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Five Breakthroughs: A First
Approximation of Brain Evolution
From Early Bilaterians to Humans
Max S. Bennett*

Independent Researcher, New York, NY, United States

Retracing the evolutionary steps by which human brains evolved can offer insights
into the underlying mechanisms of human brain function as well as the phylogenetic
origin of various features of human behavior. To this end, this article presents a model
for interpreting the physical and behavioral modifications throughout major milestones
in human brain evolution. This model introduces the concept of a “breakthrough” as
a useful tool for interpreting suites of brain modifications and the various adaptive
behaviors these modifications enabled. This offers a unique view into the ordered
steps by which human brains evolved and suggests several unique hypotheses on the
mechanisms of human brain function.
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INTRODUCTION

Humans have an incredibly diverse suite of intellectual faculties as well as incredibly complicated
brains. But all these varied faculties and brain structures are likely to have evolved from simpler
prototypes in the simpler brains of our ancestors. This general idea of progressive complexification
of behavior and brains from simpler roots has been elegantly articulated in Paul Cisek’s theory
of ‘‘phylogenetic refinement,’’ whereby behaviors and brain structures are interpreted as the
consequence of evolutionary refinement from more basic building blocks (Cisek, 2019). An
essential aspect of this research paradigm is chronicling the specific brain modifications that
occurred in the human lineage, and what specific behavioral modifications they enabled.

Much work has been done to chronicle the specific brain modifications that occurred
along major milestones in the human lineage from early bilaterians to extant humans (Kaas,
2009; Striedter and Northcutt, 2020). Work has also been done to reconstruct the adaptive
behavioral abilities that emerged along major milestones in the human lineage from early
bilaterians to extant humans (Murray et al., 2017; Cisek, 2019; Ginsburg and Jablonka, 2019;
Bennett, 2021). A challenge of this research paradigm is how numerous the brain and behavioral
modifications have been throughout evolution. The aim of this article is to introduce the
concept of a ‘‘breakthrough’’ and use this concept to offer a first approximation explanation of a
multitude of both brain and behavioral modifications that occurred during major evolutionary
milestones. The general structure of the argument herein is that at each major milestone in
human brain evolution, many neural modifications can be explained as having enabled a new
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single breakthrough, which was thereby applied in many adaptive
ways.

An Analogy to Technological Innovation:
The Useful Concept of a “Breakthrough”
To elaborate on this idea, I will draw on an analogy
to technological innovation. Consider the modifications and
applications of a technological breakthrough such as the
transition from gas-powered to electrically-powered households
during the late 19th century. The physical modifications
within a household were many: cables were laid, switches
were added, circuit boards were installed. But all these new
physical modifications can be reasonably understood through
the lens of a single new breakthrough capability that they
enabled—namely the capability of using electricity for energy.
And this breakthrough capability was thereby applied in many
adaptive ways: lighting a home at night for reading, heating
a house during the cold without fire, speaking to faraway
family members (using a telephone). The value of the physical
modifications is defined only in the context of these adaptive
applications.

Now imagine you were an alien observer trying to ‘‘explain’’
the observed physical changes to the 19th century home, as
well as the observed new adaptive abilities of 19th century
homeowners. Without a notion of the underlying breakthrough
(electricity), and instead only with a model of the adaptive
abilities and the physical modifications themselves, explaining
the transformation of the 19th century home would be

more perplexing. If you tried to explain individual physical
modifications through the adaptive value they provided, it would
be unclear: what was the specific adaptive value of a single light
switch or a single wire? Conversely, if you tried to find the
‘‘substrates’’ underlying a given new ‘‘ability,’’ such as reading
at night, the answer would also be unclear: entire suites of
physical modifications worked together to enable these abilities.
There was no single substrate. Further, many of the substrates
of seemingly completely different newfound abilities are highly
overlapping: reading at night, heating your home during the cold,
and communicating at a distance all used overlapping physical
features within a home (all used common cords, switches,
and circuit breakers). In contrast, armed with the concept of
a breakthrough, both the new physical modifications and the
seemingly different new abilities have a much more interpretable
first approximation: the varied physical modifications together
served the single purpose of using electricity for energy, and
this single breakthrough was applied in many different ways,
including reading at night and communicating at a distance.

An additional benefit of the concept of a breakthrough is
that it incorporates prior constraints into subsequent physical
modifications and newfound abilities. Consider a technological
breakthrough that occurred after that of electricity: the television
(TV). Can we understand the modifications and breakthroughs
of TV without first understanding that of electricity? TV was
only possible because electricity came first and the ways in which
electricity worked imposed constraints on how TVs would have
to work. For example, TVs had to work on the relatively low

FIGURE 1 | The concept of a “Breakthrough”.
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voltage available within the home at the time. As such, we
can only ‘‘explain’’ the specific modifications of TVs when we
understand the constraints of the breakthrough that came before.

In sum, there are two useful benefits of the concept of
a breakthrough. The first is that it enables a useful first
approximation of both physical modifications and the
adaptive value they provide. The second is it provides a
simple interpretation of ordered constraints, whereby prior
breakthroughs imposed important constraints on future
breakthroughs. The analogy is far from perfect. For example,
numerous technological modifications to a home can be planned
in advance, whereas evolution can only work via tinkering
over each evolutionary iteration. Regardless, this analogy is
illustrative—it offers an instructive lens for the concept of a
breakthrough and the useful benefits it offers in explaining
transformations (see Figure 1). This article is an attempt to
apply this concept of ordered breakthroughs to brain evolution
in order to offer explanations of the major brain and behavioral
modifications throughout the evolutionary lineage from
bilaterians to extant humans.

The Approach
In the context of brain evolution, I will define three key terms:

• Physical Modifications: the actual physical changes in
underlying neural structures.
• Breakthrough: a new capability that these numerous

physical changes enabled, and which had numerous
adaptive behavioral applications.
• Adaptive Applications: a new behavioral ability that offered

survival and/or reproductive benefit to an animal and is
one of many applications of an underlying breakthrough
capability.

Below I will chronicle what I propose are the five major
breakthroughs that occurred from the first bilaterians to
the first human brains. There are undeniably many more
modifications than will be described below, however, I argue that
a remarkably broad set of brain functions and behaviors across
taxa throughout the human lineage can be understood through
the lens of only these five major modifications. I will connect
these major modifications to likely behavioral abilities that
emerged throughout our evolutionary timelines. This simplified
model of brain evolution provides a useful ‘‘first approximation’’
of how and why brains evolved.

I intentionally call this a ‘‘model’’ and not a ‘‘theory.’’ I make
the following distinction between the two: a model is a useful
approximation of a set of phenomena, whereas a theory is a
comprehensive explanation of a set of phenomena (Wunsch,
1994). Through this lens then, this article does not present a
theory, as it is undeniably a simplification of the process of
brain evolution. Instead, what it presents is a model—a useful
first approximation that can be used to interpret and explain a
multitude of observations.

Further, the scope of this article is intentionally
anthropocentric—it seeks to chronicle the phylogenetic history
of behavioral abilities in the human lineage between early
bilaterians and extant humans. This requires an essential caveat

to the hypotheses presented herein. Proposing a hypothesis
regarding the emergence of abilities along the evolutionary
lineage from early bilaterians to humans is not the same thing
as proposing a hypothesis regarding a unique ability of humans
relative to other extant animals alive today. For example, the
hypothesis that episodic memory emerged in early mammals is
not the same as a hypothesis that only mammals exhibit episodic
memory. Convergent evolution is not the exception, but the rule.

I will start by presenting the model and then provide evidence
for the model.

THE MODEL

Breakthrough #1: Steering in Early
Bilaterians
The hypothesis here is that the major neural modifications
that emerged in early bilaterians facilitated the breakthrough of
‘‘steering,’’ which was thereby applied in multiple adaptive ways,
such as in local area restricted search, avoiding predation, and
maintaining homeostasis.

By ‘‘steering’’ I refer to the capability of categorizing external
stimuli into two simple groups-positive valence (for approach)
and negative valence (for escape). Agents can then turn towards
directions where ‘‘positive valence’’ stimuli increase in potency
(or ‘‘negative valence’’ stimuli decrease) and turn away from
directions where ‘‘positive valence’’ stimuli decrease in potency
(or ‘‘negative valence’’ stimuli increase). It is a breakthrough in
the sense that an agent can navigate a complex environment
remarkably well with only these simple categorizations and
turning decisions. This navigational strategy is often called
‘‘taxis navigation,’’ whereby organisms move towards or away
from specific stimuli and thereby climb up or down sensory
gradients. Taxis navigation is present in single-celled organisms
and almost definitely existed far before the first bilaterians.
However, this model proposes that it was only in the first
bilaterian animals where taxis navigation was implemented with
neurons and muscles, and this unique implementation offered
several additional benefits.

This model proposes that there were four physical
modifications in early bilaterians: a bilateral body plan, valence
sensory neurons that connected to global neural integration
centers (the first ‘‘brain’’), neurobiological mechanisms of
associative plasticity, and neuromodulatory systems that
generated persistent behavioral states. An interpretation of how
these neural structures together implemented ‘‘steering’’ is as
follows. A bilateral body plan reduced navigational decision
making to simply forward or backward, and left or right (Holló
and Novák, 2012). The sensory neurons of early bilaterians
were evolutionarily hardwired to categorize specific external
stimuli into those for ‘‘approaching’’ (forward) and others
for ‘‘avoiding’’ (turn). These sensory neurons were directly
sensitive to internal states. A chemosensory neuron in early
Bilateria that was responsive to food cues would then also be
directly modulated by hunger signals. In this way, the sensory
apparatus of early bilaterians would have directly computed
valence. Further, the global neural integration centers of early
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bilaterians would have been used to integrate competing input
across valence neurons, which would have enabled the selection
of a single cross-model decision in the presence of tradeoffs.
For example, if an early bilaterian animal detected both the
increase in a food cue (positive valence) and an increase in heat
(negative valence), these different valence neurons would project
to common interneurons where they could be integrated into a
single decision of forward locomotion or turning depending on
the relative strength of each valence response.

The mechanisms of associative plasticity, both postsynaptic
and presynaptic, enabled early bilaterians to change the weights
and hence valence of various stimuli. For example, experiencing
pain in the presence of light could make light more aversive in
the future. This enabled smarter steering decisions over time.

This model proposes that it was in these early bilaterians in
whom neuromodulators such as dopamine and norepinephrine
(and octopamine) were first used for valence-related signaling.
Dopamine was released in the presence of food cues and persisted
in extra synaptic space even after food cues disappeared. This
enabled an animal to perform local area restricted search even
in the absence of any specific food cues. Octopamine and
norepinephrine did the same for negative valence stimuli, driving
an animal to continue its relocation locomotion even after
negative stimuli faded.

Together, these physical modifications enabled the
breakthrough of ‘‘steering,’’ which enabled early bilaterians
to optimally explore and exploit food patches while maintaining
homeostasis. This implementation of taxis-navigation
within neurons and muscles may have enabled comparably
larger organisms to use taxis navigation than the prior
taxis mechanisms of cellular cilia. Further, such a neuron
implementation may have enabled more accurate sensitivity to
internal states and cross-modal integration. This breakthrough
was only possible because bilaterian brains were built on the
foundation of neurons and muscles that evolved prior in
eumetazoans.

Breakthrough #2: Reinforcing in Early
Vertebrates
The hypothesis here is that the brain modifications that emerged
in early vertebrates facilitated the singular breakthrough of
‘‘reinforcing,’’ which was thereby applied in multiple adaptive
ways, such as in map-based navigation, interval timing, and
omission learning.

By ‘‘reinforcing’’ I refer to ‘‘model-free reinforcement
learning’’. In reinforcement learning, a distinction is often made
between ‘‘model-free’’ and ‘‘model-based’’ methods. In simple
terms, model-based methods include the ability to ‘‘plan,’’ which
requires an agent to ‘‘play out actions’’ before taking them and
choosing the sequence of actions that has the best outcome. This
‘‘playing out’’ of actions thereby requires a ‘‘model’’ of state-
transition probabilities. In contrast, model-free methods include
only learning the direct association with the current state and the
available actions. The hypothesis here is that this ‘‘model-free’’
method of learning first emerged in early vertebrates, while the
‘‘model-based’’ method emerged later with the first mammals.

Model-free reinforcement learning requires several features:
recognition of states, predicting the magnitude reward,
predicting the timing of reward, temporal difference error
signal, and the use of this error signal to update reward
predictions. Despite these shared features, there are still many
different implementations and conceptualizations of model-free
reinforcement learning and how it manifests in brains. As
such, two clarifications must be made regarding the features
of model-free reinforcement learning this hypothesis proposes
emerged in early vertebrates.

The first clarification is regarding spatial maps. Model-
based RL and spatial maps (sometimes called cognitive maps)
are two concepts that sometimes get conflated—it has been
suggested that evidence for the presence of a spatial map in
an animal, as evaluated by various map-based navigational
tests, is evidence for the presence of model-based reinforcement
learning. The reasoning being that a spatial map requires a
‘‘model’’ of space. However, what makes an agent’s learning
method model-based is not the presence of a spatial map but
the use of that spatial map for the purpose of simulating future
actions. A spatial map can still be used in the context of
model-free learning without such simulation of future actions.
For example, an agent’s current state can be defined as a
location in space, and the actions it associates rewards with
can be defined by the next target locations, which thereby
would generate a homing vector from the current location to
the next target location. This contains no ‘‘playing out’’ of
state transition probabilities, but does have various adaptive
properties, such as being robust to small changes in starting
locations or paths (such as due to perturbations in water
current). The hypothesis here proposes that spatial maps first
emerged in vertebrates but they were not used for simulating
future actions, and only used for learning associations between
the current location and rewarding next target locations (see
Figure 2).

The second clarification is regarding goal-directed vs. habitual
behavior. Model-based learning and the ability to use reward
identity in learning are sometimes conflated: it has been
suggested that the presence of successful devaluation is evidence
for the presence of model-based reinforcement learning. I
will argue that this is not the case. A common experimental
setup for such devaluation experiments is to allow a mouse to
associate two levers each with a different type of food. Once
this association is well learned, mice are allowed to eat one of
those foods to satiation. When subsequently presented with each
of these levers, mice will usually immediately favor the lever
that produces the food that was not eaten to satiation (i.e., not
devalued). Different experimental setups, as well as lesions
of specific regions, can make mice insensitive to devaluation,
whereby they will continue pushing the lever for the devalued
food. Such behavior is typically considered to be ‘‘habitual’’
whereas that which is sensitive to devaluation is considered
‘‘goal-directed’’. Habitual behavior at times is conflated with
model-free learning: habitual behavior demonstrates direct
stimulus-response associations, which can seem analogous
to direct learning of rewarding actions from a given state
in model-free learning. And similarly, goal-directed behavior
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FIGURE 2 | Different implementations of decision making in model-free reinforcement learning. The general structure of model-free reinforcement learning is agents
learn to predict the discounted reward of each given state and learn what actions tend to increase the expected discounted reward from each given state. The
definitions of an “action” and “state” can be implemented differently. Most interpretations consider a “state” as a cue and an “action” as a specific egocentric
movement. The proposal here is that the model-free learning of early vertebrates was such that “states” were allocentric locations, and “actions” were next target
allocentric locations. This enabled model-free learning that was flexible to slight differences in starting locations and self-correcting to mistakes such as overshooting
a goal location.

clearly requires a ‘‘stimulus-stimulus’’ association, where each
lever is associated with the food itself, and not just the original
reward—this has been suggested to be evidence of model-based
learning. However, neither is necessarily the case. If ‘‘states’’
include interoceptive information such as hunger level, then
model-free learning can exhibit behavior that is sensitive to
devaluation without any planning or playing out of future
actions. Therefore, the proposal that early vertebrates were
capable of model-free RL but not model-based RL does not
suggest that all behavior of early vertebrates was habitual and
insensitive to devaluation.

The main four new brain structures that emerged with
early vertebrates were the pallium, the basal ganglia (BG),
the tectum, and the cerebellum (Sugahara et al., 2017). This
entire network of new brain structures of early vertebrates can
be reasonably understood through the lens of the emergence
of model-free reinforcement learning with spatial maps and
timing. An interpretation of how these neural structures together
implemented model-free RL is as follows (see Figure 3).
Specific subregions of the pallium acquired the ability to
represent allocentric representations of space (a ‘‘spatial map’’),
while others acquired the ability to recognize patterns of
stimulus cues. Valence neurons in the evolutionarily older
hypothalamus (inherited from the valence neurons of early
bilaterians) became direct controllers of dopamine responses,
whereby positive valence neurons stimulated dopamine and
negative valence neurons inhibited dopamine. Activation of
dopamine allowed long–term potentiation in the synapses
between the pallium and the striatum of the BG. The BG
then chunked together sequences of stimuli and places that
tended to activate dopamine. The BG used these sequences
to predict its own dopamine activations and used these
predictions to inhibit dopamine neurons. This filtered out
expected dopamine activations, thereby converting dopamine
signals from a global valence signal to a reward prediction
error (also called a ‘‘temporal difference learning signal’’),
which is an essential feature of model-free learning. The

BG disinhibited neurons in the tectum, where allocentric
representations from the pallium could be converted to
egocentric movements, and hence drove movement towards
specific ‘‘goal’’ locations activated in the BG. The pallial-BG
system thereby learned sequences of allocentric goals that
progressively climbed a dopamine gradient. This network
generates ‘‘homing vectors’’ towards sequences of goal locations
which are defined merely by climbing a dopamine gradient.
Timing signals within the cerebellum, and potentially also in
the pallium, enabled a representation of time that allowed
animals to make choices not only based on where they are
relative to an outcome, but also when they are relative to an
outcome.

The breakthrough of model-free reinforcement learning
would have offered early vertebrates numerous adaptive
behavioral abilities. It would have enabled early vertebrates to
navigate their environment not only with taxis-navigation, but
also with map-based navigation—able to remember and navigate
towards or away from specific locations in three-dimensional
space. It would have enabled vertebrates to remember the specific
timing between events, and thereby learn when to act. And it also
would have allowed early vertebrates to not only learn from the
presence of stimuli but also from the omission of stimuli. Such
omission learning enabled vertebrates to perform much better on
avoidance tasks.

Crucially, model-free learning would have only been possible
in vertebrates because of the prior existence of valence
neurons and neuromodulatory signals that evolved earlier
in Bilateria.

Breakthrough #3: Simulating in Early
Mammals
The hypothesis here is that the unique brain regions that
emerged in early mammals facilitated the singular breakthrough
of ‘‘simulating,’’ which was thereby applied in multiple adaptive
ways, such as in vicarious trial and error (VTE), episodic
memory, and counterfactual learning.
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FIGURE 3 | Proposed difference between the associative learning of early bilaterians and the reinforcement learning of early vertebrates. Invertebrates implement
associative learning through accommodating neuromodulators, each for different valence and reflexes. This has many of the standard features of associative
learning, such as blocking, secondary conditioning, overshadowing, and latent inhibition. However, it does not enable omission learning, interval timing, or
map-based navigation. In contrast, the vertebrate reinforcement learning system has all these features. Key differences include the presence of a spatial map in the
pallium; timing in the cerebellum, pallium, and basal ganglia (BG); and the fact that dopamine is used to encode both positive and negative reward prediction errors.
See text for more details.

By ‘‘simulating’’ I simply refer to the ability to perform
model-based reinforcement learning, whereby an animal can play
out and simulate action sequences before taking an action. In
early mammals, the dorsal pallium of the ancestral amniote
transformed into the neocortex (Tosches et al., 2018). I propose
that the unique capabilities offered by this new neocortex relative
to the pallium were its ability to internally invoke simulated
actions and stimuli. A mammal with such an ability can pause,
simulate a reality, manipulate it, evaluate it, and then act
accordingly. This ability can be applied in many ways, such
as for VTE (simulating paths), episodic memory (simulating a
past event), or counterfactual learning (simulating alternative
choices).

An interpretation of how the neocortex enabled such model-
based reinforcement learning is as follows. The neocortex
seems to be made up of a repeated columnar microcircuit
(the ‘‘neocortical column’’; Mountcastle, 1978). There are many
competing theories of the specific computations performed

by this microcircuit—including predictive coding (Rao and
Ballard, 1999; Bastos et al., 2012; Spratling, 2017; Keller and
Mrsic-Flogel, 2018), adaptive resonance theory (Grossberg and
Versace, 2008), and hierarchical temporal memory (George
and Hawkins, 2009; Hawkins and Ahmad, 2016; Bennett,
2020). Despite differences in these interpretations, they all
generally agree that the microcircuit builds a self-supervised
‘‘model’’ with the purpose of predicting the entirety of its
bottoms-up input. The self-supervised nature of the neocortex
shares many features with a class of machine learning models
called ‘‘generative models’’ (Kersten et al., 2004; Knill and
Pouget, 2004; Parr and Friston, 2018). A generative model
learns a ‘‘latent representation’’ (also called a ‘‘model’’ or
an ‘‘explanation’’) of its input. A generative model has
two modes—an ‘‘inference mode’’ where it picks a latent
representation that best ‘‘explains’’ its bottom-up input and
a ‘‘generative mode’’ where it generates its own training
data given a specific latent representation. Learning occurs
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by comparing the match between the simulated data and the
actual data. Learning is optimized to minimize such mismatches
(i.e., minimize ‘‘prediction errors’’). Hence these generative
models are ‘‘self-supervised’’—trained only by the degree with
which their own model of reality has successfully predicted its
own input.

The neocortex of early mammals had two broad sub-regions:
the frontal cortex and the sensory cortex (see Figure 4). The
frontal cortex in early mammals is believed to be homologous to
the anterior cingulate cortex (ACC) of later mammals (Laubach
et al., 2018; van Heukelum et al., 2020). The sensory cortex had
several homologous subregions for different modalities—visual
areas, somatosensory areas, and auditory areas. This model
suggests that each subregion implemented a generative model of
sensor data from a given modality, with the goal of explaining its
own input. However, this model proposes that the ACC served
a different function, albeit performing an identical computation.
Instead of receiving input from external sensory, the ACC of all
mammals receives input from the amygdala and hippocampus
(Reppucci and Petrovich, 2015), and projects throughout the
sensory cortex (Zhang et al., 2014; Goll et al., 2015; Atlan
et al., 2018; White et al., 2018; reviewed in Kamigaki, 2019).
I hypothesize that the ACC is building a generative model of
‘‘paths’’ from the hippocampus, given ‘‘goals’’ from the amygdala.
The goal represented is not a complex representation of the actual
objects or sensory stimulus, but rather the actual valence results
in the amygdala. The ACC thereby tries to explain the sequence
of places that will be taken given a latent representation of a
‘‘goal’’ from the amygdala. One interpretation of this is that the
latent representation in ACC is a model of ‘‘intent’’—it observes
an animal’s path, place, and context from the hippocampus and
attempts to predict why the animal is behaving the way it is.
This is consistent with other conceptualizations of generative
models in the context of movement, often referred to as ‘‘active
inference’’ (Adams et al., 2012).

This model proposes that one function of this ACC
representation of ‘‘intent’’ is its ability to trigger internally
invoked simulations, which thereby allowed animals to engage
in model-based learning (see Figure 5). When an animal reaches
a ‘‘choice point’’ where the right answer is uncertain, this
uncertainty is represented by multiple conflicting predictions
from different columns of the ACC. This conflicting set of
predictions triggers the animal to pause its movements. The
neural substrate of this pausing may be the ACC direct projection
to the subthalamic nucleus, which has been shown to be
leveraged during top-down inhibition (Aron, 2006; Heikenfeld
et al., 2020). The ACC can then trigger simulated paths
through its loop with the hippocampus and can internally
invoke the corresponding sensory representations of such paths
through either its direct connections to the sensory cortex
or through its indirect connections through the claustrum
or hippocampus. During this ‘‘pause,’’ the generative model
in the sensory neocortex shifts from being externally driven
(‘‘inference mode’’) to internally driven (‘‘generative mode’’).
The ACC will continue to explore ‘‘movements’’ consistent
with its generative model of intent. These internally invoked
representations of the world in the sensory neocortex can
then be evaluated in the BG. When an imagined path
finally achieves an outcome that leads the basal ganglia to
release enough dopamine, it will trigger a ‘‘GO’’ response.
This accomplishes two things. First, it immediately sensitizes
the ‘‘imagined’’ path that the ACC triggered through the
hippocampus, thereby biasing subsequent movements to be
consistent with what was imagined. Second, it overcomes the
ACC suppression of movement through the STN, enabling
the evolutionarily older basal ganglia to take over behavior
again.

During ongoing movement, when columns of ACC agree
in their predictions of subsequent movement, the ACC can
still exert some control over behavior by biasing the latent

FIGURE 4 | The major brain modifications in early mammals.
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FIGURE 5 | A high-level proposal of how “Simulating” is implemented in the neocortex. See text for details.

representations in the sensory neocortex to be consistent with
the imagined path. This perhaps was the first version of
‘‘cognitive control’’ and ‘‘attention’’. The ACC projects to sensory
neocortex where it can perform ‘‘gain control’’ and bias sensory
representations (Goll et al., 2015; Atlan et al., 2018; White et al.,
2018).

Note that this ‘‘pause-simulate’’ behavior does not only apply
to imagining action paths, but it also equally applies to imagining
past events (episodic memory), imagining alternative choices
to choices you already made (counterfactual learning), and
perhaps even working memory (holding things ‘‘in mind’’). The
important feature is the ability of the ACC to trigger internally
invoked simulations in the sensory cortex, which can be used to
train the basal ganglia vicariously.

The motor cortex emerged in later mammals (placentals;
Beck et al., 1996; Kaas, 2012). Motor cortex can also be
interpreted through the lens of a frontal region that builds a
model of ‘‘intent’’ and uses it to predict movement and trigger
internally invoked simulation in the presence of uncertainty.
In early mammals, the motor cortex was not required for
moving in general but was required for movements that require
preplanning. For example, movements where animals must
grasp something they see or carefully step their feet on specific
platforms requires simulating actions before moving—these fine
movement skills are uniquely enabled by the motor cortex. The
motor cortex can simulate these actions through its projections
to the somatosensory cortex; the same way ACC can simulate
paths through its projections to overall sensory cortex. The key
difference between the motor cortex and the ACC is that the
motor cortex gets its top-down input of ‘‘intent’’ from the ACC,
and predicts specific body movements in the somatosensory
cortex, while the ACC gets its top-down input of ‘‘intent’’
form the amygdala and predicts general navigational paths in
the hippocampus. In this sense, the ACC relationship with the
motor cortex was the first ‘‘motor hierarchy,’’ where goals flowed

from the ACC to motor cortex. Therefore, the addition of the
motor cortex can be viewed as an elaboration on the previous
ACC-sensory network, which enabled the planning of fine motor
movements.

The unique neocortical ability to trigger internally invoked
simulations and use them for learning would not have
been possible without two features inherited from earlier
vertebrates. Firstly, spatial mapping in earlier vertebrates was
repurposed in later mammals in order to explore environments
vicariously. Without a spatial map, it would be impossible
to simulate various movements and their consequences.
Secondarily, internally invoked simulations work by training
the basal ganglia vicariously—the basal ganglia does not
have to tell the difference between an internally invoked or
externally invoked sensory data from the sensory cortex, it
merely learns what sequences of movements trigger dopamine
release. This ability to learn vicariously was only possible
because it was built on top of the foundation of the older
basal ganglia.

Breakthrough #4: Mentalizing in Early
Primates
The hypothesis here is that the unique brain regions that
emerged in early primates facilitated the singular breakthrough
of ‘‘mentalizing,’’ which was thereby applied in multiple adaptive
ways, such as in anticipating future needs, theory of mind, and
learning skills through observation.

By ‘‘mentalizing’’ I refer to the ability to construct a model
of the mind, inclusive of an individual’s intent and knowledge.
Such a model of mind can be applied in multiple ways—three
such ways are ‘‘anticipating future needs,’’ ‘‘theory of mind’’
and ‘‘learning skills through observation.’’ All three of these
can be seen merely as different applications of this singular
ability of primates to engage in ‘‘mentalizing.’’ For example,
mentalizing can be used to simulate a mind state of yourself
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that you do not have yet (imagining being hungry tomorrow
if I do not gather food now, even though I am not hungry
right now). It can be used to simulate the mind state of another
conspecific you are observing (such as imagining how they must
feel given their situation). It can be used to simulate the intentions
and actions of others when you are watching them do various
motor skills, which enables you to ‘‘learn by observation.’’ The
behavioral manifestations are different, but the neural substrates
are overlapping for a reason: the overall function is the same
(simulating a mind state).

The primary two new brain structures that emerged in
early primates were the granular prefrontal cortex (gPFC) and
polysensory cortex (PSC; Kaas, 2009). An interpretation of how
granular prefrontal cortex and PSC enabled such mentalizing
is as follows (see Figure 6). gPFC gets its inputs from three
primary sources: (1) it is bidirectionally connected with the
ACC, both directly and through the mediodorsal thalamus
(Kondo et al., 2004; Cera et al., 2019; Tang et al., 2019);
(2) gPFC is interconnected with polysensory areas such as the
superior temporal cortex and TPJ (Sanfey, 2003; Greene et al.,
2004; Buchsbaum et al., 2005; Tei et al., 2017); and (3) it is
interconnected with motor cortex both directly and indirectly
through descending loops through the motor thalamus (Bosch-
Bouju et al., 2013; Yokoi and Diedrichsen, 2019). I hypothesize
that gPFC and PSC together implement a generative model of
the ACC-sensory generative model itself. In other words, the
gPFC-PSC generative model is constructed to ‘‘explain’’ the
‘‘intentions’’ from the ACC given ‘‘knowledge’’ from PSC. The
emergent property of this is that it is effectively a generative
model of one’s own ‘‘mind,’’ the use of which can be thought of
as ‘‘mentalizing’’.

When applying this gPFC-PSC network to ‘‘mentalizing
about oneself,’’ an animal can anticipate a need it does not

currently feel yet. One big difference between the ACC-sensory
network and the gPFC-PSC network is that the ACC-sensory
network is self-supervised to predict amygdala and hypothalamic
activation, while the gPFC-PSC is self-supervised to predict latent
representations within ACC-sensory network. The ACC-sensory
network can predict paths that accomplish the needs currently
experienced. On the other hand, gPFC-PSC network can simulate
situations in the future and predict what intentions would be
selected in the ACC-sensory network given such situations. The
ACC-sensory network can’t do this because it is supervised to
predict amygdala activation, which is therefore only sensitive
to current needs. One reason this new network was adaptive
was because it enabled early primates to anticipate future needs
and hence plan much more flexibly than the mammals that
came before. Practically, this enables primates such as humans
to go to the grocery store and pick up food for the week
even when they are not yet hungry—or to bring a jacket
on a trip even though they are not yet cold. This ability to
‘‘anticipate future needs’’ was originally thought to be unique
to humans, summarized as the Bischof-Kohler Hypothesis
(Bischof-Köhler, 1985), but this model proposes that it in fact
evolved in early primates, which as we will see in later sections
is consistent with more recent tests in nonhuman primates and
non-primate mammals.

Once a generative model of one’s own mind exists, it can
be applied not only to ‘‘mentalizing about oneself ’’ but also to
‘‘mentalizing about others’’. Because the gPFC-PSC network is a
model of what behaviors are generated from what intentions and
knowledge, it can be applied to trying to identify what intentions
and knowledge in others are consistent with their observed
behaviors. The same way that the ACC-sensory system pauses
and simulates objects and paths, the gPFC-PSC system can pause
and simulate intentions and knowledge of others to generate a

FIGURE 6 | The major brain modifications in early primates. See text for details. PP, Posterior parietal cortex; MC, motor cortex; PSC, polysensory cortex (superior
temporal cortex and temporoparietal junction); gPFC, granular prefrontal cortex; ACC, anterior cingulate cortex; BG, Basal ganglia.
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latent representation most consistent with the observed behavior.
This mentalizing about others can manifest itself in several ways.
First, it can be used in the basic theory of mind tasks to infer the
knowledge of others given their perspective. And second, it can
be used to learn motor skills through observation.

One attractive feature of this proposal of the gPFC-PSC
network is that it fits within the conceptualization of the
neocortical microcircuit. Given the observation that the
neocortical column seems remarkably uniform throughout
the neocortex (Mountcastle, 1978), any purported new
‘‘function’’ attributed to a new neocortical region should be
primarily a consequence of unique inputs and outputs, as
opposed to any changes in the underlying computations of
the neocortical column. Consistent with this, the idea here
is that the microcircuitry of the granular prefrontal cortex
is the same as that of the ACC and sensory cortex: it is still
implementing a generative model. The difference is merely
where it receives input from. The ACC constructs a model
getting bottom-up input from the hippocampus. The latent
representation in the ACC is then a representation of an
animal’s current intent (intent is an ‘‘explanation’’ of an
observed path), which is used to make predictions of subsequent
navigational paths. In contrast, the granular prefrontal cortex
gets bottom-up input from the ACC. The latent representation
in the granular prefrontal cortex is then a representation of a
mind state (mind state is an ‘‘explanation of an intent’’) which
is then used to construct make predictions about one’s own or
others’ intent.

Crucially, simulating mind states (mentalizing) in early
primates was only possible because of the inherited ability
to simulate world states that evolved in earlier mammals.
Mentalizing was built on the foundation of simulating world
states. The model here proposes that mentalizing network itself is
a model of the mammalian ACC-sensory network, literally built
on top of the evolutionarily older brain structures.

Breakthrough #5: Speaking in Early
Humans
The hypothesis here is that the unique brain regions that
emerged in early humans facilitated the singular breakthrough of
‘‘speaking,’’ which was thereby applied for language and music.

By ‘‘speaking’’ I do not refer only to vocal communication,
but broadly to semantic rhythmic communication in general.
Human brains, although bigger, are remarkably similar to the
primate brains that came before. However, one fundamental
difference that seemed to emerge was a modification to the
arcuate fasciculus and its connectivity with the basal ganglia
(‘‘AF-BG network’’). I hypothesize, as have others, that the neural
innovations for language and music emerge from the unique
connectivity of the arcuate fasciculus, as well as perhaps other
additional connectivity with the striatum (Fujii et al., 2016).
This has been the classic view of language since the time of
Wernicke (Wernicke, 1874; Stookey, 1963; Berker et al., 1986;
Anderson et al., 1999). More modern theories of language have
criticized the simplicity of this original model and proposed
additional structures (Rasmussen and Milner, 1977; Imaizumi
et al., 1997; Rauschecker and Scott, 2009; Chang et al., 2015). I do

not make any specific claim on the exact mechanisms of language
production, merely that language and music were emergent
properties only possible with the additional connectivity of the
arcuate fasciculus.

The view here is that music and language are two sides of the
same coin and emerge from the same neural innovations. There is
an intuitive appeal to this hypothesis, as both music and language
share many features. Both require rhythmic entertainment
coordinated with other conspecifics. In other words, ‘‘beat
perception’’ is necessary for both music and for taking turns
appropriately in a conversation. Both are hierarchical and nested
(Drake et al., 2000; Toiviainen and Snyder, 2003; McKinney and
Moelants, 2006; Martens, 2011)—music contains beats within
‘‘bars’’ within ‘‘phrases,’’ and language contains phonemes within
words within sentences. Both are highly ‘‘predictive’’—when you
hear an unfinished sentence such as ‘‘the ford mustang is my
favorite . . .,’’ you cannot help but finish it. This is the same for
music, when you hear an unresolved musical phrase.

In the context of this model, one explanation for the ordering
of these breakthroughs is that such rhythmic semantic processing
for communication was only possible after the breakthrough of
‘‘mentalizing’’. Only with the ability to infer and understand
the knowledge of others is one able to devise a reasonable
communication to transfer information to someone. Consistent
with this, the AF-BG network is very overlapping with the
mentalizing regions that came before.

Model Summary
In Figure 7, you can see a summary of the proposed five
breakthroughs, and the modifications and behaviors they
explain. You can also see the homologous regions in human
brains.

As previously mentioned, one attractive feature of this model
of five breakthroughs is that it incorporates evolutionary
constraints and thereby helps understand how neural
innovations build on each other. Consider the following
dependencies suggested by this model.

Steering in early bilaterians was only possible because of
the neural building blocks that emerged earlier in eumetazoans,
which provided all-or-nothing neurons with sensory cells and
muscle cells. It provided inhibitory and excitatory neurons for the
creation of neural circuits, and neuropeptides for the modulation
of neural responses based on internal states.

Reinforcing (model-free reinforcement learning) in early
vertebrates was only possible because of the features of
steering in the ancestral bilaterian brain. The core mechanism
for learning sequences of places is the temporal-difference
learning mechanism which bootstraps these learned responses
on hardcoded valence responses. Ancestral bilaterians had such
valence responses that could stimulate the release of various
neuromodulators. The pallial-BG-tectal circuit could then build
plastic networks on top of these basic valence responses to enable
learning more complex sequences of paths. This is consistent
with other interpretations of behavior as evolving (through
phylogeny and ontogeny) from the basic foundation of approach
and withdrawal (Schneirla, 1959).
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FIGURE 7 | Summary of the 5 Breakthroughs from early bilaterians to humans.

Simulating (model-based reinforcement learning) in early
mammals was only possible because of model-free reinforcement
learning in ancestral vertebrate brains. Simulating requires: (1) a
‘‘pointer’’ to a specific suite of stimuli; and (2) a mechanism
for manipulating key features of the stimuli once invoked.
The spatial map in the pallial hippocampus provided both
of these features—internally invoking a ‘‘place’’ in the pallial
hippocampus will reactivate a broad suite of learned responses to
that place. Further, the ability to tether different places together
and generate novel paths, enables the pallial hippocampus, if it
were internally invoked, to imagine ‘‘novel’’ paths. It is then no
surprise that the neocortex is, in some ways, built directly on top
of the much older hippocampus, and uses the hippocampus for
its simulating functions, such as VTE and episodic memory.

Mentalizing in early primates was only possible because
simulating in ancestral mammal brains came first. In the model
described here, mentalizing is computationally the same as

simulating, the only difference being that mentalizing uses a
generative model of the mind itself, requiring new neocortical
regions and new connectivity between them. Mentalizing could
only occur after there was already a generative model of intent
on which to simulate possible mind states.

And lastly, language and music in early humans were only
possible because of mentalizing in ancestral primate brains.
There are several pieces of evidence for this. First, language
and music are built directly on top of the neural structures of
mentalizing: they emerge from uniquely primate mentalizing
areas such as STS, TPJ, and the prefrontal cortex. Second, mirror
neurons have been highly implicated in both theories of language
origin as well as language function (Gallese et al., 1996; Rizzolatti
et al., 1996; Rizzolatti and Arbib, 1998; Fogassi et al., 2005;
Schooler et al., 2011; Vredeveldt et al., 2011; Yonemitsu et al.,
2018). Third, people with disorders that disrupt mentalizing
abilities, such as autists, also show language impairments
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(Mitchell et al., 2006; Luyster et al., 2008; Mody and Belliveau,
2013). And lastly, as an infant develops, the advanced mentalizing
abilities emerge first in children before language emerges, with
‘‘intersubjectivity’’ and ‘‘joint attention’’ occurring before words
(Bateson, 1975; Beebe et al., 1988; Carpenter et al., 1998; Meltzoff
and Brooks, 2001; Bard et al., 2005). These ‘‘theory of mind’’
abilities are a requirement for the development of language
abilities (de Villiers, 2007). The connection between mentalizing
and language makes sense through the lens of various theories of
the evolution of language. If the original evolutionary pressure
for language was in fact for communicating the type and
location of faraway food to conspecifics, as has been proposed
(Monahan, 1996), then it makes sense that it would at first require
mentalizing: the goal of the communication is to figure out what
your communication partner does not know that you want them
to know, and how to use shared understanding to transfer this
knowledge.

EVIDENCE FOR THE MODEL

Three categories of evidence are presented in support of
the model presented here. First, evidence is presented to
support the proposed phylogenetic timing of specific brain
modifications. Second, evidence is presented to support the
proposed phylogenetic timing of specific behavioral abilities.
And third, evidence is presented to support the proposed
function of these brain modifications and how they enabled the
specific behavioral abilities. For brevity, much of the evidence
presented will direct readers to other work where the evidence for
various claims is presented more thoroughly. Some of the claims
are less controversial than others; extra attention will be spent on
the claims for which there is more controversy.

Evidence For the Proposed Phylogenetic
Timing of Brain Modifications
Evidence That a Global Neural Integration Center
(The First “Brain”) Emerged in Early Bilaterians
The prevailing view is that the first neurons and nervous
systems emerged in the common ancestor of eumetazoans (‘‘real
metazoans’’) during the Ediacaran period around 600 million
years ago (Peterson and Butterfield, 2005). Animals before
Eumetazoa are believed to be devoid of nervous systems, akin
to extant sea sponges (Bucher and Anderson, 2015). In these
early Eumetazoans, nervous systems were not organized into any
recognizable ‘‘brain,’’ but rather a diffuse ‘‘nerve net’’ (Holland,
2003; Lowe et al., 2003; Galliot and Quiquand, 2011; Arendt et al.,
2015). Evidence for this comes from the nerve nets of cnidarians,
which are some of the earliest diverging eumetazoans.

Despite a lack of a brain, nonbilaterian eumetazoans such as
cnidarians have a surprisingly rich set of neural features, strongly
suggesting that early eumetazoans already contained many of the
building blocks of brains. For example, neurons in cnidarians
communicate using ‘‘all-or-nothing’’ action potentials and form
chemical synapses with each other (Satterlie, 2015). Cnidarian
neurons contain many modern-day neurotransmitters, including
glutamate, GABA, and acetylcholine (Kass-Simon and Pierobon,
2007; Marlow et al., 2009; Delgado et al., 2010; Pierobon,

2012). Cnidarians have also been shown to contain many of
the same ionotropic and metabotropic receptors for glutamate
(both AMPA and NMDA), GABA, acetylcholine, and even some
monoamines (Anctil, 2009; Collin et al., 2013; Bosch et al., 2017).

Neural circuits within cnidarians, and hence also likely
early eumetazoans, also came with several well-known features
of neurons across taxa such as adaptation and interoception.
Adaptation, whereby animals respond less to repeated stimuli,
has been shown in various responses such as the tentacular
responses in hydras and sea anemones (Parker, 1916; Pantin
and Pantin, 1943; Batham and Pantin, 1950). Interoception,
whereby animals modulate their responses based on internal
cues for various need states, has also been shown in cnidaria.
For example, hydras and sea anemones seem to be less sensitive
to food cues (less likely to trigger the feeding response and
less responsive to mechanical stimulation) when full than when
hungry (Parker, 1916; Pantin, 1935; Batham and Pantin, 1950;
Lenhoff and Loomis, 1963; Han et al., 2018).

In contrast, even very early diverging bilaterians, such as
C. elegans and planarians, have global neural integration centers
that can be thought of as a ‘‘brain’’ (Garrity et al., 2010). Although
there is still controversy regarding whether the first bilaterians
had a neural net or an actual brain (Hejnol and Martindale, 2008;
Arendt et al., 2015), both interpretations agree that the first brain
emerged within the bilaterian lineage.

Evidence That the Pallium, Basal Ganglia, Tectum,
and Cerebellum Emerged in Early Vertebrates
Before the first vertebrates, brains are believed to have been made
up of a homolog of a hypothalamus, midbrain, and hindbrain, as
in early diverging chordates such as amphioxus (Nieuwenhuys,
1998; Gorbman et al., 1999; Uchida et al., 2003; Murakami
et al., 2005). There is a general consensus that with vertebrates,
at least five additional structures emerged: the pallium, the
BG, the tectum, the cerebellum, and the thalamus (Sugahara
et al., 2017). Evidence mostly comes from the fact that these
structures, their microcircuits, and the canonical connectivity
between them are highly shared amongst extant vertebrates. Even
the lamprey, considered one of the earliest diverging vertebrates
and considered a model organism for the early vertebrates, shares
exactly this template (Grillner and Robertson, 2016). Evidence
suggests the amygdala, hippocampus, and neocortex all evolved
from the pallium: specific subregions of the pallium in early
diverging non-mammal vertebrates such as fish seems to be a
proto-hippocampus (Macphail, 1982; López et al., 2003), and
the other subregions of the pallium a proto-amygdala or proto-
olfactory cortex, performing similar functions and containing
similar microcircuits.

Some protostomes, such as arthropods, have brain regions
that are structurally and functionally similar to the vertebrate
pallium and basal ganglia, such as the mushroom body (similar
association properties as the pallium) and central complex
(similar properties as the basal ganglia). Some have argued
that these structures share homology with vertebrate structures,
suggesting that precursors to them emerged early in Bilateria
(Strausfeld and Hirth, 2013). However, others argue it is simply
an example of convergent evolution (Northcutt, 2012; Farries,
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2013). Given that these structures are entirely absent from most
protostome taxa, including nematodes, flatworms, mollusks, and
annelids, the principle of parsimony makes convergent evolution
seem more likely. Further, modern views of the urbilaterian
ancestor suggest that its brain was devoid of such structures
and instead was made up of a simple sensory region and a
motor region (Arendt et al., 2015). Either way, the protostome
versions of these structures have many more differences from the
vertebrate versions than the vertebrate versions have from each
other. This implies that the modern form of these structures first
emerged in early vertebrates.

Evidence That the Neocortex With ACC and Sensory
Regions Emerged in Early Mammals
There is broad consensus that the six layered neocortex first
evolved in early mammals, and was derived from the three
layered dorsal pallium in earlier amniotes (Tosches et al.,
2018). Along with this modification, the surrounding pallial
structures are also believed to have become recognizable in their
mammalian forms—the medial pallium became the mammalian
form of the hippocampus, and the lateral pallium became the
mammalian olfactory cortex and/or the amygdala (Kaas, 2009;
Tosches et al., 2018). The basal ganglia, tectum, thalamus,
hypothalamus, and other midbrain and hindbrain structures
are remarkably similar across non-mammal vertebrates and
mammals alike, strongly suggestive that they were left relatively
unchanged in early mammals.

Although there is little controversy regarding the evolution
of the neocortex in early mammals, the degree to which
it is ‘‘different’’ from the structures that emerged earlier is
somewhat controversial. For example, some evidence suggests
that the dorsal ventricular ridge (DVR) of birds (containing
the ‘‘nidopallium’’ and ‘‘mesopallium’’) and the neocortex of
mammals both derive from the pallium of their shared amniote
ancestor (Karten, 1969, 1997; Reiner et al., 2004; Dugas-
Ford et al., 2012). It has been shown that the DVR and
neocortex share many features, including molecular properties
and the subcortical structures they interact with. Hence, this
might be used to call into Question the uniqueness of the
mammalian neocortex, and perhaps suggests that the amniote
common ancestor had neocortex-like structures. However, this
interpretation is unconvincing for two reasons.

First, the brains of birds are a poor model organism for
the amniote last common ancestor. It is not even clear that
the DVR itself is homologous with the neocortex and instead
might share homology with the mammalian amygdaloid complex
(Jarvis et al., 2005; Striedter, 2005). Further, even if the DVR
does share homology with the neocortex, the microcircuitry
of the DVR is very different from that of the neocortex. The
neocortex is organized into six layers, while the DVR is organized
into clustered nuclei (Ulinski, 1983). The ontogeny of the
DVR and the mammalian neocortex is different (Jones and
Levi-Montalcini, 1958; Striedter and Keefer, 2000; Dugas-Ford
et al., 2012). Additionally, the pallial homologs in non-bird and
non-mammal extant amniotes such as reptiles, also have unique
ontogeny and microcircuitry from both birds and mammals
(Goffinet et al., 1986; Cheung et al., 2007). For example, turtles

have a three layered pallium, instead of the clustered nuclei
of the DVR or the six layered neocortex. The turtle cortex
is more like the three layered pallium of other non-amniote
vertebrates, such as fish (Mueller and Wullimann, 2009), than
it is to the DVR of birds or the neocortex of mammals. This
is more consistent with the proposal that early vertebrates had
a three layered pallium, much like that of extant reptiles and
teleosts, and that the pallial homologs in birds and mammals
each underwent substantial independent modification since the
amniote last common ancestor.

Although there is considerable debate regarding which
neocortical regions emerged first, it is generally accepted that by
the time the early placental mammals emerged around 65 million
years ago the following neocortical areas existed: V1, S1, A1,
M1, cingulate cortex, insular cortex, orbital frontal cortex (Kaas,
2012). Even in earlier diverging mammals such as marsupials,
which diverged from our lineage over 150 million years ago,
there are numerous neocortical areas, such as a cingulate, V1,
S1, and A1 (Karlen and Krubitzer, 2007; Wong and Kaas, 2009).
This is consistent with the model herein which proposes that the
very early neocortex contained both frontal regions and sensory
regions. I use the label ACC to refer to the entirety of the
agranular frontal cortex in early diverging mammals, inclusive
of the areas sometimes called prelimbic or infralimbic cortex.
Consistent with this, evidence suggests the entire prefrontal
cortex of rodents is homologous to the anterior cingulate of
primates (Laubach et al., 2018; van Heukelum et al., 2020).

Evidence That the Major Brain Modification of Early
Primates Was the Addition of the “gPFC-PSC
Network”
Primate brains are bigger in size than earlier diverging mammals
relative to the overall body, but for the most part, contain
the same neural structures. Some relative differences within
primate brains include a shrinking of the olfactory bulbs and a
substantial expansion of the visual cortex, somatosensory cortex,
and posterior parietal cortex. However, the four substantial
differences in the brains of extant primates from earlier diverging
mammals are: the addition of (1) granular prefrontal cortex
(gPFC; premotor areas, dorsolateral prefrontal cortex, and
frontopolar cortex; Semendeferi et al., 2001); (2) PSC (including
the superior temporal sulcus and the temporoparietal junction);
(3) the dorsal pulvinar (Preuss, 2006); and (4) a unique
cortico-motoneuronal system, where corticospinal projections
bypass older circuits and make direct connections with spinal
motorneurons (Murabe et al., 2018; Lemon, 2019). Although
some suggest such direct corticospinal projections also occur in
rats (Elger et al., 1977; Carlin et al., 2000; Yang and Lemon,
2003; Alstermark et al., 2004; Maeda et al., 2015; Gu et al., 2017),
new evidence shows that these direct projections disappear in
adulthood (Murabe et al., 2018), unlike in primates (Armand
et al., 1997; Eyre, 2007).

The predominant view is that these structures and
modifications emerged in early primates as they do not
seem to exist in non-primate mammals, while they do exist in
most extant primates (Kaas, 2009). Further consistent with the
proposed model, and the idea that these new structures served
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a single purpose, the dlPFC, temporal cortex, and parietal areas
all make up their own interconnected network, through the
uniquely primate dorsal pulvinar (also called medial pulvinar;
Goldman-Rakic, 1988; Gutierrez et al., 2000).

Evidence That the Major Brain Modification of Early
Humans Was a Modification to the Arcuate
Fasciculus
There are two main differences in the connectivity of human
brains relative to those of non-human primates. First, the
arcuate fasciculus (AF), which is a network of cortico-cortical
connections between areas in the prefrontal cortex (‘‘broca’s
area’’) and areas in the posterior cortex (‘‘Wernick’s area’’),
is massively expanded in humans (Aboitiz and Garciía, 1997;
Aboitiz et al., 2006, 2010; Rilling et al., 2008, 2012; Aboitiz, 2012;
Catani and Bambini, 2014; Petrides, 2014; Rilling, 2014; Stout
and Hecht, 2017) and contains unique connectivity (Petrides
and Pandya, 1984; Catani et al., 2004; Schmahmann et al., 2007;
Rilling et al., 2008; Thiebaut de Schotten et al., 2012). Second,
in humans, there is a direct projection from the motor cortex
to laryngeal motor neurons, which is not found in nonhuman
primates (Fitch, 2018; Jarvis, 2019). Although Broca’s area and
Wernicke’s area are highly implicated in unique human abilities
such as language, homologous regions of both have been found
in nonhuman primates (Cantalupo and Hopkins, 2001; Schenker
et al., 2009; Spocter et al., 2010), and therefore do not seem to
have uniquely emerged in early humans.

Evidence for Proposed Phylogenetic
Timing of Behavioral Abilities
Elsewhere I have more thoroughly reviewed the evidence for
the below hypotheses regarding the phylogenetic timing of
behavioral abilities during brain evolution in the human lineage
(Bennett, 2021). I will briefly review some of the evidence here.

Evidence That Taxis-Navigation and Associative
Learning Emerged in Early Bilaterians
To clarify, the hypothesis here is that taxis navigation,
implemented in neurons and muscles, first emerged in
bilaterians, and not that taxis navigation in general first
emerged in bilaterians. Because this article is interested in
brain evolution, the functions and features of the first brains
are the focus of this article. Therefore, taxis navigation that
existed in non-neural substrates is not explored in detail.
C. elegans and flatworms, generally considered model organisms
for urbilateria, demonstrate clear taxis-based navigation (Pearl,
1903; Larsch et al., 2015). These model organisms are also able
to perform cross-modal decision-making. They can integrate
conflicting input from various modalities (thermosensation,
mechanosensation, photosensation, and chemosensation) in
order to make a single integrated navigational decision. For
example, C. elegans will make different decisions about whether
to cross a copper barrier (which is aversive) to get to the food on
the other side depending on the strength of the food smell relative
to the concentration of copper (Ishihara et al., 2002). Similarly,
flatworms will navigate towards food despite an aversive light
source, but as the light becomes brighter, they will not go as
far towards the food. This type of integrated decision-making

occurs across numerous modalities including mechanosensation
and thermosensation (Inoue et al., 2015). The taxis navigation of
these model organism also demonstrate persistent navigational
states, which would have been useful for persisting navigational
decisions even after sensory stimuli have faded. For example,
the C. elegans demonstrates at least three behavioral states:
roaming, dwelling, and sleep (Fujiwara et al., 2002). Roaming is
categorized as primarily straight-line swimming with infrequent
turns—enabling an animal to relocate. In contrast, dwelling is
categorized by slow swimming and frequent turning, enabling an
animal to ‘‘locally search’’ its general area.

On the other hand, evidence for taxis navigation in adult
form non-bilaterian eumetazoans is sparse. The hunting strategy
of sea anemones, believed to be a model organism for early
cnidarians (Yuan et al., 2011), is to wait for food to come to
them (Ruppert et al., 2004). Retraction reflexes in cnidarians
don’t drive locomotion in a specific direction, and instead seem
to simply globally increase arousal (Batham and Pantin, 1950).
Even most medusae, a more complex adult cnidarian form that
likely evolved after the cnidarian-bilaterian divergence, do not
show taxis navigation towards food sources, and merely seem to
orient themselves in direction of current (Fossette et al., 2015),
and hunt by moving in a ‘‘levy walk’’ (Hays et al., 2011). There
are admittedly some exceptions to this. Box jellyfish can use eye
spots to avoid obstacles (Garm et al., 2007), but it is generally
accepted that the eyes of box jellyfish evolved independently
(Nilsson, 2013; Bosch et al., 2017). Sea anemones have been
shown to move towards light sources (Parker, 1916), but this
has been shown to be independent of their own visual apparatus
and driven simply by nearby amoebae (Pearse, 1974; Foo et al.,
2019).

While larvae of earlier diverging metazoans, such as sponges,
show taxis navigation (Leys et al., 2002), their adult forms
show no such behavior and the neural implementation is
based on cilia and not neurons and muscles. Adult forms
of ctenophores move through ciliated pumping which may
be coordinated via neurons and therefore may represent an
adult form metazoan with neuron-based taxis navigation.
However, how well extant ctenophores represent early metazoans
is unclear; much evidence favors the idea that ctenophores
independently evolved many features of nervous systems (Ryan,
2014; Moroz, 2015; Moroz and Kohn, 2016; Liebeskind et al.,
2017). This would suggest that ctenophore taxis navigation is not
indicative of early metazoans before the cnidarian-bilaterian last
common ancestor.

Most evidence also suggests that associative learning first
emerged in early bilateria (Bennett, 2021; Ginsburg and Jablonka,
2021). Associative learning, including classical conditioning
and instrumental conditioning, has been shown broadly across
Bilateria, including even early diverging species such as aplysia
(Hawkins et al., 1989), planarians (Prados et al., 2012), and
C. elegans (Ardiel and Rankin, 2010). In contrast, attempts to
find associative learning across cnidaria have shown primarily
negative results (Rushforth, 1973; Torley, 2009). Admittedly
there is a single report of associative learning in a sea anemone
(Haralson, 1975)—however, this is inconsistent with most other
studies. Similar to others, I conclude that cnidaria do not contain
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associative learning (Ginsburg and Jablonka, 2019), and at the
very least, if they do, it evolved convergently.

It should be noted that there are different interpretations
of associative learning. Some make a distinction between
‘‘alpha conditioning’’ and ‘‘beta conditioning’’ (Razran, 1971;
Moore, 2004). ‘‘Alpha conditioning’’ is defined as that where
a non-habituated CS elicits the same reflexive response as the
US, but after pairing with the US the magnitude of the response
elicited by the CS increases. In contrast, ‘‘beta conditioning’’
is considered ‘‘true associative learning’’ whereby the CS elicits
no reflexive response before pairing. However, others disagree
with this distinction (Hawkins and Kandel, 1984; Kandel, 2006),
and instead argue that there is, in fact, no difference between
alpha and beta conditioning—they argue that all wiring is pre-
wired, the only difference is whether the wiring is strong enough
to elicit a response before pairing. All these perspectives agree
that there is a distinction between general sensitization, where
the specific US globally sensitizes a suite of reflexive responses,
and associative learning, whereby this sensitization is local and
specific to the paired US.

Evidence That Map-Based Navigation, Interval
Timing, and Omission Learning Emerged in Early
Vertebrates
In the context of map-based navigation, diverse and early
diverging vertebrates including fish (Burt de Perera et al., 2016),
reptiles (Wilkinson and Huber, 2012; Broglio et al., 2015), turtles
(López et al., 2001), amphibians (Phillips et al., 1995), and
tortoises (Wilkinson et al., 2007) all show the ability to build
spatial maps of their environment and flexibly generate novel
navigational routes to known places (Rodríguez et al., 2002).
Model organisms for early bilaterians, such as flatworms seem
to navigate only with taxis and perhaps response-based learning
(Pearl, 1903; Luersen et al., 2014; Larsch et al., 2015; Gourgou
et al., 2021) and show no ability to remember specific un-cued
locations. Further, the neural substrates of such map-based
navigation in vertebrates are uniquely vertebrate structures, such
as pallial homologs of the hippocampus, suggestive of vertebrate
origins. Importantly, the map-based navigational tests that early
diverging vertebrates, such as fish, pass do not require planning,
but they do require a spatial map that can generate novel
homing vectors to well-learned locations in three-dimensional
space. There is indeed evidence of sophisticated 3-dimensional
navigation in arthropods, however, the degree to which they truly
represent map-based representations and the degree to which
these abilities are representative of early bilaterians is unclear.
Some evidence suggests that arthropods fail at map-based
navigation tasks (Benhamou et al., 1990; Wehner et al., 1996,
2006; Walker, 1997), while other evidence suggests that they
indeed can build map-like memories (Boles and Lohmann, 2003;
Menzel et al., 2005, 2011). Further, many impressive abilities of
arthropods emerge from mushroom bodies (Perry et al., 2013;
Cope et al., 2018), which is a cortex-like structure believed to have
evolved independently (Farris, 2008).

In the context of interval timing, diverse and early diverging
vertebrates such as fish (Sumbre et al., 2008), birds (Bateson
and Kacelnik, 1997; Ohyama et al., 1999; Buhusi et al., 2002),

non-human primates (Gribova et al., 2002), and mice (Roberts
and Church, 1978; Gallistel et al., 2004; Buhusi et al., 2005) all
show the ability to remember the precise timing between two
cues. In contrast, invertebrates show a weak perception of time,
if one at all (reviewed in Abramson and Wells, 2018). Further,
the neural substrates of interval timing in vertebrates seem to be
uniquely vertebrate structures (Buhusi and Meck, 2005; Yin and
Meck, 2014).

In the context of omission learning, vertebrates such as dogs
(Cole and Wahlsten, 1968), mice (Kamin, 1957; Avcu et al.,
2014), and fish (Woodard and Bitterman, 1973; Abramson et al.,
1988; Portavella, 2004; Vindas et al., 2014) have demonstrated
the ability to learn from omission. By omission learning, I
refer to the ability to learn an association based on a predicted
event not occurring, as opposed to learning from a stimulus
presentation or offset. In contrast to vertebrates, invertebrates
seem to fail on such omission learning studies, and only learn
from stimulus offsets (Abramson et al., 1988; Wenner and Wells,
1990; Sanderson et al., 2013; Abramson and Wells, 2018).

Evidence That Vicarious Trial and Error, Episodic
Memory, and Counterfactual Learning Emerged in
Early Mammals
VTE is a behavior whereby an animal pauses at choice points
and toggles its head back and forth, and ‘‘plays out’’ each
option vicariously (reviewed in Redish, 2016). Recording studies
have corroborated the hypothesis that animals are playing out
these options vicariously, hippocampal place cells are shown
to vicariously encode place sequences of each possible path
(Johnson and Redish, 2007; Gupta et al., 2012). VTE has
been shown across rodents, nonhuman primates, and humans
(reviewed in Redish, 2016). Further, uniquely mammalian
structures, such as the prefrontal cortex, are highly implicated
in such VTE behavior. In contrast, I am not aware of any
studies that have shown VTE behavior in non-mammals. Taken
together, this is suggestive that VTE emerged in early mammals.

Counterfactual learning is when an animal learns from an
alternative choice they could have made but did not actually
make. Learning from counterfactuals has been shown in rodents
(Lewis, 2014; Steiner and Redish, 2014), nonhuman primates
(Abe and Lee, 2011), and humans (Zhang et al., 2015). Further,
uniquely mammalian structures, such as the orbitofrontal cortex,
are highly implicated in counterfactual learning (Gilovich and
Medvec, 1995; Camille et al., 2004; Coricelli et al., 2005, 2007). In
contrast, I am not aware of any studies that have demonstrated
counterfactual learning in non-mammals. Taken together, this
is suggestive that counterfactual learning emerged in early
mammals.

A key test of the ability to engage in episodic memory is
whether an animal can answer an unexpected Question about its
own past. The ability to answer such unexpected Questions has
been shown in mammals including dogs (Fugazza et al., 2020),
rats (Crystal, 2013), and nonhuman primates (Menzel, 1999).
The neural substrate of such episodic memory seems to be the
hippocampus reactivating distributed representations across the
neocortex (Eichenbaum et al., 2007). Such episodic memory has
also been shown in pigeons (Zentall et al., 2008) and cephalopods
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(Billard, 2020). However, birds are poor model organisms for the
amniote common ancestor, and cephalopods are a poor model
organism for the bilaterian common ancestor; both seem to
have independently evolved many unique brain structures (Roth,
2015). I am not aware of any tests of episodic memory, whereby
animals answer unexpected Questions, in amniotes outside of
birds and mammals. Taken together, this is suggestive, but far
from conclusive, that this type of episodic memory emerged in
early mammals.

One might think that vicarious trial and error is a requirement
in order for ‘‘spatial maps’’ to be used by animals for map-based
navigation, but this seems to not be the case. For example, fish
do not show VTE behavior, but can remember locations in three-
dimensional space (Karnik and Gerlai, 2012; Burt de Perera et al.,
2016; Lucon-Xiccato and Bisazza, 2017; Wallach et al., 2018),
and can generate novel paths to the goal, even if it requires
losing sight of that goal and swimming further away from it
at first (Gómez-Laplaza and Gerlai, 2010). This demonstrates
some ability to generate spatial maps, some lightweight ‘‘working
memory’’ (staying on task even though losing sight of a goal), and
object permanence (Sovrano et al., 2018).

If much of the presumably intelligence spatial navigation tasks
can be performed by animals without VTE, then what is the
benefit of VTE? Some suggestive evidence can be seen in the
superior performance of mammals on certain tasks requiring
‘‘hard choices.’’ For example, mammals tend to substantially
outperform non-mammal vertebrates on detour tasks, where an
animal has to make a roundabout path around a barrier in order
to get to a goal (MacLean et al., 2014; Gatto et al., 2018; Macario
et al., 2020). Mammals also seem to outperform non-mammals in
delayed gratification tasks, whereby they have to resist choosing
an immediate small reward in order to get a delayed larger
reward (Stevens et al., 2010). Some evidence also suggests that
early diverging vertebrates such as fish cannot learn to zero-shot
update the reward value of places (Beyiuc, 1938).

Evidence That Anticipating Future Needs, Theory of
Mind, and Learning Through Observation Emerged in
Early Primates
The Bischof-Kohler hypothesis states that only humans can take
actions to alleviate a need that they will have in the future, but
do not currently feel (Bischof-Köhler, 1985). However, evidence
now suggests that in addition to humans, many nonhuman
primates are also capable of this ability (McKenzie et al.,
2004; Mulcahy and Call, 2006; Naqshbandi and Roberts, 2006;
Janmaat et al., 2014). In contrast, non-primate mammals such
as rodents have been shown to be unable to anticipate future
needs (Naqshbandi and Roberts, 2006). Consistent with this, the
substrates of the ability to anticipate future need states and use
them to change current decisions seem to be uniquely primate
structures, such as the dorsolateral prefrontal cortex (McClure
et al., 2004; Kim et al., 2008; Hare et al., 2009). This is suggestive
that the ability to perform this task emerged in early primates.

Theory of Mind (ToM) refers to the ability to take the
perspective of others and understand their intentions and
knowledge. It is still controversial whether any animals outside
of humans contain this ability. But the balance of evidence

seems to favor the idea that many primates indeed have
ToM, even if it is not as robust as that of humans. Diverse
species of nonhuman primates pass ‘‘false belief tests’’ (Bräuer,
2014; Krupenye et al., 2016; Smith, 2016; Kano et al., 2019).
Further, nonhuman primates can distinguish between accidental
and intentional actions and can distinguish between someone
‘‘unwilling’’ to do an action and someone ‘‘unable’’ to do an
action (Call and Tomasello, 1998; Tomasello et al., 2003; Call
et al., 2004; Tomasello et al., 2005). Further, the two neural
structures most implicated in the theory of mind, the superior
temporal sulcus and the temporoparietal junction, seem to have
uniquely emerged in early primates (Kaas, 2009). In contrast, the
bulk of studies on non-primate mammals conclude that they do
not have ToM (Byrne et al., 2001; Bräuer, 2014; Aldhous, 2015).
There is some evidence of ToM in birds (Bugnyar et al., 2016),
but as we have discussed, birds are a poor model organism for
the amniote common ancestor. Taken together, this is suggestive
that theory of mind, even in a primitive form, emerged in early
primates.

Learning skills through observation has been demonstrated
across diverse species of nonhuman primates (Tomasello et al.,
1987; Meunier et al., 2007; Ferrucci et al., 2019). The neural
substrate of learning through observation also seems to be
uniquely primate structures, including the STS (Perrett et al.,
1985; Puce and Perrett, 2003). A key feature of learning skills
through observation in primates is the ability to infer the
intention of movement, and not simply mirroring the movement.
Consistent with this, the mirror neurons in the premotor cortex
of nonhuman primates have been found to be selective for
abstract goals (Rizzolatti et al., 2001; Fogassi et al., 2005). There
is some evidence that fish and reptiles can learn paths through
observation (Brown, 2015; Lindeyer and Reader, 2010; Wilkinson
et al., 2010). However, this knowledge seems isolated to observing
paths and is not readily passed down in generations (Lindeyer
and Reader, 2010). Taken together, this is suggestive that learning
motor skills through observation emerged in early primates.

It should be noted that there are many highly intelligent social
behaviors that are observed across vertebrates well outside of the
primate taxa. Empathy behaviors are seen in mice (Hofer, 1996;
Bartal et al., 2011; Mogil, 2012; Rennie et al., 2013). Play has
been observed in reptiles (Kramer and Burghardt, 2010), birds
(Fagen, 1981), and mammals (Wojciech, 2009). Jealousy and
fairness preferences have been observed in mice (Douglas, 2012).
Reciprocity has been observed in fish (Brandl and Bellwood,
2015) and in mice (Viana et al., 2010). Complex understanding
and implementation of social hierarchies have been observed in
fish (Whoriskey, 1991; Grosenick et al., 2007; Reebs, 2010) and
mice (Haller and Kruk, 2006). Kin recognition has been observed
even in fish (Fricke, 1974; Spence et al., 2008; Reebs, 2010;
Spence, 2011), reptiles, and non-primate mammals (Brennan and
Kendrick, 2006). And movement imitation has been observed
in reptiles (University of Lincoln, 2014) and rats (Seyfarth and
Cheney, 2013). And even gaze following has been seen in reptiles
(Simpson and O’Hara, 2018).

But despite the impressive complexity of these social
behaviors, none of these in fact require the theory of mind or
learning through observation, and all of them can be explained
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by the valence and mapping functionality of the vertebrate brain.
Take empathy, for example, it merely requires cues of satisfaction
or dissatisfaction of conspecifics to be ‘‘hardwired’’ to elicit
similar valence responses in an individual the same way that
predator smells are hardwired to elicit fear. Consistent with this,
‘‘pain’’ neurons in rats that get activated when in pain, also
get activated when they see the pain in others (Netherlands
Institute for Neuroscience—KNAW, 2019). Kin recognition,
social hierarchies, jealousy, and play can all be explained in
the same way—through cue recognition and hardwired valence.
Gaze following and movement imitation can be explained as
merely an impressively complex reflex.

Evidence That Language and Music Emerged in Early
Humans
The key features of human language that differentiates it from
other forms of animal communication seems to be the ability
to ‘‘name’’ objects and organize these names with ‘‘grammar’’
(Berwick and Chomsky, 2017; Terrace, 2019). Despite many
attempts, non-human primates have been shown to be unable to
learn such human-like language (Terrace et al., 1979; Thompson
and Church, 1980). A key feature in the ontogenetic development
of language learning in humans seems to be ‘‘joint attention,’’
whereby a child and a parent can jointly attend to the same object,
enabling the process of ‘‘naming’’ (Carpenter and Call, 2013).
Attempts to demonstrate joint attention in nonhuman primates
have shown negative results (Warneken and Tomasello, 2006;
Warneken et al., 2006).

Additionally, music seems to be a human universal, shown
across all human cultures (Brown and Jordania, 2011). A key
feature of music is the ability to engage in ‘‘beat-based timing,’’
whereby a human can tap to a beat. Despite this being trivial
in humans, nonhuman primates cannot learn to synchronize
taps with an auditory or visual metronome, even after a year
of training (Zarco et al., 2009; Honing et al., 2012). Nonhuman
primates also struggle with relative pitch perception more than
humans do, struggling to generalize melodies to transpositions
(Hulse et al., 1984; D’Amato, 1988; Ralston and Herman, 1995;
Ghazanfar, 2002).

Taken together, this is suggestive that language with words
and grammar, along with key features of music, emerged in early
humans.

Evidence for Proposed Function of
Specific Brain Modifications
Evidence That the Brain of Early Bilaterians
Contained Valence Neurons and Neuromodulators
Which Together Enabled Taxis Navigation
Many of the sensory neurons within early diverging bilaterians
such as C. elegans can be interpreted as valence neurons. Many
sensory neurons in C. elegans are directly modulated by internal
states and thereby seem to directly encode valence as opposed
to raw sensory information: hunger peptides modulate responses
of neurons sensitive to food smells, pain, and various aversive
smells (Davis et al., 2017; Lau et al., 2017; Rhoades et al., 2019).
Further, temperature-sensitive neurons do not actually reliably
encode temperature, but rather activate when a temperature rises

above a homeostatic baseline—in other words, it is encoding the
‘‘negative valence’’ of temperature, not temperature per se (Luo
et al., 2014). Food smells that trigger approach when hungry
often have no effect whenC. elegans is satiated (Davis et al., 2017).
In C. elegans, some cues like carbon dioxide, which can signal
both food as well as predators, shift from attractive when hungry
to aversive when well fed depending on hunger state (Rengarajan
et al., 2019).

It is likely that the cnidarian-bilaterian common ancestor
had neurons that also contained neuropeptides that signaled
internal states (Jekely, 2013), but the use of these peptides for
such coordinated navigational decisions (locally search area,
or relocated entirely, or rest) seems to either be unique to
or have been highly elaborated in Bilateria. In Cnidaria, such
neuropeptides seem to have primarily modulated independent
reflexes, such as the likelihood of nematocyst release (Kass-
Simon and Pierobon, 2007) or the swallowing reflex (Barron
et al., 2010).

In early bilaterians, neuromodulators seem to have played
a large role in navigational decisions, especially when it came
to persisting navigational states. For example, in C. elegans,
dopamine seems to trigger dwelling behavior whereby an
animal engages in local area restricted search (Sawin et al.,
2000), while octopamine seems to trigger roaming behavior
whereby an animal relocates entirely (Churgin et al., 2017).
Throughout Bilateria, neuromodulators have a remarkably
consistent template for triggering affective states (Fellous, 1999;
Lövheim, 2012).

The neural mechanisms of associative learning are remarkably
conserved across bilateria. Across bilateria, animals use cAMP
as well as NMDA and AMPA receptors in learning processes
(Kandel, 2001, 2006; Dubnau et al., 2002; Farooqui et al., 2003;
Glanzman, 2010; Hawkins and Byrne, 2015). And further, ‘‘third
factor’’ neuromodulators such as dopamine and serotonin are
involved in gating both presynaptic and postsynaptic learning
processes across both vertebrates and invertebrates including
diverse invertebrates such as crickets (Hammer and Menzel,
1998; Farooqui et al., 2003; Vergoz et al., 2007), fruit flies (Burke
et al., 2012; Liu et al., 2012), honeybees (Hammer and Menzel,
1998; Farooqui et al., 2003; Vergoz et al., 2007), and C. elegans
(Kusayama and Watanabe, 2000; Qin and Wheeler, 2007).

Further consistent with shared mechanisms of learning and
affect, even early diverging invertebrates, such as C. elegans and
planarians, show addiction to similar chemicals that manipulate
dopamine and other monoamines as vertebrates do (Kusayama
and Watanabe, 2000; Barron et al., 2009, 2010; Devineni and
Heberlein, 2009; Kaun et al., 2011; Søvik and Barron, 2013).

Evidence That the Pallial-BG-Tectal Network
Performed the Function of Model-Free
Reinforcement Learning in Early Vertebrates, and
Was Applied to Enable Map-Based Navigation,
Interval Timing, and Omission Learning
The proposed ‘‘breakthrough’’ of early vertebrates was the
emergence of model-free RL of the kind which included
spatial maps and sensitivity to interoceptive information. Studies
of the function of the structures that emerged in early
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vertebrates corroborate this idea. Substantial evidence suggests
that homologous regions of the pallium generate a spatial
map across vertebrates. The ability to navigate spatial maps is
abolished when hippocampus homologs (present in the pallium)
are lesioned across many early diverging vertebrates (reviewed in
Murray et al., 2018), including goldfish and turtles (López et al.,
2003; Durán et al., 2010; Broglio et al., 2015). Further, border
cells, head direction cells, place cells, and velocity cells have been
observed in the hippocampus-like structures across vertebrates,
including the lateral pallium of early diverging vertebrates such
as teleost fish (Vinepinsky et al., 2018, 2020), which is what
you would expect if the lateral pallium were the homolog of
the hippocampus and the neural substrate of the ‘‘spatial map’’.
Further, lesions to hippocampal homologs that impair spatial
navigation also impair time perception (Meck et al., 1984, 1987,
2012; Melgire et al., 2005; Balci et al., 2009; Yin and Meck, 2014;
Lucon-Xiccato and Bisazza, 2017), consistent with the idea that
the pallium incorporated representations of both time and space.
Time cells have also been found in the hippocampal complex
(Eichenbaum, 2014), and time has been shown to be represented
in the hippocampus as a map, just as space is (Oprisan et al.,
2018). The cerebellum, another uniquely vertebrate structure, is
also shown to be critical to absolute timing tasks (reviewed in
Breska and Ivry, 2016).

Temporal difference learning signals are also observed in
common vertebrate structures such as midbrain dopamine
neurons, lateral habenula, and the basal ganglia across
vertebrates, including early diverging vertebrates such as
teleost fish (Li, 2012; Cheng et al., 2014). Further, the specific
circuitry of the basal ganglia, which is conserved even in the
earliest diverging vertebrates such as the lamprey, has been
shown to be entirely consistent with a class of model-free
learning algorithms called ‘‘actor-critic’’ models (Grillner and
Robertson, 2016).

The specific neural substrates of avoidance and omission
learning also corroborate the idea that the pallial-BG-tectal
implemented a model-free RL algorithm. In model-free RL, we
would expect avoidance learning to work in the following way.
When an animal experiences unexpected pain, there should
be a decline in dopamine (negative reward prediction), and
they are driven to escape via amygdala-brainstem circuitry.
Whenever pain is offset, this should lead to rebound excitation
of dopamine (positive reward prediction, or ‘‘relief’’). If specific
actions consistently precede the offset of pain, this dopamine
burst will drive plasticity in striatal circuits, which learn the
contingency between a CS predictive of pain and the dopamine
reward of relief. If this happens enough times, the CS will
cease to be scary (pavlovian responses fade) and will simply
drive the avoidance behavior that has been reinforced. Such an
interpretation of avoidance learning has been suggested by others
(Oleson et al., 2012).

The evidence supports exactly the above mechanism for
how avoidance learning works in vertebrates. First, as expected
from the above model, it has been shown that the basal
amygdala to basal ganglia circuitry is required for active
avoidance but not escape (which requires a basal amygdala to
central amygdala circuit; Bandura and Rosenthal, 1966; LeDoux

et al., 2016). Second, it is shown that during initial learning
dopamine declines in the striatum, but after avoidance is well
learned, dopamine increases, and the increase in dopamine
is predictive of the performance of avoidance (Oleson et al.,
2012). Crucially, this dopamine does not increase in the striatum
if the pain is always inescapable. It was even shown that
stimulating dopamine neurons during aversive cue increases
active avoidance performance (Wenzel et al., 2018) while
inhibiting dopamine in the striatum prevents avoidance (Wenzel
et al., 2018). Third, it has been shown that pain or other noxious
stimuli offset drives dopamine bursts in the striatum (Navratilova
et al., 2015). Fourth, it explains why pavlovian fear responses
fade while avoidance can maintain itself (Annau and Kamin,
1961; Kamin et al., 1963; Blanchard and Blanchard, 1969; Starr
and Mineka, 1977; Kapp et al., 1979; Mineka, 1979; Bolles and
Fanselow, 1980). And fifth, it is shown that avoidance responses
seem to show signs of being habitual (extensive avoidance
training makes the amygdala not required for avoidance anymore
(Lázaro-Muñoz et al., 2010), although still being necessary for the
acquisition (Choi et al., 2010).

This interpretation of the pallial-BG-tectal system is
consistent with others who similarly suggest these structures
together implement a model-free learning algorithm (Joel et al.,
2002; Stephenson-Jones et al., 2013; Grillner and Robertson,
2016).

Evidence That the Neocortex Served the Function of
Enabling Internally Invoked Simulations in Early
Mammals, Which Was Applied for VTE,
Counterfactual Learning, and Episodic Memory
The specific proposed model of ACC-sensory function presented
in this article is consistent with various observations. There is
emerging consensus that the neocortex, especially the sensory
cortex, implements some form of a generative model (reviewed
in Kersten et al., 2004; Knill and Pouget, 2004; Parr and Friston,
2018). Consistent with such a generative model, imagining a
stimulus activates the same exact representations in the sensory
neocortex as the stimulus itself (O’Craven and Kanwisher, 2000;
Doll et al., 2015; Pearson et al., 2015). Further, lesions to specific
areas of the sensory cortex create impairments both in perception
and imagination within the same modality (Bisiach and Luzzatti,
1978; Farah et al., 1992).

There is less consensus regarding the function of the
prefrontal cortex, which is further confused by the fact that the
nomenclature of prefrontal regions in rodents often confuses the
homology of these regions between rodents and primates. Recent
research suggests that PL, IL, cg1, and cg2 regions of the rat
prefrontal cortex are all homologous with the anterior cingulate
cortex and medial cingulate cortex of primates (Laubach et al.,
2018; van Heukelum et al., 2020). Through this lens, emerging
evidence is consistent with the proposal that the frontal cortex
builds a model of intent, which is used to trigger internal
simulations.

For example, lesion studies provide evidence that the
prefrontal cortex triggers internally invoked simulations in
rodents: frontal lesions create impairments in all three proposed
forms of internally invoked simulations, including vicarious trial

Frontiers in Neuroanatomy | www.frontiersin.org 18 August 2021 | Volume 15 | Article 693346

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Bennett The Five Breakthroughs Model

and error, episodic memory, and counterfactual learning. More
specifically, rodents with lesioned or inactivated prefrontal areas
reduce their vicarious trial and error behavior (Schmidt et al.,
2019), no longer have goal representations in the hippocampus
(Ito et al., 2015), and are impaired in episodic memory tasks
(Frankland et al., 2004). Evidence also suggests rats with frontal
lesions become impaired at causal reasoning tasks, consistent
with an inability to engage in counterfactual learning (Jones et al.,
2012). Frontal lesions also make rodents uniquely impaired at
spatial navigation tasks that require preplanning (Granon and
Poucet, 1995). Rodents with frontal lesions struggle to stay on
task in an ongoing plan and often do actions out of sequence
(Seamans et al., 1995). Lesions of some of these cingulate
regions in rats impair their ability to incorporate ‘‘effort’’
into their decision-making, as if they are unable to actually
imagine how hard taking an action would be (Walton et al.,
2003; Schweimer et al., 2005; Hu et al., 2021). Disconnecting
areas of the cingulate from the amygdala in rats has the same
effect (Floresco and Ghods-Sharifi, 2006). Further, temporarily
inhibiting the hippocampus during tests where mice are asked to
recall episodic memories abolishes their ability to do so (Crystal,
2013), consistent with the model whereby the frontal cortex
makes inquiries for an episodic memory through its projections
to the hippocampus.

Recording studies within the prefrontal cortex of rats also
show evidence of modeling ‘‘intent’’. In complex tasks sequences,
ensembles of neurons in the prefrontal areas of rats become
highly selective for the specific places in the task sequence
and reliably track progress towards imagined goals (Cowen and
McNaughton, 2007; Fujisawa et al., 2008). Further, in working
memory tasks when rats must do tasks from memory without
the presence of any cues to follow, neurons in the prefrontal
cortex show delay activity (Baeg et al., 2003). The observation
that the prefrontal cortex of rodents, such as the ACC, becomes
particularly activated by surprise (Bryden et al., 2011) and error
(Totah et al., 2009) is consistent with the model whereby during
hard choices, the ACC pauses behavior and triggers internally
invoked simulations to play out possible futures and resolve any
conflicts or errors.

Even primates, who have many more prefrontal regions,
still have these more ancient agranular frontal regions such
as the ACC, which is homologous to most of the prefrontal
cortex of non-primate mammals (Laubach et al., 2018; van
Heukelum et al., 2020) and share many of these functions.
The ACC in humans also gets uniquely activated during
‘‘errors’’ (Dehaene et al., 1994) and conflict (Carter et al.,
1998; Braver et al., 2001). The ACC in humans also seems
to encode locations in task sequences (Koechlin et al., 2002).
Single neuron recordings of ACC within nonhuman primates
show single neuron level selectivity for different actions
(Nakamura et al., 2005), as well as selectivity for the serial
order of tasks irrelevant of the actual movements made
(Procyk et al., 2000; Procyk and Joseph, 2001). In humans,
hippocampal lesions also create severe impairments both in
the ability to recall autobiographical events and imagining
potential future events (Addis et al., 2007; Hassabis et al.,
2007). ACC lesions in nonhuman primates also impair the

ability to stay on task during delay periods (Rudebeck et al.,
2014).

The supposed ‘‘default mode network,’’ consisting of
the mPFC, ACC, hippocampus, and the posterior cingulate
all become uniquely active both during the retrieval of
autobiographical memories as well as during imagining potential
futures (Hassabis and Maguire, 2009; Martin et al., 2011;
Andrews-Hanna et al., 2014b). Although some areas of the
default mode network in primates include uniquely primate
areas (such as granular prefrontal cortex), the DMN in primates
also includes more ancient areas such as the ACC, which
is also part of the purported DMN in rodents (Lu et al.,
2012; Stafford et al., 2014; Grandjean et al., 2020), suggestive
that such a network was present even in the very early
neocortex.

It is interesting to note how many behavioral abilities that
are attributed to the neocortex are readily performed by many
animals that do not have a neocortex. Take object recognition
for example. Complex object recognition, even of human
faces, has been shown across phyla, including fish (Newport
et al., 2016; Schumacher et al., 2016). Object recognition that
is insensitive to changes in rotation and transformation has
also been shown across non-mammalian phyla, also including
fish (Newport et al., 2018). Object identification despite
occlusion, demonstrating inference, has also been shown across
non-mammalian phyla, including fish (Sovrano and Bisazza,
2007). However, consistent with the proposed function of the
neocortex, mammals seem to be unique in their use of ‘‘mental
rotation’’ to solve object recognition tasks. Mental rotation has
been suggested by studies in monkeys, humans, and sea lions
(Mauck and Dehnhardt, 1997), and negative results have been
found in pigeons (Hollard and Delius, 1982). This would again
represent the usage of such ‘‘simulation’’ functionality of the
neocortex.

If simulating is so adaptive, then why did it only evolve in
mammals and not in non-mammal vertebrates? One possible
explanation is the fact that early mammals were likely arboreal
species (Fröbisch and Reisz, 2009). Navigating tree branches
with far eyesight presents unique challenges and evolutionary
pressures not previously experienced: namely, irreversible
choices. As a small animal living in trees, they had to plan
their route well in advance when navigating across branches.
And it is likely they had to very regularly experience novel
branches. This perhaps created pressure for ‘‘vicarious trial
and error’’. Consistent with this, computational models have
found that the usefulness of ‘‘planning’’ is directly tied to visual
range. Visual range in water is so poor that computational
models suggest planning in water is barely useful at all (Mugan
and MacIver, 2020). However, inconsistent with this proposal
is the fact that there are plenty of invertebrate and reptilian
arboreal animals without the neocortex. Another hypothesis,
as suggested by Mugan and MacIver (2020), is that many
intellectual abilities occurred only in mammals due to the
unique evolution of endothermy, which enabled much faster
neural processing than when ectothermic. The neocortical
generative model perhaps came at a high computational cost,
and as such, without endothermy, nonmammalian vertebrates
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were prevented from garnering this adaptation. Consistent
with this, the non-mammal vertebrates that demonstrate the
most impressive intellectual abilities, birds, also seem to have
evolved both endothermy (Walter and Seebacher, 2009) and
neocortical-like structures (Tosches, 2021) through their own
convergent evolution.

Evidence That the gPFC-PSC Network Performed the
Function of “Mentalizing” in Early Primates, and Was
Similarly Applied for Anticipating Future Needs,
Theory of Mind, and Learning Through Observation
When identifying the neural substrates of mentalizing, it is
important to draw a distinction between emotional contagion
(e.g., ‘‘emotional empathy’’) and mentalizing (e.g., ‘‘theory of
mind’’; Shamay-Tsoory, 2011). Each is a different process,
and evidence suggests they have separate neural substrates.
Emotional contagion is the process of reflexively adopting the
emotional state of a conspecific based on various cues that reveal
their emotions. In contrast, mentalizing is the process of actively
considering another’s perspective, knowledge, or emotions by
imagining oneself in another’s shoes. Emotional contagion
has been shown in non-primate mammals such as rodents
(Langford, 2006) whereas, as discussed above, mentalizing seems
to be unique to primates. Consistent with this, the key frontal
substrate for emotional contagion seems to be the ACC, which is
homologous to regions of the frontal cortex in early mammals.
For example, certain areas of the ACC are activated both by
one’s own experience of pain and by watching a conspecific
experience pain (Derbyshire, 2000; Jackson et al., 2006). In
contrast, the neocortical areas most commonly implicated in
mentalizing and theory of mind are not the ACC but instead
contained within the gPFC-PSC network. More specifically,
metanalysis that has reviewed a multitude of imaging studies
have primarily implicated the dmPFC (BA 8, 9), amPFC (BA
10), TPJ, and STS as areas that are uniquely activated by tasks
that require the theory of mind (Carrington and Bailey, 2009;
Van Overwalle and Baetens, 2009). The idea that emotional
contagion evolved first, subserved by older frontal regions, and
ToM then emerged later, subserved by newer primate frontal
regions, has similarly been proposed by other (de Waal, 2008).
Further consistent with this, damage to granular areas of mPFC
leaves the ability to simulate past or future imagined scenes
intact but impairs the ability to imagine yourself in that scene.
In contrast, hippocampal lesions impair the ability to simulate
complex scenes but leaves the ability to imagine yourself in those
scenes intact (Kurczek et al., 2015).

Several studies have shown a linear relationship between the
volume of orbital PFC, medial PFC, and social network size
(Powell et al., 2010; Lewis et al., 2011; Powell et al., 2012). It
has also been observed that gray matter specifically in mPFC
increases when macaques move from smaller to larger social
groups (Sallet et al., 2011). Further, one of the only frontal regions
that is disproportionately larger in humans than other primates
is BA 10 (Semendeferi et al., 2001). All of this is consistent with
the concept that these areas of gPFC subserve mentalizing, and
that mentalizing was a key feature in supporting larger social

groups in early primates and even larger social groups in early
humans.

The above evidence implicates only a relatively small portion
of the granular prefrontal cortex (BA 8, 9, 10) is related to the
process of mentalizing. This suggests that the general function
of the granular prefrontal cortex is not mentalizing, but rather
mentalizing is merely a function subserved by specific areas of
the granular prefrontal cortex. However, a broader examination
of the different types of tasks involved in mentalizing implicates
a much broader suite of areas within gPFC. For example, within
‘‘ToM’’ it has been argued that there is a dissociation between
‘‘affective ToM’’ and ‘‘cognitive ToM’’ (Shamay-Tsoory and
Aharon-Peretz, 2007). Affective ToM refers to the ability to take
the emotional perspective of another, whereas cognitive ToM
refers to the ability to take the physical sensory perspective
of another. When examining the neural substrates of these
different types of ToM, broader regions of gPFC get implicated
in addition to just medial BA 8, 9, and 10. Specifically, evidence
suggests that the vmPFC (BA 11, 12, 14) is specifically necessary
for the affective aspects of ToM whereas dlPFC (BA 44, 45,
46) is specifically necessary for the cognitive aspects of ToM.
vmPFC lesions selectively impair affective ToM and not cognitive
ToM (Shamay-Tsoory and Aharon-Peretz, 2007)—although
admittedly given that this was examined in humans, some of
these lesions may have included areas of standard mentalizing
mPFC (BA 8, 9, 10) as well as areas of the ACC (BA 24, 32). In
contrast, dlPFC disruption seems to selectively impair cognitive
ToM (visual perspective taking; Conson et al., 2015; Qureshi
et al., 2020) but not affective ToM (Kalbe et al., 2010). Disrupting
the right TPJ function also disrupts visual perspective taking,
while disrupting dmPFC does not (Martin et al., 2020). Some of
these dissociations may explain why there is evidence that some
individuals with extensive lesions of ACC and mPFC can retain
features of self-awareness (Philippi et al., 2012) and theory of
mind (Bird et al., 2004).

Another dissociation may be in what specific type of inquiry
an individual is making into another’s mind. fMRI evidence
suggests that dmPFC and vlPFC get more activated when
considering how to make an observed character feel better than
when merely trying to identify the observed character’s emotion
(Reniers et al., 2013). On the other hand, the same study found
that the dlPFC gets more activated when a participant is asked
to ‘‘imagine how they themselves would feel’’ in an observed
character’s situation than when merely trying to identify the
observed character’s emotion.

There may be even more nuanced dissociations between
the roles of various areas of the granular prefrontal cortex
and various features of mentalizing. When comparing
activation during first-person perspective taking to third-
person perspective taking, areas of vlPFC (BA 44) and
premotor cortex (BA 6) seem to be uniquely implicated in
third-person perspective taking (David et al., 2006). Further,
fMRI evidence suggests that amPFC (BA 10) builds models of
person-specific theory of mind, while dmPFC (BA 8 and 9)
is used for general processes of the theory of mind (Welborn
and Lieberman, 2015). Other fMRI evidence suggests that
amPFC is activated in any self-referential thinking, and only
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selectively during the considering of one’s own mental state (or
presumably someone elses’), does dmPFC also become activated
(Andrews-Hanna et al., 2010, 2014a). Left dlPFC may be specific
for considering the mental state of others, while right dlPFC may
be specific for considering the mental state of yourself (Otsuka
et al., 2011). Yet another dissociation that has been proposed
is that the TPJ is responsible for making mental inferences
about others (such as about goals or beliefs), while the mPFC
is responsible for attributing overall personality traits about
yourself and others (Van Overwalle and Baetens, 2009).

Consistent with the idea that mentalizing about yourself is
repurposed for the task of mentalizing about others, these same
areas of the granular prefrontal cortex also get activated when
considering your own mind state, including dmPFC (Gusnard
et al., 2001; Gallagher and Frith, 2003; Amodio and Frith, 2006;
Gilbert et al., 2006; Ochsner, 2008; Van Overwalle, 2009; Bzdok
et al., 2012; Moran et al., 2012), amPFC/vmPFC (Lane et al.,
1997; Phan et al., 2004; Lotze et al., 2007), dlPFC (Otsuka et al.,
2011), and TPJ (Kelly et al., 2014). The general idea that there are
common substrates, especially in mPFC, for imagining yourself
in a future or past situation as well as for imagining being
in the mind of another has been reviewed elsewhere (Buckner
and Carroll, 2007; Jenkins and Mitchell, 2011). When evaluating
your own personality traits or receiving evaluations of yourself
by others, the same mentalizing network in mPFC activates
(Ochsner et al., 2005; Gilbert et al., 2006). Further consistent with
this idea that theory of mind of others is ‘‘bootstrapped’’ on a
generative model of yourself, is the fact that the concept of ‘‘self’’
emerges first in child development before the theory of mind
emerges (Rochat, 1998; Ritblatt, 2000; Keenan et al., 2005).

The argument in this article is that the overall function of
mentalizing was not only applied to understanding the cognitive
and emotional states of yourself and others (‘‘theory of mind’’),
but also for anticipating future needs. The idea being that
mentalizing about yourself in the future is the fundamental
mechanism by which you can anticipate what your intentions
and desires will be in that future situation, and thereby generate
behaviors necessary for fulfilling those needs. A multitude of
findings are consistent with the idea that the areas of the
gPFC-PSC network specific for the cognitive theory of mind, such
as the dlPFC, seem to also be key substrates for anticipating these
future need states. Damage to the dorsolateral prefrontal cortex
(dlPFC) dramatically impairs performance on tasks requiring
abstract goal representations such A-not-B tasks (Diamond and
Goldman-Rakic, 1989), consistent with the idea that dlPFC is the
neural substrate of such goal representations and that it cascades
these goals down the motor hierarchy where representations are
progressively more ‘‘habitual’’. dlPFC uniquely activates when
considering future rewards but not present rewards (McClure,
2004; Tanaka et al., 2004; Berns et al., 2007; McClure et al., 2007;
Kim et al., 2008). dlPFC is selectively activated when choosing a
delayed reward over an immediate reward (McClure et al., 2004,
2007; Weber and Huettel, 2008). It is activated when avoiding
temptation such as when dieters exert self-control (Hare et al.,
2009). Damage to dlPFC leads to impairment in the ability
to give up immediate rewards for future ones (Figner et al.,
2010). And temporary inactivation of the dlPFC impairs people’s

ability to forgo an exciting high-risk high reward option for a
lower-reward lower-risk option (Knoch et al., 2006). Evidence
also suggests that some types of ‘‘rule-based’’ categorization are
unique to primates—consistent with the idea that gPFC enables
the presentation of abstract goals and intentions (Soto and
Wasserman, 2014).

This article also argues that the function of mentalizing in the
gPFC-PSC network was also applied to enable learning through
observation. There are several pieces of evidence for this. The
same neurons in the premotor cortex activate for the ‘‘intentions’’
within yourself as when observing those same intentions in
others (Amodio and Frith, 2006)—these have been called ‘‘mirror
neurons.’’ Further, such mirror neurons have been identified
in nonhuman primates (Gallese et al., 1996; Rizzolatti et al.,
1996; Fogassi et al., 2005) while I am not aware of reports of
mirror neurons in non-primate mammals. Although there is still
controversy surrounding whether these mirror neurons are in
fact modeling others’ movements (Hickok, 2009; Churchland,
2011).

Taken together, the above evidence suggests that a key, if
not the primary, function of the gPFC-PSC network was to
enable mentalizing—defined as building a generative model
of one’s own mind state, inclusive of intentions, emotions,
and knowledge. And this function was thereby applied in
numerous adaptive ways, such as modeling the mind of others
(theory of mind), anticipating future needs, and learning through
observation.

Evidence That Modifications to the Arcuate
Fasciculus Enabled Both Language and Music in
Early Humans
There are compelling parallels between the connectivity of the
AF-BG network and modern machine learning language models.
The most popular language models, which have been shown
to be capable of remarkably flexible sentence production and
completion, are long-short-term memory (LSTM) models. LSTM
models have ‘‘working memory’’ gates whereby the model can
learn to maintain ‘‘context’’ from past words and sentences to the
current word production (Mikolov et al., 2015; Dennis Singh and
Lee, 2017; Ororbia et al., 2017). This is similar to the function
proposed by frontal-cortex-basal-ganglia loops (O’Reilly and
Frank, 2006). Further, these networks are recursive, whereby the
next word is a function of the previous word, similar to the
extensive recursive connectivity of both posterior and frontal
cortex. The unique lateralization of language and music relative
to other neocortical functions may be a requirement for the rapid
sequence prediction in language and melody production.

Consistent with this interpretation of the AF-BG network,
the arcuate fasciculus, and the basal ganglia are both highly
implicated in language and music. Damage to AF impairs
fluency, comprehension, and verbal working memory (Binder
and Desai, 2011; Schomers et al., 2017). The development of
the AF is correlated to the development of language abilities in
children (Friederici, 2011; Yeatman et al., 2011; Skeide et al.,
2016; Goucha et al., 2017; Schomers et al., 2017). The strength of
connections in AF is correlated with word learning performance
(Lopez-Barroso et al., 2013). It has long been known that
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language related tasks such as sentence generation activate and
require a functioning Broca’s area, Wernick’s area, and the basal
ganglia (Brown et al., 2006). However, less appreciated is the fact
that music tasks such as melody generation activate the exact
same network (Koelsch et al., 2002; Brown et al., 2006), although
with a bias towards the right hemisphere, while language is biased
towards the left hemisphere (Sammler et al., 2015). Consistent
with a common neural implementation, children with language
impairments also show musical impairments (Jentschke et al.,
2008).

The direct projection from the motor cortex to laryngeal
motoneurons, which is not found in nonhuman primates, is
clearly the projection by which humans can control speech
sounds (Simonyan and Horwitz, 2011). However, this was likely
an addition after language had already emerged (Hewes et al.,
1973; Corballis, 2002)—and not the fundamental modification
that enabled language. Evidence for this can be seen in the fact
that complex gestural languages (with words and grammar) are
seen in deaf communities all over the world, none of which
requires these descending laryngeal projections. Further, the
neural substrates of such gestural language are highly overlapping
with those of vocal-verbal language, implying a shared circuitry
for ‘‘language,’’ independent of the modality (Neville et al.,
1997). As such, I hypothesize that the big breakthrough that
unlocked music and language was in fact the AF-BG network,
and direct control of laryngeal motor neurons came later,
enabling verbal language to replace the shorter-range gestural
language.

DISCUSSION

Here I have argued that the proposed ordered set of five
breakthroughs provides a first approximate explanation of
a diverse set of both brain and behavioral modifications
through major milestones in human brain evolution. This model
of brain evolution provides a useful simplification through
which to interpret brain modifications and the progressive
complexification of behavior through phylogenetic refinement
(Cisek, 2019).

Caveats
By summarizing such a long history into only a handful
of ‘‘breakthroughs,’’ I am undeniably simplifying the actual
story. The objective is to provide a view of the ‘‘forest’’ of
evolution at the cost of describing ‘‘the trees’’. This approach
will inevitably miss some important changes in brains and
behavior. However, as argued above, a surprisingly broad set
of brain structures and behaviors can be understood through
a remarkably small number of ‘‘breakthroughs.’’ Perhaps this
is not so surprising, given that perhaps brain evolution often
occurred in fits and starts, where some adaptive structure was
stumbled upon, rapidly elaborated on, and then brains remained
relatively stable for a long period of time afterward. This can
be seen simply in the transition from our primate ancestors to
homo sapiens. For 30 million years primate brains remained
mostly unchanged. And then, over the last 1 million years our
ancestors’ brains expanded by a multiple of three. A million years

ago humans could not speak flexible language, and 100,000 years
ago they could—this is a split second from an evolutionary
perspective.

It should also be noted that there is scant research with
identically designed behavioral tests of animals across different
phyla. This makes it both challenging and perilous to compare
behavioral abilities across distant species. Many of the behavioral
studies cited were not identically designed for each species
tested nor evaluated using the same methods for different
species, and hence such results must be interpreted with
caution. For example, the experimental designs of asking a
mouse to answer ‘‘unexpected Questions’’ from its own past
are of course subtly different from asking the same Question
of a cephalopod, who has a different sensory repertoire and
is inevitably asked the Question in a different environment.
As such, differences in results may be a consequence of the
experimental design as opposed to differences in abilities.
Further, comparative behavior research likely contains a positive
results bias—whereby negative findings in animals are reported
substantially less frequently than positive results (Fanelli, 2011).
As such, there are scant reports of negative findings in general,
and it is challenging to conclude the lack of ability in an extant
animal simply because of a lack of reports of its presence—the
absence of evidence is not the evidence of absence. As such,
many pieces of this model are currently speculative and will
require further studies comparing behavioral abilities across
taxa.

Comparison to Other Work
This work is highly inspired by others who have proposed
ordered modifications in the evolution of brains: Eva Jablonka
and Simona Ginsburg’s retelling of the evolution of learning
systems (Vredeveldt et al., 2011), Paul Cisek’s theory of
phylogenetic refinement (Cisek, 2019), and Elisabeth Murray,
Steven Wise, and Kim Garham’s work on the evolution of
memory systems (Murray et al., 2017). All three of these take an
evolutionary approach to understanding how brains work today,
by virtue of retelling the evolutionary steps by which they came
to be.

My goal in this article is to add to this corpus of work
in four ways. First, to provide an initial template and ‘‘first
approximation’’ of the entire evolutionary story of the human
brain, from the first bilaterains to the first homo sapiens.
Second, to simultaneously hypothesize the emergence of both
brain regions and adaptive behaviors that these brain structures
enabled. Third, to directly incorporate dependencies between
each sequence of changes. And fourth, to attempt to explain
broad behaviors using common neural innovations, as opposed
to specifically focusing on a type of behavior (such as learning or
memory). In this last sense, this article is in some ways an attempt
to bring together the ideas of Jablonka and Ginsburg, Cisek, and
Murray, Wise, and Garham with the evolutionary neuroscience
work of specific brain structures from Kaas (2009) and Striedter
and Northcutt (2020).

The most well-known model of brain evolution is Paul
MacLean’s Triune Brain (MacLean, 1990), where he named
the three brain systems that he argued evolved sequentially:
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the ‘‘Reptilian Complex,’’ the ‘‘Paleomammalian Complex,’’ and
the ‘‘Neomammalian Complex’’. Despite how well known the
model is, it has been highly discredited and demonstrated to
be completely wrong (Cesario et al., 2020). A key flaw in
MacLean’s model is the conceptualization of extant animals
such as reptiles or monkeys as somehow ‘‘lower’’ animals, and
humans as ‘‘higher.’’ His idea that the human brain has a
‘‘reptile brain’’ and a ‘‘monkey brain’’ within it, incorrectly
conceptualizes an extant monkey brain as being more primitive
than a human brain. The truth is of course that all extant animals
have gone through evolution for the same amount of time and
evolved from common ancestors. In contrast, the model of five
breakthroughs proposed here is crafted to discuss specifically

the evolutionary process only within the human lineage and is
not meant to be used to make comparisons to extant animals
today.
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