor-
mance is acceptable against the supervised model.

,e use of SSL method in this study has caused the
training model, which is learned with a small sample of
labeled data, can classify the test data with high accuracy.
,is method is helpful to vanquish the lack of labeled data.

To validate the advantage of the proposed method, we
compared it with different state-of-the-art semisupervised
learning algorithms on similar dataset in Table 5.

Comparing the performance of the semisupervised
learning algorithms in Table 5 , it can be appreciated that our
method leads to superior performance especially when the
labeled data is insufficient or access to the labeled data is
impossible. But our method also has some weakness. Our
method just focused on anatomical landmarks, which is
included in three different classes.
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Figure 6: ,e ROC curve. (a) Supervised CNN, (b) SSCNN (m� 20%), (c) SSCNN (m� 10%), (d) SSCNN (m� 5%), and (e) SSCNN
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5. Conclusion

,e anatomical landmark detection is a very important task
to guide the physician during screening the GI tract. In this
study, an automatic novel method based on semisupervised
learning of deep convolutional neural networks is proposed
for anatomical landmark detection of GI tract from the
endoscopic video frames on Kvasir dataset. ,e considered
landmarks include Z-line and pylorus in the upper GI tract
and cecum in the lower of GI tract.

,emain novelty of this study is using both of supervised
and semisupervised learning methods together and com-
paring the results of them. First, the supervised CNN is
trained, and the performance measures are reported. ,en,
the different semisupervised CNNs (SSCNNs) are designed
and trained for anatomical landmark detection from en-
doscopic video frames especially when the labeled data is
insufficient. In SSCNNs, data is partitioned into training and
test datasets. ,en, the training dataset is partitioned into
UDS and LDS with ratio of m:(100 − m). ,e SSCNNs are
trained by LDS and predict UDS data records. UDS data
records having the maximum confidence score are added to
LDS and excluded from UDS. ,ese steps are repeated until
UDS will be empty.

,e supervised CNN achieves the best performance in
identification of anatomical landmarks. Also, the experi-
mental results of our proposed semisupervisedmethod show
high accuracy for anatomical landmark detection. ,e
proposed SSCNN with 1, 5, 10, and 20 percent of training
data records included in LDS has the average accuracy of
83%, 98%, 99%, and 99%, respectively. ,e results dem-
onstrate the desirable performance of our proposed method
while it uses the fewer samples of labeled data for training
the model. ,is method saves the required labor, cost, and
time for data labeling. SSCNN model which is trained by 1
percent of labeled data is exposed to overfitting while the
SSCNN model with 5 percent of labeled data has good
performance.

A main limitation of this study is considering two an-
atomical landmarks from upper GI tract and one of them
from lower GI tract while there are eight anatomical
landmarks in the upper GI tract and eight anatomical
landmarks in the lower GI tract [3]. It is recommended for
the future studies to provide and collect datasets considering
more anatomical landmarks and demographic features for
further analysis.

A potential solution when the labeled data has too fewer
records can be using data augmentation methods to improve
the performance measures of the model. A future research
direction can be using the data augmentation methods in the
preprocessing step of this method to improve the accuracy of
model, which is trained with lower than 5 percent of labeled
data.
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Table 4: Processing time details for each model.

Model Execution time for training (seconds) Execution time for testing (seconds)
Supervised CNN 137.07 48.61
SSCNN (m� 20%) 8616.45 49.02
SSCNN (m� 10%) 10140.54 54.41
SSCNN (m� 5%) 10444.81 58.71
SSCNN (m� 1%) 10701.25 59.16

Table 5: Comparing the performance of different state-of-the-art semisupervised learning algorithms on similar dataset.

Author Year Dataset Performance metrics
Wu et al. [50] 2021 Kvasir-SEG and CVC-Clinic DB Dice coefficient� 80.95
Zhang et al. [51] 2021 ISIC 2017 skin lesions dataset and the Kvasir-SEG polyp dataset Dice coefficient� 85.10
Inés et al. [52] 2021 Kvasir V2 Accuracy� 93.00

Gjestang et al. [53] 2021 Hyper-Kvasir, and Kvasir-capsule Accuracy on hyper-Kvasir� 89.30
Accuracy on Kvasir-capsule� 69.50

Ours (SSCNN “m� 20%”) 2021 Kvasir V1 (anatomical landmarks) Accuracy� 99.00
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