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Abstract

Leishmaniasis is a debilitating disease caused by the parasite Leishmania. There is extensive clinical polymorphism, including
variable responsiveness to treatment. We study Leishmania donovani parasites isolated from visceral leishmaniasis patients
in Nepal that responded differently to antimonial treatment due to differing intrinsic drug sensitivity of the parasites. Here,
we present a proof-of-principle study in which we applied a metabolomics pipeline specifically developed for L. donovani to
characterize the global metabolic differences between antimonial-sensitive and antimonial-resistant L. donovani isolates.
Clones of drug-sensitive and drug-resistant parasite isolates from clinical samples were cultured in vitro and harvested for
metabolomics analysis. The relative abundance of 340 metabolites was determined by ZIC-HILIC chromatography coupled
to LTQ-Orbitrap mass spectrometry. Our measurements cover approximately 20% of the predicted core metabolome of
Leishmania and additionally detected a large number of lipids. Drug-sensitive and drug-resistant parasites showed distinct
metabolic profiles, and unsupervised clustering and principal component analysis clearly distinguished the two phenotypes.
For 100 metabolites, the detected intensity differed more than three-fold between the 2 phenotypes. Many of these were in
specific areas of lipid metabolism, suggesting that the membrane composition of the drug-resistant parasites is extensively
modified. Untargeted metabolomics has been applied on clinical Leishmania isolates to uncover major metabolic
differences between drug-sensitive and drug-resistant isolates. The identified major differences provide novel insights into
the mechanisms involved in resistance to antimonial drugs, and facilitate investigations using targeted approaches to
unravel the key changes mediating drug resistance.
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Introduction

Health professionals are constantly challenged with the clinical

polymorphism of infectious diseases. Pathogen diversity is known

to play a major role in this clinically observed variability in disease

manifestation, severity and drug response. However, to obtain a

greater understanding of this relationship there is a need for in-

depth characterisation of the diversity existing in endemic

pathogen populations.

We believe that metabolomics is a powerful tool for studying

such phenotypic diversity at the molecular level [1]. The advent of

ultra-high mass accuracy mass-spectrometers heralded a new era

in the analyses of metabolomes. This technology permits

identification with a high level of confidence of low molecular

weight analytes present in complex metabolite extracts [2] and

thus has great potential in the unveiling of the metabolic

fingerprints marking various pathogen phenotypes [1].

In this study we put our hypothesis to the test and applied a

metabolomic approach to characterise clinical isolates of the

parasite Leishmania donovani with different sensitivity to the

antileishmanial drug sodium stibogluconate. Leishmania donovani is

the causative agent of the infectious disease visceral leishmaniasis

(also known as kala-azar), which is lethal if not treated [3].

Pentavalent antimonials such as sodium stibogluconate were for

long used as the first-line treatment for leishmaniasis worldwide

[4]. However, use of this drug was recently officially discontinued

in the Indian subcontinent due to widespread resistance of the

parasite to the antimonials, resulting in treatment failure in up to

60% of the patients [5,6]. Clinical use of replacement drugs like

Miltefosine could be less successful than anticipated, as their mode

of action may be hampered or challenged by some of the unknown

molecular adaptations present in antimonial resistant Leishmania

populations [7]. Furthermore, screening for resistance to antimo-

nials in endemic regions has been hindered as no molecular
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detection tools could be developed and validated [4,8]. Hence

there is an urgent need from a biological, clinical and

epidemiological perspective to (i) characterise the molecular

mechanisms underlying drug resistant phenotypes present in

endemic parasite populations, and (ii) identify biomarkers of

Leishmania drug-resistance.

We explored in this study if metabolomics is an adequate

approach to address these research needs. This paper presents a

proof-of-principle untargeted metabolome comparison of clinical

L. donovani isolates with different antimonial sensitivity analysed

with LTQ-Orbitrap mass spectrometry coupled to ZIC-HILIC

chromatography. The untargeted nature of the study guarantees

that we get a general overview of metabolic variability, rather

than focusing on a preselected set of target metabolites. The

results show that there are indeed numerous metabolic differ-

ences between the drug-sensitive and resistant isolates and thus

illustrate how metabolomic approaches offer a unique potential to

characterise diversity in a natural population of a major

pathogen.

Methods

Ethics Statement
Written informed consent was obtained from the patients and in

case of children from the parents or guardians. Ethical clearance

was obtained from the institutional review boards of the Nepal

Health Research Council, Kathmandu, Nepal and the Institute of

Tropical Medicine, Antwerp, Belgium.

Patients and parasites
The L. donovani isolates MHOM/NP/02/BPK282/0 and

MHOM/NP/03/BPK275/0 were obtained from bone marrow

aspirates taken before treatment from confirmed visceral leish-

maniasis patients recruited at the B.P. Koirala Institute of Health

Sciences (BPKIHS), Dharan, Nepal, as described by Rijal et al. [9].

The patients received a full supervised course of Sodium

Antimony Gluconate (SAG) (Albert David Ltd, Kolkata) treatment

of 20 mg/kg/day i.m. for 30 days in the BPKIHS hospital. The

patients were followed up for clinical and parasitological

evaluation at the end of the 1-month drug course, as well as 3, 6

and 12 months after the start of treatment. Definite cure was

defined as a patient with initial cure who showed no signs and

symptoms of relapse at the 12-months follow-up visit. Non-

responders were defined as patients with positive parasitology after

a full 30-day SAG drug course.

Two clinical isolates, one antimonial-sensitive BPK282/0 and

one antimonial-resistant BPK275/0, were selected for this study

and were identified as L. donovani based on a CPB PCR-RFLP

assay [10]. Both isolates belong to the same genomic subpopula-

tion which is circulating in most leishmaniasis endemic regions in

Nepal [11]. The two isolates were cloned using the micro-drop

method [12], in order to obtain homogenous working parasite

populations. Two sensitive (BPK282/0) and three resistant

(BPK275/0) cloned parasite populations (further called clones)

were obtained and used for further analysis. The in vitro antimonial

susceptibility of the two parasite isolates and the corresponding five

clonal populations was tested as described in our previous studies

[9]. Although the derived clonal populations were found to have

very similar drug sensitivity as the respective original parasite

isolates (see Table 1), that does not preclude that the different

clones of each parasite isolate differ in other characteristics.

Parasite growth conditions and metabolite extraction
Leishmania promastigotes were grown on modified Eagle’s

medium (Invitrogen) [13] supplemented with 20% (v/v) heat

inactivated foetal calf serum (PAA Laboratories GmbH, Linz,

Author Summary

Visceral leishmaniasis is caused by a parasite called
Leishmania donovani, which every year infects about half
a million people and claims several thousand lives. Existing
treatments are now becoming less effective due to the
emergence of drug resistance. Improving our understand-
ing of the mechanisms used by the parasite to adapt to
drugs and achieve resistance is crucial for developing
future treatment strategies. Unfortunately, the biological
mechanism whereby Leishmania acquires drug resistance
is poorly understood. Recent years have brought new
technologies with the potential to increase greatly our
understanding of drug resistance mechanisms. The latest
mass spectrometry techniques allow the metabolome of
parasites to be studied rapidly and in great detail. We have
applied this approach to determine the metabolome of
drug-sensitive and drug-resistant parasites isolated from
patients with leishmaniasis. The data show that there are
wholesale differences between the isolates and that the
membrane composition has been drastically modified in
drug-resistant parasites compared with drug-sensitive
parasites. Our findings demonstrate that untargeted
metabolomics has great potential to identify major
metabolic differences between closely related parasite
strains and thus should find many applications in
distinguishing parasite phenotypes of clinical relevance.

Table 1. Clinical and biological data of the L. donovani isolates and derived clones used in the study.

parasite isolate
international code

clinical response SSG
treatment

Antimonial
activity index derived clones

antimonial
activity index

MHOM/NP/03/BPK282/0 definite cure 1 clone 4
clone 9

1
1

MHOM/NP/03/BPK275/0 non-responder 6 clone 15
clone 17
clone 18

6
6
6

The antimonial activity index is defined as the ratio of the EC50 of a particular isolate or clone versus the ED50 of L. donovani MHOM/ET/67/HU3, a WHO reference
isolate sensitive to sodium stibogluconate. The activity index was used to express the in vitro susceptibility of that tested isolate or clone. Isolates or clones with an
activity index between 1 and 2 are considered as sensitive to antimonials, while those showing an activity index between 3 and 6 are considered to be resistant [9].
doi:10.1371/journal.pntd.0000904.t001
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Austria) pH 7.5 at 26uC. The cultures were initiated by

inoculating day 3–4 stationary phase parasites in 20 mL culture

medium to a final concentration of 56105 parasites/mL; the

resulting inoculated medium was equally distributed over 4 culture

flasks. The four independently growing cultures of each parasite

clone were further treated as biological replicates. The 5 different

clones were grown synchronically with growth monitored by daily

counting; the different clones were all harvested on day 3 of

stationary growth phase for metabolite extraction. Day-3 station-

ary phase parasites were shown in pilot experiments to be the most

reproducible source of metabolites, The differences in growth rate

of the clones used in this study were relatively minor. The

metabolite extraction protocol consists of (a) quenching (,20 sec)

of L. donovani promastigotes in their culture flasks to 0uC in a bath

containing a mixture of dry ice/ethanol, (b) aliquoting the

necessary volume for harvesting 46107 parasites, (c) triplicate

washing of parasite cells in 1 ml of cold (0uC) phosphate buffered

saline (PBS; pH 7.4 – Invitrogen) by centrifugation (20,8006 g,

0uC, 3 min) and re-suspending cells using a vortex, (d) cell

disruption and metabolite extraction of the washed cell pellet in

200 ml chloroform/methanol/water 20/60/20 (v/v/v) during one

hour in a Thermomixer (1400 rpm, 4uC – Eppendorf AG,

Hamburg, Germany), (e) separating the metabolite extract from

cell debris by centrifugation (20,8006 g, 0uC, 3 min) and (f)

deoxygenating the extracts with a gentle stream of nitrogen gas for

1 min prior to tube/vial closure. Vials were stored at 270uC and

analysed within 48 hrs.

Liquid chromatography mass spectrometry
Formic acid (ULC grade), acetonitrile (ULC grade), water (ULC

grade), methanol (ULC grade) and chloroform (HPLC-S grade)

were purchased from Biosolve (Valkenswaard, The Netherlands).

The ZICH-HILIC PEEK Fitting Guard column (15 mm61.0 mm;

5 mm) and ZICH-HILIC PEEK HPLC column (150 mm62.1 mm;

3.5 mm) were obtained from HiChrom (Reading, UK). Gradient

elution was performed using a Surveyor HPLC pump (Thermo

Fisher Scientific Inc., Hemel Hempstead, UK). Elution of the ZIC-

HILIC columns was carried out with a gradient of (A) 0.1% formic

acid in acetonitrile; (B) 0.1% formic acid in water. The flow rate was

100 ml/min, with an injection volume of 5 ml. Gradient elution

chromatography was always performed starting with 80% solvent

A. Within a 6 min time interval, solvent B was increased to 40% and

maintained for 12 min, followed by an increase to 90% within

4 min. This composition was maintained for 2 min, after which the

system returned to the initial solvent composition in 2 min. The

whole system was allowed to re-equilibrate under these conditions

for 14 min.

High-resolution mass measurements were obtained with a

Finnigan LTQ-Orbitrap mass spectrometer (Thermo Fisher

Scientific Inc., Hemel Hempstead, UK). Optimal LTQ-Orbitrap

parameters were based on previous results [14–16]. Briefly, the

instrument was operated in both positive and negative ion

electrospray mode. ESI source voltage was optimized to 4.0 kV

and capillary voltage was set to 30 V. The source temperature was

set to 250uC and the sheath and auxiliary gas flow rates were set

respectively to 30 and 10 (machine-specific units). Full-scan spectra

were acquired over an m/z-range of 50–1000 Da, with the mass

resolution set to 30,000 FWHM. All spectra were collected in

continuous single MS mode. The LC-MS system was controlled

by Xcalibur version 2.0 (Thermo Fisher Scientific Inc., Hemel

Hempstead, UK).

Data processing
Raw data files acquired from analyzed samples were converted

into the mzXML format by the readw.exe utility (a tool of the

Trans-Proteomic Pipeline software collection, downloaded from

http://tools.proteomecenter.org/wiki/index.php?title = Software:

ReAdW). Further processing was handled by a flexible data

processing pipeline mzMatch [17] (http://mzmatch.sourceforge.

net/), performing signal detection [18], retention time alignment

[19], blank removal, noise removal [20], and signal matching. In

order to minimize the effects of biological and technical variation,

the normalization procedure of Vandesompele et al. [21] was

applied. This approach detects the signals of housekeeping

metabolites, such as amino acids, and scales the data according

to the variation found for those metabolites. Masses whose

abundance was not reproducible for all biological replicates, as

indicated by a Relative Standard Deviation (RSD) larger than

35%, were discarded, as quantification is expected to be at least

20% accurate over multiple runs [22]. Derivative signals (isotopes,

adducts, dimers and fragments) were automatically annotated by

correlation analysis on both signal shape and intensity pattern

[23]. The derivative signals were removed before further

statistical tests, as they would give excessive weight to abundant

analytes with many derivatives. The selected mass chromato-

grams were putatively identified by matching the masses (mass

accuracy ,1 ppm) progressively to those from metabolite-specific

databases. In a first round of identification, LeishCyc [24],

LipidMAPS [25], and a contaminant database were used [26].

The latter allows removal of typical impurities and buffer

components often detected in metabolomics experiments. The

putative identifications for the lipids were manually annotated

with the total number of carbons and double bonds in the side-

chains. Only the remaining unidentified peak went through a

second round of matching to KEGG [27] and a peptide database;

and finally a third round was done with the Human Metabolome

Database for any remaining unidentified analytes [28]. This

iterative process was used in order to restrict the number of

potential matches to the most likely [29]. Metabolite identification

was aided by MS fragment interpretation and retention time

matching to metabolite standards [15].

Statistical analysis
Statistical analysis and graphical routines were handled in R

(http://www.R-project.org). Unsupervised hierarchical clustering

analysis (HCA) and principal component analysis (PCA) are used

to identify groups of samples that behave similarly or show similar

characteristics. Hierarchical clustering algorithms build an entire

tree of nested clusters out of objects in the dataset by an iterative

clustering algorithm [30]. Principal component analysis (PCA) is

Figure 1. Schematic map of 163 of the 340 identified compounds onto the L. donovani metabolic network. Compounds fulfilling the 3
criteria that we used to define metabolites with a significantly different profile in the 2 phenotypes are mapped in red (higher in drug-resistant) and
blue (higher in drug-sensitive); compounds that had similar profiles in the 2 phenotypes are mapped in black; compounds that could not be detected
are mapped in white. For groups of closely related metabolites, the average difference in abundance was plotted, with the number of metabolites
showing the respective abundance pattern noted between brackets; for glycerophospholipids only lipids with 2 acyl/alkyl side chains were included.
(The map was derived from the KEGG L. major map [27] and the LeishCyc database [24].)
doi:10.1371/journal.pntd.0000904.g001
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Figure 2. Metabolic profiles of the 340 identified compounds in heatmap format. The samples are presented along the x-axis. On the left,
the 4 biological replicates are present adjacent to each other for clones 4 and 9 derived from the drug-sensitive clinical isolate BPK282/0. On the right,
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an unsupervised multivariate analysis technique frequently used in

metabolomics [31]. It implements a data dimensionality reduction of

complex data matrices, so that clustering tendencies, trends and

outliers can be visualized among samples. Rank products (Biocon-

ductor RankProd Package [32]) is a non-parametric statistical

method used to detect metabolites with significantly differential

abundance in the two phenotypes studied [33,34]. The R code

consisting of reading and writing routines of data from/to PeakML

file format (XML representation of processed data produced by the

mzMatch pipeline) is available from the authors upon request.

the 4 biological replicates are present adjacent to each other for clones 15, 17 and 18 derived from the drug-resistant clinical isolate BPK275/0. The
340 detected metabolites are presented along the y-axis; the major classes of metabolites are colour-coded on the left. The intensity of each
metabolite detected in the sample set was rescaled between 0 (red) to 100 (green). Unsupervised hierarchical clustering of the samples (the tree
above the x-axis) reveals that the metabolite intensity profiles differ sufficiently to clearly and robustly distinguish the separate clones of the drug-
resistant and drug-sensitive isolates. Among the samples from the same isolate, the biological replicates from individual clones are also correctly
clustered together. Clustering of the metabolites according to similarity in intensity profiles (the tree left of y-axis), reveals several large groups of
metabolites that are either significantly higher or lower in the drug-resistant samples (quantitative data and identification/classification of all
compounds included in this figure can be found in Table S1).
doi:10.1371/journal.pntd.0000904.g002

Figure 3. Principal component analysis (PCA) distinguishes drug-sensitive and drug-resistant clones. PCA is an unsupervised cluster
method here based on the quantitative measurements of all 340 identified compounds. The first principal component accounts for the highest
variability in the dataset, and each succeeding component accounts for as much of the remaining variability as possible. Each set of biological
replicates is clustered closely together, indicating that parasite replicate cultures were reproducibly generated and extracted. Principal component 1
clearly separates the two phenotypes (round symbols are antimonial sensitive, square symbols are antimonial resistant) and explains 61.9% of the
total variance, while principal component 2 separates the different clonal populations (clones 15, 17 and 18 for BPK275/0 and clones 4 and 9 for
BPK282/0) and explains 8.8% of the total variance.
doi:10.1371/journal.pntd.0000904.g003
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Results

General characterization of the metabolic profile
Two parasite isolates were selected for this study; we derived

two clones from the drug-sensitive clinical isolate and three clones

from the drug-resistant clinical isolate for metabolic analysis

(Table 1). The documented genetic homogeneity of the L. donovani

population in the Indian subcontinent [35] indicates that the

isolates are genetically very similar, maximizing the chances that

any observed metabolic differences are related to the relative

sensitivity to the antimonial drugs.

Mass spectrometry analysis of the metabolite extracts (4

biological replicates for each clone) yielded 71,000–73,000 regions

of interest (mass spectrometry signals or potential peaks) per

extract for positive electrospray ionisation (ESI) mode and 56,000–

61,000 for negative ESI mode. Automatic detection of irrepro-

ducible and/or noise regions, as described in Materials and

Methods, removed between 91–95% of the regions (i.e. non-

reproducible and/or masses not producing a clear chromato-

graphic peak), leaving a total of 4143 chromatographic peaks for

positive mode and 4656 chromatographic peaks for negative mode

as candidate biological analytes. Only 15–18% of these automat-

ically extracted signals matched a compound of the selected

metabolite databases (324 and 237 matches for positive and

negative mode, respectively, using a mass accuracy ,1 parts-per-

million or ppm). The likelihood of the validity of the database hits

was further assessed by manually verifying for each peak whether

the retention time and mass spectrum fragment profile matched

the chemical nature of the corresponding database hit. We

accepted the metabolite identifications for 256 and 185 peaks

from positive and negative mode respectively. Many of these

metabolites (101) were present in both electrospray ionisation

modes, in which case we selected the ionisation mode with the

best quality signal (according to peak shape and signal intensity).

Finally, a list of 340 compounds for which we had strong

confidence of the identification being correct, was created. Table

S1 gives this list of all the metabolites putatively identified

together with the detected abundance in each sample and the

Rank Product statistical analysis used to identify significant

differential abundance of metabolites between the two isolates

with differing drug sensitivities.

The largest class of metabolites identified is the lipids (116

glycerophospholipids, 18 sphingolipids, 9 glycerolipids, 9 sterol/

prenol lipids), primarily eluting at an early chromatographic time-

point as expected for HILIC chromatography. The next largest

class is amino acids and their derivatives (40 amino acids, 49

amino acid derivatives subdivided in acylglycines, polypeptides

and thiol compounds). Other metabolite classes detected include

carbohydrates (21), fatty acyls (26), purines/pyrimidines and their

conjugates (26), polyamines (3) vitamins and cofactors (10) and

organic acids (9). Our total coverage is approximately 20% of the

predicted core Leishmania metabolome (about 600 metabolites,

excluding lipids; [36]), thus exceeding the number reported in

previous untargeted metabolomic studies [37,38]. The coverage

Figure 4. Overview of all identified metabolites with significant different profiles in drug-sensitive and drug-resistant clones. Drug-
sensitive and drug-resistant clones had significantly different profiles for 100 compounds (P,0.05). The graph compares the metabolic class
distribution of these compounds. The left bar shows the distribution of the 51 compounds more abundant in the drug-sensitive clones and the right
bar shows the distribution of the 49 compounds more abundant in the drug-resistant clones. The 100 compounds are generically listed in matching
coloured reference-boxes; in which they are further grouped per metabolic sub class (PC = phosphatidylcholines; PE = phosphatidylethanolamines;
* corresponds to masses with multiple identifications but for which only 1 is shown here; further details are available in Table S1.)
doi:10.1371/journal.pntd.0000904.g004
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over the various metabolic pathways is visualised on the L. donovani

metabolic network in Figure 1, which shows 163 of the 340

identified compounds.

The metabolic profile distinguishes drug-sensitive and
drug-resistant parasite isolates

Unsupervised hierarchical clustering (Figure 2) of the samples

(shown on x-axis) revealed that the metabolite abundance profiles

of the drug-resistant and -sensitive clones differ sufficiently that

they can be distinguished clearly and robustly. The 4 biological

replicates from the individual clones are also correctly clustered

together. Clustering of the metabolites (shown on the y-axis)

reveals several large groups of metabolites that are either

significantly higher or lower in the drug-resistant compared with

the drug-sensitive clones. The results of the hierarchical clustering

are confirmed in a principal component analysis as shown in

Figure 3. Principal component analysis is a mathematical method

to project a multidimensional dataset onto a smaller number of

dimensions -principal components- which explain the maximum

of variation in the data and thus enables the visualization of the

major differences between samples. Clones of the drug-resistant

and -sensitive isolate are clearly separated on the first principal

component (explaining 61.8% of the total variance), while the

second principal component separates the different clonal

populations (explaining 8.9% of the total variance).

Metabolic differences between drug-sensitive and
drug-resistant isolates

We only considered a metabolite to have a significantly

differential profile in drug-sensitive and resistant clones when (i)

there was a statistically significant differential abundance in the

samples from the two phenotypes (Rank Product P-value ,0.05),

(ii) there was at least a 3-fold difference in average signal intensity

between the two groups of samples, and (iii) the metabolite was

consistently detected in all replicate samples of either all the drug-

sensitive or all the drug-resistant clones. Using these criteria, we

identified 100 (29.6% of those detected) compounds that differed

between the samples of the two phenotypes. About half (51) of

those compounds had a significant higher signal in drug-sensitive

clones while the other half (49) had a higher signal in drug-

resistant clones. The metabolites shown to differ in the two

phenotypes participate in a variety of metabolic pathways, many

related to sphingolipid, phospholipid, amino acid and purine/

pyrimidine metabolism. Figure 4 shows the distribution of these

100 compounds; and 54 of those compounds have been mapped

onto Figure 1. Full details are provided in Table S1. The detected

compounds that are intermediates of the glycolytic pathway, the

pentose phosphate pathway, and the TCA cycle, as well as growth

factors and cofactors were found to be mostly similar between the

two phenotypes (Figure 1, Table S1).

The most dramatic difference found between the two

phenotypes is in phospholipid and sphingolipid metabolism. The

heatmap in Figure 5 gives an overview of the full extent of the

phospholipid/sphingolipid changes, the full details are given in

Table S1. The significantly different sphingolipids (including 2

sphingomyelins) are 3.5–13 fold (median 4.1 fold) more abundant

in drug-sensitive clones compared with drug-resistant clones. For

the phospholipids the pattern was more complex, with 19

phosphatidylcholines (PC) and 2 phosphatidylethanolamines (PE)

being significantly more abundant (3–61 fold; median 5.3 fold) in

drug-sensitive clones and a different set of 10 PC and 12 PE being

significantly more abundant (3–64.5 fold; median 5.7 fold) in drug-

resistant clones. Scrutinizing the structural properties of the fatty

acyl side chains of PE and PC lipids further revealed that the

changes are of a different nature in PC lipids compared with PE

lipids. Figure 6 shows that only diacyl PC lipids with highly

unsaturated fatty acyl chains are enriched in drug-resistant

compared with drug-sensitive clones; while all the diacyl PE lipids

are more abundant in drug-resistant clones. However, the total

intensity of all phospholipids (110) detected was almost identical in

the 2 phenotypes.

A second major class of metabolites significantly modified in our

drug-resistant parasites were the amino acids and amino acid

derivatives. A total of 13 amino acids, including 9 proteinogenic

amino acids (Figure 1), were 3–18 fold (median 4.4 fold) more

abundant in the drug-resistant compared with the drug-sensitive

clones (Figure 4). The remaining 11 proteinogenic amino acids

were at similar abundance in the two phenotypes (Figure 1). In

contrast to the amino acids, several purines (hypoxanthine,

guanine, xanthine and adenosine) were more abundant (4–45.6

fold, median 8.7 fold) in drug-sensitive clones compared with drug-

resistant clones (Figures 1 and 4). However, the related nucleotides

that could be detected all were at similar levels in the 2 phenotypes

(Figure 1).

Discussion

In this proof-of-principle study, we set out to explore whether

metabolomics is applicable as a global approach to elucidate the

various phenotypes present in a pathogen population. We here

studied L. donovani and used clones of an antimonial-sensitive clinical

isolate and an antimonial-resistant clinical isolate. The two isolates

are known to be genetically very similar [11,35]. The molecular

adaptations leading to antimonial resistance in natural Leishmania

populations are still poorly understood; hypothesis-driven ap-

proaches have yielded fragmentary knowledge and suggest that

antimonial resistance is multifactorial [39]. However, here we

compared the global metabolomic profiles of the two phenotypes,

and this has proved to be a method by which to clearly distinguish

drug-sensitive and resistant isolates. Moreover, the data obtained

highlights major metabolic differences between the two phenotypes

which have not been reported before. The extraction procedure

using chloroform/methanol/water 20/60/20 (v/v/v) leads to an

enrichment of hydrophobic compounds in the metabolomic

samples, which has revealed the notable differences in sphingolipid

and phospholipid levels. However, other metabolites were also

detected, with differences in amino acid and purine/pyrimidine

metabolism also being observed (Figure 1 and 4).

Leishmania primarily utilize salvaged and de novo synthesized

sphingolipids/sphingomyelins as a source of phosphorylethanola-

mine for phospholipid biosynthesis, particularly phosphatidyleth-

anolamine (PE) [40,41] (Figure 1). Our data on the steady-state

lipid pools shows that there are clear differences in the metabolites

of the pathways of both sphingolipid and phospholipid biosynthe-

sis. Sphingolipids and sphingomyelins are less abundant in drug-

Figure 5. Profiles of phosphatidylethanolamines (PE), phosphatidylcholines (PC), sphingolipids and sphingoid bases in heatmap
format. The layout is similar to Figure 2. Unsupervised hierarchical clustering of the samples (the tree above the x-axis) reveals that the lipid intensity
profiles differ sufficiently to separate the drug-resistant and drug-sensitive clones. The lipid classes are colour-coded on the left. A shift towards PE
content characterises drug-resistant parasites, while sphingolipids and sphingomyelins are less abundant in drug-resistant parasites (For PC and PE,
only lipids with 2 acyl/alkyl side chains and an even number of side chain carbon units were included).
doi:10.1371/journal.pntd.0000904.g005
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resistant parasites, which could be consistent with their consump-

tion at a higher rate to fuel PE biosynthesis which are more

abundant in the resistant parasites (Figure 1). In contrast to PE,

phosphatidylcholine (PC) profiles were changed in a more

balanced manner; drug-sensitive clones had higher levels of PC

with low fatty acyl unsaturation, while drug-resistant clones were

enriched in PC with high fatty acyl unsaturation (Figure 6). This

differential unsaturation profile in PC is unlikely to relate directly

to the sphingolipid/PE pathway differences, but could point to

another major metabolic difference between the 2 phenotypes.

Although there are clear differences in the abundance of individual

phospholipids, the total phospholipid content detected here

appears to be similar in the 2 phenotypes. The total membranes

(plasma and internal) of Leishmania contain 10–20% PE and

approximately 40% PC [41,42]. PE and PC are major

components of all membrane types (e.g. plasma membrane

comprises approximately 35% PE and 15% PC; mitochondrial

membrane is approximately 10% PE, 25% PC) [41–43], hence it

is not possible to know at present how the observed changes in

phospholipid composition relate to functional changes in individ-

ual membranes. Nevertheless, the differences observed are

strongly indicative that there are some functional differences too.

High fatty acyl unsaturation, which is enhanced in the PC of drug-

resistant parasites, is generally thought to decrease the ordered

state of membranes and increase membrane fluidity [44,45].

Changes in membrane fluidity due to modified lipid composition

have also been reported for Leishmania parasites resistant to several

other drugs including miltefosine [42,46], amphotericin B [45],

atovaquone [47] and pentamidine [48]. It was demonstrated that

such changes in lipid metabolism affect (i) interaction between

drug and plasma membrane and subsequent drug uptake

[42,45,47,49] and/or (ii) the membrane potential of the

mitochondria [48]. Thus the major phospholipid changes we

have identified here in antimonial resistant clones may also have

some impact upon the transport of antimonials. Modified uptake,

export or sequestration of antimonials (or a metabolite of it) could

underlie the modified antimonial susceptibility of these parasites.

Leishmania are auxotrophic for many amino acids and must

scavenge them from their environment. Additionally, they can also

use amino acids, particularly proline, as a carbon source. Hence,

free amino acids present in the environment are readily taken up

by a large family of amino acid permeases [50,51]. Purine

biosynthetic enzymes are absent in Leishmania, and the parasite

depends entirely on nucleobase and nucleoside transporters to

salvage from their environment [52]. The large changes in

membrane-associated phospholipids observed here in drug-

resistant clones could also affect uptake of both amino acids and

purines, and account for the detected differences in the

intracellular abundance of these metabolites between the 2

phenotypes. A large set of amino acids including several essential

amino acids (tryptophan, leucine, isoleucine, histidine) and some

atypical amino acids (e.g. proline betaine and hydantoin-5-

propionic acid, which are present in the culture medium and

may simply be taken up by the parasite) were detected at

significantly different levels in drug-resistant and drug-sensitive

clones. Similar differences were detected for several purines,

especially nucleobases taken up by the Leishmania transporter NT3

[52]. It has been reported previously that modified lipid

metabolism in other drug-resistant Leishmania resulted in significant

modifications in transport of some amino acids and purines/

pyrimidines which were structurally unrelated to the respective

drug [49], the changes being the indirect result of modifications in

plasma membrane organisation [49,53]. Our findings also support

this notion that modified membrane composition might indirectly

alter transport of metabolites.

The membrane changes we have identified in the antimonial-

resistant parasites is concerning with regard to the newly installed

Figure 6. Structural properties of phosphatidylethanolamines
and phosphatidylcholines. The heatmaps show a graphical overview
of the fatty acyl (FA) structural properties in diacyl ester phosphatidyl-
cholines (left panel) and diacyl ester phosphatidylethanolamines (right
panel). The x-axis shows the total number of unsaturated bonds present
in the 2 fatty acyl chains, while the y-axis shows the length of the fatty
acyl chains in total number of carbon units. The heatmap intensity of a
particular lipid species corresponds to the ratio of the detected average
abundance in drug-resistant versus drug-sensitive clones of that lipid.
Hence, lipids indicated in red are more abundant in drug-sensitive clones,
while lipids in green are more abundant in drug-resistant clones.
doi:10.1371/journal.pntd.0000904.g006
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drug policy in the Indian subcontinent. It is known that the two

drugs in use, miltefosine and amphotericin B (the second-line

treatment), rely on their interaction with lipids in the membrane of

the parasites [46,54]. Hence, a change in membrane composition

of antimonial-resistant parasites may impact upon the efficacy of

these drugs. Worryingly, there is a report of increased tolerance to

all three drugs in some parasite isolates of the Indian subcontinent

[7]. This demonstrates the importance of identifying the molecular

mechanisms underpinning drug resistance in order to be prepared

for using new drugs most effectively. Untargeted metabolomics has

great potential to contribute to this much needed comprehensive

characterisation of pathogens circulating in endemic regions.

Our study has exemplified how the application of metabolomic

approaches could play an important role in the characterisation of

clinical pathogens by identifying a fingerprint of metabolic

differences between various clinical phenotypes. Further experi-

ments are currently underway to compare a much larger number

of isolates representing the entire parasite population of the Indian

subcontinent, in order to document the phenotypic diversity that

currently exists in the L. donovani population of this kala-azar

endemic region. In parallel, we are also assessing the nature and

extent of genomic diversity of this parasite population by applying

new sequencing technologies to characterise the whole genome of

the isolates characterised by metabolomics. The integration of

genomic and metabolomic approaches will result in an unparal-

leled source of data and promises to yield a holistic insight into the

impact of endemic pathogen diversity on clinical polymorphic

treatment outcome. Future application of such integrated

genomic/metabolomic approaches holds great promise to address

the many challenging research questions related to pathogen

diversity encountered in the field of infectious diseases.

Supporting Information

Table S1 List of 340 unique biological analytes. List of 340

unique biological analytes with for each compound the following

information: (i) detected mass; (ii) chromatographic retention time;

(iii) ppm deviation between detected mass and theoretical mass of

assumed metabolite identification; (iv) putative metabolite identi-

fication; (v) ionisation mode; (vi) signal intensity in each sample;

(vii) average signal intensity in each strain; (viii) average signal

intensity in each phenotype; (ix) ratio of average signal intensity of

drug-resistant clones versus drug-sensitive clones; (x) ratio of

average signal intensity of drug-sensitive clones versus drug-

resistant clones; (xi) ranked product P-value indicating statistical

significance of higher abundance in drug-resistant clones com-

pared to sensitive clones; (xii) ranked product P-value indicating

statistical significance of higher abundance in drug-sensitive clones

compared to resistant clones; (xiii) significantly changed com-

pounds based on three criteria: (a) a statistical significant

differential abundance in the two phenotypes (P-value ,0.05),

(b) a three-fold or higher average difference in signal intensity

between the two groups of samples, and (c) consistent detection in

all replicate samples of either all the drug-sensitive or all drug-

resistant clones; (xiv)indicated on Leishmania metabolome map of

Figure 1; (xv) compound category; (xvi) compound subclass; (xvii)

included in KEGG Leishmania pathway or Leishcyc; (xviii)

detected in fresh culture medium with 20% heat inactivated calf

serum by ZIC-HILIC/LTQ Orbitrap method. Compounds in red

were detected in positive ionisation mode, while compounds in

blue were detected in negative ionisation mode.

Found at: doi:10.1371/journal.pntd.0000904.s001 (0.34 MB XLS)
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