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Abstract

Spatial structure in biology, spanning molecular, organellular, cel-
lular, tissue, and organismal scales, is encoded through a combina-
tion of genetic and epigenetic factors in individual cells.
Microscopy remains the most direct approach to exploring the
intricate spatial complexity defining biological systems and the
structured dynamic responses of these systems to perturbations.
Genetic screens with deep single-cell profiling via image features
or gene expression programs have the capacity to show how bio-
logical systems work in detail by cataloging many cellular pheno-
types with one experimental assay. Microscopy-based cellular
profiling provides information complementary to next-generation
sequencing (NGS) profiling and has only recently become compati-
ble with large-scale genetic screens. Optical screening now offers
the scale needed for systematic characterization and is poised for
further scale-up. We discuss how these methodologies, together
with emerging technologies for genetic perturbation and
microscopy-based multiplexed molecular phenotyping, are power-
ing new approaches to reveal genotype–phenotype relationships.
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Introduction

The genetics and epigenetics of interacting cells over developmental

time give rise to organisms and their characteristics. Understanding

how genotypes give rise to phenotypes is the core objective of for-

ward genetic screening, a set of approaches that systematically per-

turb the genome and record the phenotypic consequences (Fig 1A;

Doench, 2018; Schuster et al, 2019). Genetic screens have a broad

set of applications, including uncovering fundamental biology, char-

acterizing the function of sequence variants, and identifying the

molecular targets of drug candidates. The measurement of spa-

tiotemporally resolved visual phenotypes in genetic screens, sam-

pling the vast and dynamic structural complexity of biological

systems, provides an information-rich basis to explore genotype–

phenotype relationships.

Today, many screening approaches apply targeted genotypic per-

turbations across an otherwise constant genetic background, such

that differential phenotypes can be directly attributed to the pertur-

bation. For example, consider a CRISPR-Cas9 gene knockout

(CRISPR KO) screen in which a Cas9 nuclease is directed by a

sequence-programmable guide RNA (gRNA) to a complementary

genomic target, generating mutations that ablate function of the tar-

get gene. Here, the genotype of a cell is defined by the gene that has

been targeted for loss-of-function. Following perturbation, the objec-

tive is to understand how each genotype influences cell phenotype.

The measured phenotype could take the form of a unidimensional

measurement to capture a specific feature of interest, such as rela-

tive cell fitness in a population, or a high-dimensional measurement

to capture multiple aspects of cell phenotype, like a visual pheno-

type or transcriptional state (Fig 1B). In the example CRISPR KO

screen, each gene loss-of-function could be connected to cellular

abundance as a proxy for gene essentiality.

Genetic screening approaches fundamentally differ in the way

perturbations and phenotypes are associated (Fig 1B). Strategies

can be classified into three groups: arrayed, pooled enrichment,

and pooled profiling screens. In arrayed screens, perturbations

are identified by position in a multiwell plate and phenotypic

measurements are made for each well. The logistics of working

with hundreds to tens of thousands of individual samples pose a

major challenge to many researchers’ ability to implement large-

scale arrayed screens. Pooled screens offer a solution to this prob-

lem by introducing a large number of perturbations into a single

sample. In pooled enrichment screens, cells of interest are then

enriched (e.g., by survival) and next-generation sequencing (NGS)

is used to compare the abundance of “perturbation barcodes”—

sequences that encode perturbation identity—before and after

enrichment (Fig 1C and D). In CRISPR screens, the gRNA itself

may conveniently function as a perturbation barcode. Finally, in

pooled profiling screens, phenotypic features and perturbation

barcodes are measured in each individual cell in the mixed popu-

lation (Fig 1E).

While image-based “visual” phenotypes have largely been inac-

cessible in pooled genetic screening formats, technological advances

now provide options for assaying microscopy-defined phenotypes in

pooled screens. In this review, we discuss technological advances

that enable studies of genotype-to-phenotype relationships with
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microscopy-based imaging. We provide an overview of approaches

for arrayed, pooled enrichment, and pooled profiling screens with

visual phenotypes and focus on the current suite of perturbation

technologies and microscopy-based phenotyping approaches, in

particular as they apply to pooled profiling screens. Finally, we sug-

gest a roadmap for continued development and application of

pooled profiling screens to extend the impact of microscopy-based

genetic screening.
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Microscopy-based genetic screening maps genotypes to
visual phenotypes

Arrayed screens
Arrayed screens allow the greatest flexibility in choice of perturbation

and phenotyping approaches thanks to the simplicity of perturbation

association to cell sample by position in the arrayed layout, for example

a multiwell plate (Fig 1B). This is an important contrast with pooled

screens (discussed in the following section) where more complex

designs and extra steps are necessary to deconvolute the pooled pertur-

bations. While maintaining compatibility with barcoded perturbations

that are required for pooled screens, arrayed screens can additionally

employ RNA perturbants without DNA precursors, such as small inter-

fering RNA (siRNA) or CRISPR ribonucleoproteins, and chemical pertur-

bants (Chia et al, 2010; Serçin et al, 2019). Phenotypic measurements

may be perturbation-averaged, by taking a bulk measurement of all cells

in a well, or single-cell resolution, via microscopy or single-cell sequenc-

ing approaches. Such measurements can span dimensionality from a

single fluorescent reporter to molecular omics measurements.

The simplicity and flexibility of implementation make arrayed

screens an attractive approach at relatively small scales. However,

generation and maintenance of large arrayed cell libraries is chal-

lenging, expensive, and requires particular care to limit plate-

position and plate-to-plate statistical biases. Further, when control

cells and perturbed cells are segregated in different wells, confound-

ing epiphenomena may obscure perturbation-specific effects. At

large scales, arrayed screens require complex and costly automa-

tion, large teams, and extensive validation procedures; for smaller

teams, pooled screens may be the only feasible option.

Despite the challenges, genome-wide arrayed screens have pro-

duced valuable data through large-scale efforts. For example,

Boutros et al (2004) conducted a genome-wide growth and viability

screen in Drosophila cell lines, identifying hundreds of essential

genes. And, in a genome-wide arrayed siRNA screen in human

embryonic stem cells using a fluorescent reporter of pluripotency,

Chia et al (2010) identified genes responsible for the maintenance of

pluripotency. More recently, genome-wide arrayed CRISPR-KO

screens have been performed in primary kidney fibroblasts to iden-

tify relevant factors in kidney disease (Turner et al, 2020). Arrayed

screens in their diverse forms have been reviewed in greater detail

elsewhere (Zanella et al, 2010; Boutros et al, 2015).

Pooled screens
The major advantages of pooled screens over arrayed formats are

that cell libraries can be generated, maintained, and screened as sin-

gle samples, and that perturbation effects are determined using

robust within-sample comparisons. Pooled oligo libraries encoding

genetic perturbation reagents are commercially available at flexible

scales from a range of vendors and enable a straightforward and

cost-effective path to realizing a specified cell library. In a typical

workflow, these oligos can be cloned into lentiviral packaging vec-

tors, prepared as a lentiviral library, and transduced into the screen-

ing cell line to generate the cell library, each step in a single pooled

reaction. This cell library can then be maintained and screened as a

single culture. In addition to the reduced experimental burden of

pooled screens, the handling of fewer individual cultures and the

presence of internal controls in the mixed cell populations help

reduce batch variability, avoid confounds, and improve statistical

power. Mixing differently perturbed cells throughout the same sam-

ple is a key advantage for profiling studies where the comparison of

perturbations against one another is often of interest. Despite these

advantages, achieving sufficient scale to provide reliable estimates of

genotype–phenotype associations yet challenges many pooled

screening efforts. A typical CRISPR KO screen of 20,000 genes

(roughly every single-gene knockout in the human genome) with

four gRNAs per gene with an average coverage of 200 cells per gRNA

requires obtaining data from 16 million cells. The way that pooled

screens extract perturbation-phenotype associations from a mixed

population is the critical distinguishing factor between the two cate-

gories of pooled screens: enrichment screens and profiling screens.

Pooled enrichment screens

Pooled enrichment screens employ selection for a pre-defined phe-

notype of interest to yield a scalar enrichment score for each pertur-

bation in a library. Enrichment scores are determined by NGS of

perturbation barcodes to compare their abundance in the starting

and enriched cell libraries (Fig 1B and C). As the phenotype of inter-

est determines the experimental enrichment strategy, it is necessary

to strictly define the phenotype prior to screening. While many indi-

vidual cells receive each perturbation, the enrichment score reflects

an average of the enrichment across individual cells. Thus, enrich-

ment scores describe population-averaged phenotypes, in contrast

to phenotypes measured in individually genotyped cells.

Enrichment screens can select for complex phenotypes, including

complex multiparametric image-based phenotypes; however, they

necessarily project these phenotypes into unidimensional space rep-

resented by the enrichment score. For example, viability screens

typically compress several phenotypes including cell division rate,

cell–cell signaling, tolerance of various cellular stresses, and even

adherence to cultureware, to a single “fitness score” determined by

the endpoint NGS guide abundance measurement. Genome-scale

pooled enrichment screens have become routine using

◀ Figure 1. Approaches to genetic screening.

(A) Genetic screens seek to map genotypes to the phenotypes they produce. (B) Screening methodologies capture projections of cell phenotypes. Pooled profiling screens
project individual cells into a multidimensional phenotypic space defined by the profiling method. Pooled enrichment screens project population averages into a
unidimensional phenotypic space defined by the enrichment criteria. Arrayed screens can embody either of these phenotype–genotype associations. (C) Enrichment
screens subject an initial cell library to an enrichment process to select for a phenotype of interest. Perturbation enrichment is determined by comparing the abundance
of perturbation barcodes in the cell library before and after selection using next generation sequencing. (D) Cells can be enriched through a fitness advantage,
fluorescence-activated cell sorting, or one of several approaches to isolate cells based on microscopy-defined features. (E) Profiling screens subject a complete cell library
to profiling. Individual cells are assigned both perturbations and multidimensional phenotypic measurements. (F) Single cell profiling methods for genetic screening
include single-cell sequencing approaches, CyTOF using protein barcodes, and microscopy-based phenotyping with in situ genotyping. FACS, fluorescence-activated cell
sorting; IF, immunofluorescence; scRNA-seq, single-cell RNA sequencing; scATAC-seq, single-cell assay for transposase-accessible chromatin using sequencing; CyTOF,
cytometry by time-of-flight.
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straightforward enrichment methods including those targeting fit-

ness/viability effects and fluorescence-activated cell sorting (FACS)

on the scalar signals of reporter genes or antibody stains. For exam-

ple, the Cancer Dependency Map project encompasses genome-wide

pooled fitness enrichment screens performed in 501 and 908 cancer

cell lines with RNAi and CRISPR KO perturbations, respectively

(Tsherniak et al, 2017; Pacini et al, 2021).

There exists a growing set of methods to enable the enrichment

of cells on more complex functional, molecular, and morphological

axes (Fig 1D). In addition to the now-conventional fitness advantage

and FACS methodologies, recent advances in microscopy-based

approaches have extended enrichment screens to complex optical

phenotypes including subcellular localization of biomolecules and

cell morphology. And several such approaches maintain live cells

following enrichment, an additional attractive feature enabling fur-

ther characterization of the population of interest.

One set of approaches leverages photochemical reactions to

selectively label individual cells as they are imaged with fluores-

cence microscopy. This labeling can enable enrichment of cells

based on a microscopy-defined phenotype. The Photostick method

relies on a photochemical crosslinker that enables selected cells to

remain adhered while unselected cells are enzymatically removed

(Chien et al, 2015). Several groups have also developed approaches

using selective photoconversion of fluorescent proteins based on

visual phenotypes measured with microscopy for subsequent

enrichment with FACS (Kuo et al, 2016; Hasle et al, 2020; Kanfer

et al, 2021; Yan et al, 2021). Hasle et al (2020) employed a photo-

conversion method termed visual cell sorting to screen 346 SV40

nuclear localization sequence variants across about 638,000 cells,

identifying variants with improved nuclear localization relative to

the wild-type sequence. Kanfer et al (2021) used a photoactivatable

fluorescent protein to label cells for FACS isolation with TFEB local-

ization phenotypes in a genome wide screen, imaging over 12 mil-

lion cells. Yan et al (2021) screened over 11 million cells in a library

of about 6,000 perturbations, isolating cells displaying nuclear size

phenotypes through a photoactivatable fluorescent protein and sub-

sequent cell sorting.

In addition to microscopy-based approaches, specialized cell

sorters have been developed to reconstruct fluorescence or Raman

microscopy images of cells and sort cells on image-based criteria in

real time (Nitta et al, 2018, 2020; preprint: Salek et al, 2022;

Schraivogel et al, 2022). These approaches have been demonstrated

with diverse phenotypic measurements, including fluorescent

reporter localization and surface epitope immunofluorescence (IF)

in live cells and intracellular IF in fixed cells. Schraivogel

et al (2022) leveraged fluorescence image-based cell sorting to per-

form a genome-wide screen in HeLa cells to identify factors regulat-

ing the localization of p65, a key component of the nuclear factor

jB pathway. At the demonstrated flow rate, this approach would

enable genome-wide screens with 3 gRNAs per gene and 100× cov-

erage per gRNA in just 9 h of sorting time.

Robotic cell picking, microraft arrays, and optical trapping in

microfluidic chips have also been used to mechanically isolate cells

based on optical phenotypes (Piatkevich et al, 2018; Luro

et al, 2020; Wheeler et al, 2020). Piatkevich et al (2018) developed a

robotic cell picking approach to select cells based on visual pheno-

types and employed the system to perform directed evolution of flu-

orescent proteins. Wheeler et al (2020) used automated confocal

microscopy and microraft arrays to screen over 12,000 perturbations

in about 120,000 cells, identifying RNA binding proteins involved in

stress granule formation. Luro et al (2020) used a microfluidic chip

to screen genetic circuits in Escherichia coli, making live-cell mea-

surements of circuit activity with microscopy and using optical trap-

ping to isolate selected cells for genotyping.

While enrichment screens represent phenotype with an enrich-

ment score, a unidimensional and population-averaged metric, some

experimental designs for enrichment screening can expand these

capabilities. Subjecting the same cell library to multiple distinct

enrichment and readout steps will yield multiple enrichment scores

(Surdziel et al, 2017). However, obtaining each distinct enrichment

score set essentially requires performing a complete additional

screen. An exception could include the use of picking or photocon-

version methods with multiple sorting bins, though the number of

bins and/or capacity of the sorter would place a limit on the number

of simultaneous enrichments that could be performed (Hasle

et al, 2020). Additionally, the resolution of perturbation-phenotype

association can be improved by pairing perturbation barcodes with

randomized clonal barcodes. Clonal barcodes uniquely identify the

original perturbed cells such that the enrichment score of each clone

can be measured separately to segregate clonal effects and provide

some distribution-level information. Clonal barcodes have been

implemented with CRISPR-Cas9-based perturbations through the

addition of a randomized barcode to the gRNA (Schmierer

et al, 2017; Zhu et al, 2019). Clonal barcoding offers a compromise

between perturbation-averaged and single-cell resolution pheno-

types, distinguishing among some sources of cell variability, such as

genetic heterogeneity or semi-random perturbation outcomes, but

not others, like cell cycle stage, local spatial context, and other

sources of biological noise.

Pooled profiling screens

Pooled profiling screens capture perturbation barcodes and high-

dimensional phenotypes of individual cells in a population (Fig 1B

and E). The three broad approaches to pooled profiling screens

employ single-cell “omic” sequencing, mass spectrometry, and

microscopy as their foundational technologies (Fig 1F). Single-cell

sequencing screens adapt single-cell RNA sequencing (scRNA-seq)

or single-cell assay for transposase-accessible chromatin sequencing

(scATAC-seq) to recover perturbation barcodes alongside the pheno-

typic measurements (Adamson et al, 2016; Dixit et al, 2016; Jaitin

et al, 2016; Datlinger et al, 2017; Rubin et al, 2019; Replogle

et al, 2020). Mass spectrometry approaches require encoding pertur-

bation barcodes at the protein level as unique epitope combinations

are required for readout using methods including cytometry by time

of flight (CyTOF) and multiplexed ion beam imaging by time of flight

(MIBI-TOF) (Keren et al, 2019) to characterize both genotype and

phenotype at the protein level (Wroblewska et al, 2018; Dhainaut

et al, 2022). Microscopy-based pooled profiling screens use a variety

of barcoding and imaging approaches to measure both cell pheno-

type and genotype in situ (Fig 2A–D; Emanuel et al, 2017; Lawson

et al, 2017; Feldman et al, 2019; Wang et al, 2019; Shi et al, 2020;

Dhainaut et al, 2022). Three general approaches for in situ genotyp-

ing have been demonstrated: fluorescence in situ hybridization

(FISH), in situ sequencing (ISS), and iterative IF (Fig 2B–D).

In FISH genotyping approaches, perturbation barcodes are tran-

scribed in live cells, a signal amplification step generating many
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barcode copies in each cell (Fig 2A). Cells are then fixed and bar-

codes are measured by iteratively hybridizing fluorescent probes,

imaging cells, stripping probes, and repeating with subsequent probe

sets until all barcodes can be decoded (Fig 2B). Alternatively, tran-

scriptionally inactive barcodes have also been measured following

in vitro transcription in fixed cells (Askary et al, 2019). The first

microscopy-based pooled screening methods were described in two

2017 E. coli screening studies that measured perturbation barcodes

with FISH (Emanuel et al, 2017; Lawson et al, 2017). Lawson

et al (2017) conducted a screen of three E. coli variants and measured

complex phenotypes including over 4 h of dynamics by tracking bac-

teria in a microfluidic chip. Emanuel et al (2017) screened 60,000 flu-

orescent protein variants for brightness and stability while retrieving

perturbation barcodes by multiplexed FISH. Though characterizing a

simple phenotype, the screen profiled 20 million individual bacteria.

And in a screen of lncRNA localization, Wang et al (2019) knocked

out 54 genes encoding RNA-binding proteins and profiled about

30,000 human osteosarcoma cells, characterizing both phenotype

and genotype with multiplexed FISH. In an alternative approach for

highly multiplexed barcode detection, Shi et al (2020) developed a

hyperspectral imaging-based FISH method, termed HiPR-FISH, using

10 fluorophores to barcode over 1,000 genotypes using a single (non-

iterative) hybridization. HiPR-FISH was implemented to identify

1,023 distinct E. coli isolates across about 65,000 single cells.

In situ sequencing approaches also rely on transcribed perturba-

tion barcodes (Fig 2A). Briefly, following fixation of cells, RNA bar-

codes are reverse transcribed to cDNA, and a padlock probe is used

to copy the barcode into a circular single-stranded DNA molecule,

which serves as a template for rolling circle amplification (RCA) to

clonally amplify the barcode sequence. Following amplification, bar-

codes are sequenced in situ, as demonstrated by several groups,

with sequencing-by-synthesis (SBS) or sequencing-by-ligation chem-

istry (Fig 2C; Ke et al, 2013; Payne, 2017; Chen et al, 2018; Feldman

et al, 2019). We describe the experimental procedure for ISS using

SBS at length in a recent protocol publication (Feldman et al, 2022).

In our initial demonstration, we studied 952 gene knockouts, mea-

suring p65 localization in about 6 million cells in a series of screens

and taking time course measurements of live cells for over 400,000

cells in targeted downstream screening (Feldman et al, 2019).

Recently, we extended this approach to screen about 20,000 gRNAs

targeting 5,072 essential genes, profiling DNA content, DNA dam-

age, and microtubule and F-actin subcellular organization across 31

million cells (Funk et al, 2022).

Lastly, in iterative IF approaches, perturbation barcodes encode

unique protein epitope combinations that are transcribed and trans-

lated in live cells (Fig 2A; Wroblewska et al, 2018; Rovira-Clav�e

et al, 2021). Following fixation, protein barcodes can be decoded

through iterative IF measurements (Fig 2D). In an in vivo screen of 35
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(A) Perturbation barcodes are genetically encoded and may be transcribed to RNA or transcribed and translated to protein epitopes. (B) Fluorescence in situ hybridization
approaches measure RNA barcodes through iterative hybridization, imaging, and stripping of fluorescent probes. Diverse encoding schemes may be used. (C) In situ
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CRISPR KOs, Dhainaut et al (2022) used iterative IF to recover protein

barcodes from about 1,750 tumor lesions in mouse tissue sections. By

using protein barcode epitopes combinatorially, as many as 120 unique

combinations have been demonstrated as distinguishable and greater

barcoding complexity may be achievable by deploying additional

orthogonal epitopes, higher order epitope combinations, and/or multi-

ple barcodes with distinct subcellular localization (Wroblewska

et al, 2018; Dhainaut et al, 2022; Kudo et al, 2022).

Methods for genetic perturbation and barcoding

Pooled genetic screens are one of several approaches based on cellular

barcoding, strategies that use molecular barcodes to enable recovery

of information about cellular contents or identities (Fig 3A; Kebschull

& Zador, 2018). These barcodes are most commonly DNA or RNA

sequences read by sequencing at an experimental endpoint, though pro-

tein barcodes can be decoded with mass spectrometry or IF measure-

ments (Wroblewska et al, 2018; Dhainaut et al, 2022). In the context of

pooled genetic screens, cellular barcodes encode cellular genotype, for

example, the gene target of a gRNA in a CRISPR KO screen. However,

the applications of cellular barcoding extend beyond laboratory pertur-

bations and engineered genetic differences that typify genetic screens.

In contrast to delivering a specific perturbation, pooled cell mod-

els leverage naturally occurring genetic and epigenetic diversity

between cell models. In these approaches, cells barcoded according

to their origin, such as cell lines from different individuals or tissue

origins, can be assayed in a pooled setting. Pooled cell models have

been used to identify anticancer reagents and characterize meta-

static potential (Yu et al, 2016; Corsello et al, 2020; Jin et al, 2020).

Cellular barcoding can also be used to track populations of cells

over time. Static clonal barcoding is used to identify cells that origi-

nate from a single barcoded ancestor in a mixed population, and

subclonal barcoding approaches use dynamic barcodes to identify

subclonal relationships between cells (Kebschull & Zador, 2018).

While this review is focused on genetic screening and the associa-

tion of perturbation barcodes to resulting phenotypes, our discus-

sion of methods to pair cellular barcodes to phenotypes is further

relevant to this broader set of cellular barcoding methods.

In genetic screening approaches popular today, pooled cells differ

in the sequence-programmable perturbation each receives, and the

perturbation sequence identifies the genotype of a cell (Fig 3A).

Cells may contain a single perturbation or barcode, as in single gene

knockout screens, or a combination or barcodes, as in the case of

combinatorial perturbation screens. Technologies for programmable

perturbation provide numerous ways to generate diversity in cell

pools (Fig 3B). These include the introduction of exogenous DNA

and perturbation of endogenous sequences by CRISPR. Further, we

will consider analogous programmable methods that perturb proper-

ties of cells other than genomic sequence, such as RNA interference

(RNAi) and RNA-targeting CRISPR tools for transcriptomic perturba-

tion and DNA-binding CRISPR tools for epigenomic perturbation.

Here, we discuss the diversity of methods for sequence-barcoded

perturbations and their applications in pooled screens.
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(A) Applications of cellular barcoding. In pooled genetic screens, genetic perturbation libraries are used to introduce one or more genetic perturbations to cells with the
same genetic background. Pooled cell models use barcodes to distinguish cells of different genetic backgrounds. Static clonal barcoding experiments use barcodes to
track the progeny of individual clones. Dynamic subclonal barcoding approaches use dynamic barcodes to determine subclonal relationships between cells. (B)
Approaches for programmable perturbation. Genetic perturbations, or changes to DNA sequence, include gene knockouts, introduction of new DNA sequences, or precise
sequence changes. Epigenetic perturbations include changes to DNA accessibility, transcription factor recruitment, DNA methylation, histone modifications, and 3D
genome structure. Transcriptomic perturbations include gene knockdown and precise sequence changes. DSBs, double strand breaks; HDR, homology-directed repair;
CRISPRa, CRISPR-mediated activation of transcription; CRISPRi, CRISPR-mediated interference of transcription; RNAi, RNA interference.
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Targeted genomic perturbation screens with
programmable reagents
RNAi and CRISPR offer powerful approaches for systematic genetic

perturbation of user-specified target sites in the genome, enabled by

their straightforward sequence-based programmability (Kennerdell

& Carthew, 1998; Mohr et al, 2014; Shalem et al, 2015; Doench,

2018; Schuster et al, 2019). Today, this toolbox provides a diverse

set of strategies to perturb the genome, epigenome, and transcrip-

tome (Doench, 2018; Kampmann, 2018; Anzalone et al, 2020; Naka-

mura et al, 2021). Importantly for pooled approaches, the short

hairpin RNA of RNAi and the gRNA of CRISPR are recoverable by

sequencing after phenotypic profiling, and enable the identification

of cellular genotype.

CRISPR KO was the earliest and is now the most widespread form

of CRISPR perturbation used for genomic screening (Koike-Yusa

et al, 2014; Shalem et al, 2014; Wang et al, 2014). The first genome-

scale implementations of pooled CRISPR KO screens have identified

genes involved in resistance to toxic pore-forming and DNA-damaging

reagents (Koike-Yusa et al, 2014), identified essential genes and genes

involved in resistance to a therapeutic RAF inhibitor (Shalem

et al, 2014), and revealed essential genes and genes involved in DNA

repair pathways (Wang et al, 2014). Large-scale CRISPR KO screens

have since become a mainstay for mapping genotype–phenotype rela-

tionships. A number of reviews focus particularly on the design and

execution of editing and delivery aspects of CRISPR KO screens

(Shalem et al, 2015; Doench, 2018; Schuster et al, 2019).

In addition to gene knockouts, a variety of Cas enzymes are used

to make precise edits in the genome (Anzalone et al, 2020). Some

cells can be precisely modified through homology directed repair

using an exogenous repair template encoding a user-defined

sequence change (Ran et al, 2013; Lin et al, 2014). Findlay et al

(2014, 2018) used Cas9 with homology directed repair in pooled

screens to characterize thousands of single nucleotide variants of

BRCA1 and predict pathogenicity. The challenge of efficient and pre-

cise sequence modification also motivated the development of Cas

fusion proteins capable of direct enzymatic alteration of DNA

sequence (Komor et al, 2016; Gaudelli et al, 2017; Anzalone

et al, 2019). Base editors—fusions of Cas enzymes to nucleoside

deaminase domains—have been developed to effect nucleotide sub-

stitutions, primarily C-to-T and A-to-G transitions (Komor

et al, 2016; Gaudelli et al, 2017) and employed in screens to profile

sequence variants (Cuella-Martin et al, 2021; Hanna et al, 2021).

Beyond DNA sequence modification, Cas enzymes are powerful

tools for epigenomic perturbation. Nuclease-inactive Cas enzymes,

such as nuclease-inactive “dead” Cas9 (dCas9), used essentially as

programmable sequence-specific DNA-binding proteins, have been

repurposed for interference (CRISPRi) and activation (CRISPRa) of

transcription, achieving these outcomes through a diversity of

mechanisms, most commonly through the recruitment of effectors

(Kampmann, 2018; Nakamura et al, 2021). CRISPRa and CRISPRi

approaches have since been employed in large-scale screens (Gilbert

et al, 2014; Konermann et al, 2015; Joung et al, 2017). The

wide range of CRISPR-based methods available for epigenome per-

turbation and their use in pooled screens have been reviewed else-

where in detail (Kampmann, 2018; Schuster et al, 2019; Nakamura

et al, 2021).

Finally, RNAi and CRISPR both enable targeted transcriptomic

perturbations. Genome scale RNAi screens are a well-established

method to systematically perform RNA knockdown (Mohr et al,

2014). Cas13-based RNA knockdown methods have been developed

more recently and may offer advantages in knockdown specificity,

though they are rarely applied for screening (Abudayyeh et al, 2017;

Wessels et al, 2020).

Exogenous sequences
The introduction of exogenous regulatory or coding sequences is

another approach to perturb genotype. Such approaches have been

used to study the function of noncoding sequences, sequence vari-

ants, or gene function in a non-native context. In massively parallel

reporter assays, noncoding sequences are placed upstream of a

reporter gene to screen for gene regulatory functions in isolation

from their genomic context (Patwardhan et al, 2009, 2012; Kinney

et al, 2010). Screens of sequence variants can reveal the impact of

sequence changes to proteins or noncoding regions. Sequence vari-

ants can be generated with genome editing, to modify an endoge-

nous gene and maintain endogenous regulation, or delivered as

exogenous in vitro synthesized DNA or RNA. Interrogating the func-

tional significance of genetic variation is one such application, with

optical readouts providing the opportunity to assay multiple aspects

of gene function, such as subcellular localization and colocalization

with relevant factors. For example, Hasle et al (2020) screened a

library of simian virus 40 nuclear localization signal mutants, using

an image-based enrichment step to identify variants impacting

nuclear translocation of a fluorescent reporter. And morphological

profiling has been used to screen genetic variants and cluster vari-

ants by phenotype (Rohban et al, 2017; Caicedo et al, 2022). Lastly,

both CRISPRa and exogenous sequence expression can enable the

study of genes that are transcriptionally inactive in the chosen cell

model, with these two approaches providing consistent or comple-

mentary information depending on the context (Sanson et al, 2018).

Combinatorial approaches
Pooled screens with single-cell readouts offer an attractive format

for the implementation of combinatorial screening approaches. Two

challenges arise in conducting combinatorial screens, relative to tra-

ditional screens. The first challenge is the size of the combinatorial

space; a screen of pairs among just 200 genes is comparable in scale

to a typical genome-wide screen. The scalability of pooled

approaches offers an important advantage toward the practicality of

combinatorial screens. The second challenge is the readout of per-

turbation co-occurrence. Combinatorial screens with standard per-

turbation reagents are compatible with pooled profiling but

enrichment screens are not. While enrichment screens rely on per-

turbation barcode abundance and cannot maintain linkage between

paired perturbations, profiling screens genotype perturbations in

individual cells, revealing co-occurrence of multiple perturbations at

the cellular level and matching these to single-cell phenotypes.

However, specialized perturbation library designs physically link

multiple perturbations, such as an array of gRNAs, or employ an

auxiliary barcode unique to a perturbation combination, enable

compatibility with enrichment screens (Wong et al, 2016; Erard

et al, 2017; Shen et al, 2017; Zhou et al, 2020). In these approaches,

Cas12 nucleases are an attractive alternative to Cas9 for their capac-

ity to process gRNA arrays into active individual gRNAs (Fonfara

et al, 2016; Zetsche et al, 2017). While elegant and capable of deliv-

ering a specific set of combinations in a single step with a single

� 2022 The Authors Molecular Systems Biology 18: e10768 | 2022 7 of 23

Russell T Walton et al Molecular Systems Biology



selection, these approaches require dedicated library synthesis.

Approaches that rely on grouping multiple active or proxy encoding

elements (e.g., gRNAs, barcodes) face additional challenges in main-

taining linkage to the end of the workflow due to the possibility of

recombination, particularly when linked elements are widely sepa-

rated (preprint: Feldman et al, 2018).

Delivery
All the methods discussed above for generating or tracking cellular

diversity require the delivery of barcoding/perturbation reagents. It

is a requirement that cells maintain a copy of the perturbation

reagent/barcode for the duration of the experiment to enable end-

point recovery of perturbation genotypes. Lentiviral systems are the

most well-established delivery method for pooled RNAi and CRISPR

screens. These genome-integrating vectors are routinely applied to

produce high-complexity, high-titer libraries and are capable of

transducing many cell types at high efficiencies, including some

non-dividing cells (Yip, 2020). Vector transduction at low multiplic-

ity of infection can ensure that most cells receive a single perturba-

tion. In CRISPR-based approaches, delivery of both a gRNA and Cas

enzyme are required; however, because only the gRNA sequence

needs to be recovered for genotyping, Cas enzymes may be

expressed continuously or delivered transiently (Shifrut et al, 2018).

Adeno-associated viruses (AAVs) are a useful alternative to len-

tiviruses for efficient in vivo delivery of perturbation reagents (Chow

et al, 2017; Wang et al, 2018a). While AAVs are non-integrating,

they have been engineered to encode a transposon capable of

genomic integration, enabling pooled in vivo CRISPR screens (Ye

et al, 2019). Similar strategies may co-opt other non-integrating

viruses for delivery of pooled screening reagents. Transfection of

transposon-based genome-integrating reagents have also been

employed as an alternative to viral delivery (Li et al, 2017; Xu

et al, 2017; Viswanatha et al, 2018).

Optical methods for multidimensional
phenotypic profiling

Microscopy is a high-dimensional profiling tool that inherently pro-

vides optical measurements at subcellular, cellular, and multicellu-

lar resolutions simultaneously (Fig 4A). For example, a single image

of thousands of cells can capture cell size and shape, subcellular

characteristics, such as the size, shape, and location of organelles,

and the juxtaposition of cells in a multicellular setting, such as in a

natural or engineered tissue (Boutros et al, 2015). And microscopy

is one of few techniques that straightforwardly enables dynamic

multiplexed measurements of single cells today. Live cell imaging

extends features at all levels of spatial resolution as time series

replete with kinetic information about how data features change

over time at steady state and/or in response to perturbations

(Fig 4B). The combination of microscopy with molecular measure-

ments of DNA, RNA, and proteins has expanded the phenotypic

dimensions accessible to optical methods and made microscopy

images more directly relatable to molecular quantification data.

Some, though not all microscopy techniques and molecular imaging

methods are compatible with live-cell microscopy and imaging of

living tissue samples.

Fundamentally, biological images of cells are exceedingly high-

dimensional, with the dimensionality even exceeding the product of

pixel count per cell and number of markers or channels as combina-

tions of pixel/marker values and pixel/pixel correlations within and

across cells often reflect phenomena of interest. For example, pixel-

pixel correlations may report the ruffling of a membrane structure

or juxtaposition of different cells. Similarly, marker-marker correla-

tions in a single pixel may report co-localization of proteins or other

molecular species (Gut et al, 2018).

We will provide an overview of the diverse suite of methods for

multiplexed molecular measurements with microscopy with a focus

on the tradeoffs between cellular throughput and phenotypic dimen-

sionality. These approaches are often compared to non-spatially

resolved single-cell “omics” methods, such as those based on

sequencing or CyTOF. Several such methods can be practiced with

relative experimental ease, though at the cost of rich spatial infor-

mation and/or scale. We will limit detailed discussion to imaging-

based methods proven for high-throughput implementation or with

such potential.

Live-cell imaging
Live-cell microscopy enables the direct observation of individual cell

behavior, such as morphological dynamics, responses to stimuli,

motility, transient cell–cell interactions, and cell division events and

lineage relationships (Fig 4B). Combined with two major advances

of past decades—recombinant DNA and the discovery of fluorescent

proteins—time-lapse fluorescence microscopy has also illuminated

▸Figure 4. Optical methods for multidimensional phenotypic profiling.

(A) Microscopy can capture molecular, subcellular, cellular, and multicellular phenotypes. (B) Live cell microscopy captures cellular dynamics. (C) Multiplexed protein
measurements enable the observation of multiple proteins in each cell. Iterative immunofluorescence approaches rely on multiple rounds of sample staining with dye-
conjugated antibodies and fluorescence imaging. Oligo-conjugated antibodies enable measurement with hybridization of fluorescence in situ hybridization probes. (D)
Multiplexed RNA measurements enable the observation of multiple RNA species in each cell through either fluorescence in situ hybridization (FISH) or in situ sequencing
(ISS). Linear FISH approaches encode RNA measurements with a linear encoding relative to imaging iterations. Exponential FISH techniques facilitate measurement of an
exponentially increasing number of RNA species with a linear increase in imaging iterations. ISS approaches similarly enable exponential encoding of RNA species across
sequencing cycles. Encoding efficiencies are theoretical and do not account for additional imaging cycles/rounds used for error correction in exponential-scaling tech-
niques. (E) RNA measurements requiring spot resolution can efficiently encode many RNA species but require high-magnification imaging, while linear encoding methods
can rely on integrated intensity measurements, instead of spot resolution, to enable high throughput at lower optical magnification. (F) Spatial detail and imaging time
both increase as protein localization is imaged at higher magnification, presenting a tradeoff between cellular throughput and information content. (G) Estimated imag-
ing throughputs and multiplexing capacities for selected multiplexed RNA and protein measurement approaches, based on magnification and z-stack requirements, fluo-
rescence channels, imaging rounds, and theoretical encoding efficiency without error correction. For comparison, the required imaging time to genotyping one million
cells with 12 cycles of in situ sequencing is shown in gray. At high multiplexes, ISS phenotyping becomes less quantitative due to optical crowding. We do not consider
expansion microscopy approaches here, which can increase the maximum multiplex for resolution-limited techniques at the cost of increased imaging time. IF,
immunofluorescence; FISH, fluorescence in situ hybridization; ISS, in situ sequencing.
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molecular dynamics of living cells. The fusion of a fluorescent pro-

tein to a target protein enables visualization of the expression and

localization of the target protein over time. An assortment of tools

for fluorescent tagging of RNA in live cells have also been developed

and have been discussed at length elsewhere (Specht et al, 2017;

Pichon et al, 2018). The extent to which such live-cell molecular

imaging approaches can be multiplexed is limited by the require-

ment for cell line engineering and the spectral bandwidth of the

reporters. Despite this limitation, live-cell imaging is a powerful

single-cell technique capable of capturing a high-resolution temporal

dimension inaccessible to most other approaches.

In two examples, Schmitz et al (2010) and our group leveraged

live-cell imaging in screens to study the dynamic events of mitosis

(Funk et al, 2022). Schmitz et al (2010) identified regulators of

mitotic exit through an arrayed RNAi screen with live-cell imaging,

tracking individual cells with nuclear and histone fluorescent repor-

ters. A decade later, our group used a nuclear stain to perform a

live-cell pooled CRISPR KO screen as part of a study identifying

essential genes that altered mitotic frequency and duration (Funk

et al, 2022).

Protein and organelle tools
Visualization of subcellular structures and proteins in fixed samples

is enabled by a range of small molecule and antibody-based

approaches. We will highlight a few illustrative examples, and these

methods have recently been reviewed in greater detail elsewhere

(Tan et al, 2020; Hickey et al, 2021; Lewis et al, 2021; Moffitt

et al, 2022). Fluorescence microscopy-based approaches include IF

and small molecule stains that can be straightforwardly combined

up to several-plex across standard fluorescence imaging channels.

The Cell Painting method is one approach that enables visualization

of major cellular compartments including the nucleus, nucleoli,

endoplasmic reticulum, Golgi, mitochondria, actin, cytoplasmic

RNA, and plasma membrane via six dyes in five fluorescence chan-

nels. Cell Painting enables measurement of thousands of raw fea-

tures and hundreds of orthogonal features at single cell resolution

(Bray et al, 2016). Methods for reversible antibody staining have

enabled IF multiplexing beyond the number of fluorescence chan-

nels, through iterative staining, imaging, and destaining (Fig 4C). A

method termed 4i uses traditional IF staining and imaging followed

by a denaturation-based signal removal (Gut et al, 2018). 4i has

been demonstrated for multiplexing of up to 40 antibody stains in

images of hundreds of thousands of cells. Immuno-SABER is

another cyclic method and uses oligo-conjugated antibodies with

DNA hybridization-based amplification for visualization that has

been demonstrated up to 10-plex (Saka et al, 2019). Additional

approaches include multiplexed ion beam imaging (MIBI), which

uses highly spatially resolved time-of-flight mass spectrometry to

resolve metal-tagged antibodies, and digital spatial profiling (DSP),

which uses photocleavable oligo-antibody conjugates that can be

selectively released from regions of a sample for sequencing (Keren

et al, 2019; Merritt et al, 2020). Mass spectrometry and NGS-linked

approaches each offer distinct advantages but do not currently meet

the requirement of high cellular throughput with single-cell resolu-

tion necessary for large-scale pooled genetic screening. Because flu-

orescence methods are accessible using commonly available

fluorescence microscopes, are relatively fast and affordable, and

have already been employed at scale, these approaches are the most

immediately promising for high-throughput profiling of subcellular

structure with pooled genetic perturbations in a large number of lab-

oratories.

RNA tools
Fluorescence in situ hybridization and ISS approaches have enabled

multiplexed measurements of nucleic acids at cellular and subcellu-

lar spatial resolutions for the assessment of transcriptional activity

as a phenotypic screening readout (Fig 4D). Iterative imaging-based

methods rely on serial probe hybridization or sequencing cycles—

both approaches requiring the signal from individual RNA or cDNA

molecules to be detected and processed separately. RNA measure-

ment techniques achieve transcript multiplexing through a combina-

tion of spatial, spectral, and temporal separation. However, each of

these factors is inversely related to the cellular throughput of the

method. Spatial resolution—resolution to distinguish adjacent spots

to enable the measurement of distinct transcripts and species in

space—is linked to magnification, which in turn is related to imag-

ing time in proportion to its square. Magnification is also an impor-

tant parameter with respect to signal-to-background ratio, with

higher magnification enabling higher signal-to-background ratio,

but also reducing depth-of-field, possibly requiring additional z-

stacks and further increasing imaging time. Signal amplification

techniques, including RNAscope, branched DNA amplification,

ClampFISH, HCR, SABER, and RCA can increase signal over back-

ground reducing light-collection/magnification requirements,

though requiring increased chemistry time and potentially decreas-

ing achievable spatial resolution by increasing spot sizes (Stougaard

et al, 2007; Choi et al, 2018; Kishi et al, 2019; Rouhanifard et al,

2019; Xia et al, 2019a). Notably, while several super-resolution tech-

niques can refine the position of signal centers in individual images

where signal-generating molecules are sparse, these are not useful

for segregating crowded signals that overlap in the temporal and

spectral dimensions.

Spectral separation entails splitting signals across fluorescence

channels. When channels are imaged one at a time (as opposed to

hyperspectral imaging that detects and distinguishes multiple colors

at once; Shi et al, 2020), imaging time scales linearly with the num-

ber of fluorescence channels.

Lastly, temporal separation is used to encode information across

multiple rounds of imaging. To separate signals across imaging

rounds, chemistry steps are performed between rounds of imaging,

removing signals from the previous round and generating new sig-

nals for the next round. Temporal separation has been used to com-

putationally reconstruct subdiffraction limit information in a subset

of super-resolution imaging techniques (Eng et al, 2019). Total sam-

ple processing time in temporal separation protocols depends on the

chemistry time, imaging time per round, and number of rounds. For

fast imaging times or slow chemistry steps, chemistry time can be a

major contributor to overall throughput, though parallelization of

imaging and chemistry steps on multiple samples generally negates

this impact for large projects.

For each category, we again provide demonstrative examples for

these technologies while referring readers to other reviews for more

details (Lewis et al, 2021; Rao et al, 2021; Moffitt et al, 2022). FISH

is a long-established technique for detection of RNA species in fixed

tissues. Linear-scaling or “linear” FISH methods encode one RNA

species per fluorescence channel and imaging round. One such
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method, osmFISH, quantified 33 RNA species in about 5,000 cells

through 13 sequential imaging rounds in three fluorescence chan-

nels (Codeluppi et al, 2018). Exponential-scaling or “exponential”

FISH techniques have enabled quantification and localization of

dozens up to as many as 10,000 transcripts using sequence encoding

schemes and sequential FISH measurements. The approaches

seqFISH+ and MERFISH have demonstrated the greatest multiplex-

ing capabilities, each enabling measurements of up to 10,000 tran-

scripts and have been demonstrated at a throughput of a few

thousand cells (Eng et al, 2019; Xia et al, 2019b). These highly mul-

tiplexed techniques require high-sensitivity and high (super-) resolu-

tion imaging that limit field size and cellular throughput. An

important distinction between linear and exponential FISH

approaches is the requirement for spot resolution (Fig 3E). Exponen-

tial FISH methods rely on the digital decoding of individual spots

over multiple fluorescence channels and cycles to decode RNA

species, such that multiplexing capacity and quantitation are depen-

dent on high-resolution imaging. In contrast, linear FISH approaches

do not require spot resolution and can instead use graded cell-level

metrics such as integrated intensity, enabling imaging across larger

fields at lower spatial resolution. FISH signal amplification tech-

niques are also important to enable sufficient signal intensity for

large-field imaging with lower collection efficiency optics.

Padlock probe/ISS approaches offer moderate multiplexing

capacity at high cellular throughput (Ke et al, 2013; Lee et al, 2014;

Qian et al, 2020; Alon et al, 2021). ISS techniques for transcript

localization and enumeration are performed analogously to ISS

genotyping methods (Fig 2C). Direct ligation of padlock probes on

RNA or cDNA targets and detection by hybridization to a target-

linked sequence in the amplified padlock enable simplified work-

flow for multiplexed analyses of transcription. Even so, multiple

sequencing chemistries including sequencing-by-synthesis and

sequencing-by-ligation have been demonstrated for ISS applications.

For example, the pci-Seq approach uses barcoded padlock probes to

measure 99 transcripts by ISS by ligation and achieved cell-type

identification in approximately 27,000 mouse hippocampal cells

(Qian et al, 2020). In contrast to exponential FISH approaches that

require higher magnification and greater temporal separation, ISS

approaches enable exponential encoding at relatively high cellular

throughput. However, ISS approaches still require spot resolution

and optical crowding ultimately limits ISS to lower maximum read-

out bandwidth per cell. Taken to an extreme, FISSEQ uses ISS to

make untargeted measurements of RNA in cells (Lee et al, 2014).

FISSEQ measurements have been limited to detecting about 200

spots corresponding to mRNA transcripts per cell in primary human

fibroblasts (Lee et al, 2015). While all exponential multi-cycle multi-

plexing methods entail necessary compromises across multiplexing

capacity, quantitative dynamic range, cellular throughput, ISS

approaches quickly lose quantitative accuracy in the face of signal

crowding (Lee et al, 2014; Qian et al, 2020). One solution to increas-

ing the multiplexing capacity of ISS approaches is targeting panels

of orthogonally expressed transcripts, reducing spot density within

cells while maintaining high biological information content. In the

STARmap ISS approach, a 1,020-transcript panel was designed such

that a distinct subset of the panel was expected to be expressed in

each of about a dozen distinct cell types (Wang et al, 2018c).

Spatially barcoded oligo arrays provide a distinct path to link

image-based phenotyping with genotyping—using NGS. These

approaches use arrays of oligos with spatial barcodes that identify

their location; overlaying a thin biological sample on the array,

these oligos capture cellular RNA for measurement with NGS, after

which sequences are mapped to positions using the spatial barcodes

(St�ahl et al, 2016; Rodriques et al, 2019; Vickovic et al, 2019;

preprint: Fu et al, 2021; Stickels et al, 2021). These approaches offer

straightforward high-plex and spatially-resolved transcriptomic mea-

surements via standard RNA-seq without a demanding optical

microscopy requirement. However, while transcript capture rates

and spatial resolution are improving, the capture efficiency remains

well below that of FISH approaches (Gr€un et al, 2014; Stickels

et al, 2021). Further, assigning reads to individual single cells—typi-

cally essential to pooled screening—remains challenging, and

throughput is limited by the size of available arrays and sequencing

costs. In a notable exception, spatially localized clonal populations,

such as tumor lesions, are sufficiently large to enable clonal, but not

single-cell, measurements with current spatially barcoded oligo

arrays (Dhainaut et al, 2022). As these technologies continue to

mature to enable reliable molecular-cellular assignments, arrays

could be an excellent approach for optical and transcriptional read-

out of in vivo screens in tissue sections with densely packed cells.

DNA tools
Methods analogous to spatial transcriptomics have been developed

for measurements of DNA in fixed cells for the determination of 3D

genome organization (Payne et al, 2021; Takei et al, 2021). These

methods have recently been reviewed in greater detail elsewhere

(Xie & Liu, 2021). DNA seqFISH+, a sequential DNA FISH technique,

demonstrated 3,660 assessments of DNA locus position across the

genome (Takei et al, 2021). And in situ genome sequencing (IGS),

an approach that pairs ISS and NGS, enabled hundreds to several

thousand measurements of genomic loci in individual cells (Payne

et al, 2021). Like morphology, protein organization, or transcrip-

tome, 3D genome organization is a representation of cell phenotype

that could be valuable to probe in a screening context. For example,

such a screen could systematically profile the role of putative CTCF

binding sites in maintaining genome structure and gene activity.

While these approaches have impressive multiplexing capabilities,

demonstrations of both DNA seqFISH+ and IGS have been limited to

a few hundred cells, owing to the requirement for high-

magnification imaging and many rounds of FISH or ISS chemistry.

Even so, alternative implementations of DNA seqFISH+ and IGS at

lower multiplexing capacity might be amenable to higher cellular

throughput to support genetic screens.

Other approaches
While optical approaches preserving spatial information are the

focus of this review, it is worth briefly acknowledging the wide

range of non-optical approaches for multidimensional profiling of

single cells (Spitzer & Nolan, 2016; Kashima et al, 2020). scRNA-seq

and scATAC-seq are now routine procedures with commercially

available reagents, and many more approaches have been devel-

oped to probe the genome, epigenome, and transcriptome at single-

cell resolution. Several groups have integrated these sequence-based

readouts with CRISPR-based perturbation in screening contexts

(Adamson et al, 2016; Dixit et al, 2016; Jaitin et al, 2016; Datlinger

et al, 2017; Rubin et al, 2019; Replogle et al, 2020). The throughput

of these approaches is primarily limited by consumables and
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sequencing costs, though large-scale screens are possible (Replogle

et al, 2022). Flow cytometry-based approaches are common for

single-cell proteomics, including CyTOF, which enables multiplexed

measurements of up to about 40 proteins, and can be used for

pooled profiling screens with protein barcodes (Wroblewska

et al, 2018; Ijsselsteijn et al, 2019; Dhainaut et al, 2022). These

approaches enable a parallel set of applications within the accessible

scales and share aspects of experimental design and analysis as opti-

cal techniques. We expect such approaches to provide information

that is highly complementary to optical readouts and in some cases

be convenient to run in tandem (e.g., scRNA-seq and optical pooled

screens with the same CROP-seq cell library). As microscopy,

cytometry, and sequencing based screens are used together, it is

important to explore how these technologically distinct measure-

ments can most effectively combine to provide complementary

information.

Analysis methods

The analysis of screening data is a critical step in the extraction of

biologically meaningful insights. Generally speaking, enrichment

screen analysis approaches are similar across enrichment methods,

simplified by the standardized output of barcode counts generated

from next generation sequencing data. Many tools for the down-

stream analysis of enrichment screens have been developed and

reviewed elsewhere (Lin et al, 2020). Microscopy-based profiling

screens present two specific analysis challenges, (i) primary image

analysis: the extraction of information from images including cell

segmentation, perturbation barcode assignment, and phenotypic

feature extraction; and (ii) secondary analysis: classification, testing,

and interpretation of multidimensional single-cell phenotypes based

on extracted phenotypic features.

Primary image analysis
Primary image analysis, the raw-pixel-facing initial step, is complex

to solve at a general level because appropriate image analysis

approaches and performance depends to varying degrees on sample

type, assay type, and sample processing/image acquisition condi-

tions. In contrast to the production and analysis of digital NGS data

counts, image acquisition and analysis methods are not standard-

ized, instead requiring significant tailoring for specific screening

projects. As a limited exception, we find that genotyping by ISS

using our protocol can be largely standardized as a common set of

reagents, conditions, and analytical steps for ISS are broadly appli-

cable and produce digital sequence counts for each cell. Even so,

some sample and protocol-dependent aspects of image analysis—

like cell segmentation—apply to both phenotyping and genotyping.

Cell segmentation illustrates a common performance-

generalization tradeoff common to image-based analysis. Ideal cell

segmentation is a difficult task, but segmenting nuclei is straightfor-

ward when data from a nuclear marker (e.g., DAPI) are available.

Nuclear segmentations are highly generalizable, but restricting ISS

genotyping or phenotype feature extraction to analysis of pixels

overlapping nuclei represents a performance compromise as a lower

fraction of cells will receive genotype assignments and the set of

accessible phenotypes will be restricted. Deep learning-based

approaches, such as Cellpose, have been demonstrated to perform

accurate cell segmentation on diverse sample types and may provide

a more flexible segmentation solution that requires less user exper-

tise and fine-tuning, albeit at increased computational expense

(Stringer et al, 2021). The single-cell-centric analysis paradigm in

profiling screens simplifies image analysis requirements in some

ways. For example, there is no need for precise alignment of pixel-

level results from genotyping and phenotyping datasets if cell geno-

types and cell phenotypes are each referenced to a common set of

segmented cellular indices established using a gross alignment. This

is particularly advantageous when a substantially different micro-

scope configuration or technique is desired for cellular phenotyping.

Many algorithms exist to extract phenotypic features from seg-

mented cell images. CellProfiler is an open-source suite that incorpo-

rates many tools for extraction of thousands of predefined features

from cell images (Carpenter et al, 2006; Dao et al, 2016; McQuin

et al, 2018). In addition, supervised and unsupervised machine

learning methods have been developed to computationally identify

image features that “predict” cell class labels or efficiently character-

ize variability present in a dataset (Shifat-E-Rabbi et al, 2020).

Addressing the challenges in primary image analysis requires user-

friendly, robust, and high-throughput image analysis methodologies

that flexibly and intelligently incorporate known biological context.

Secondary analysis
Approaches to interpreting multidimensional single-cell phenotypes

have begun to emerge in the context of analysis of single-cell

sequencing-based profiling screens, though their implementation in

image-based screens with optical phenotypic features is at an earlier

state of development (Dixit et al, 2016; Duan et al, 2019; Norman

et al, 2019; Yang et al, 2020; Wang, 2021). The rich data (cells by

perturbations by features) obtained from profiling screens can be

mapped to the traditional enrichment screening workflow as a large

set of univariate screens based on a central tendency statistic (e.g.,

median across cells) of individual features. A drawback is the neces-

sity to carry out a multiple hypothesis testing correction, which is

exacerbated as additional metrics such as feature combinations

(e.g., ratios) are appended. Naturally, in single cell-resolved pooled

profiling data, there is a further opportunity to test for distributional

effects observed across cells in scored criteria.

True multidimensional analysis of large datasets is an active area

of research in computational biology, and incorporating cell-level

distribution data is at the cutting edge today. Much of the activity

has focused on the explosion of available RNA-seq and scRNA-seq

data, with pooled screens using scRNA-seq or ATAC-seq readout

providing data matrices structured similarly to single-cell resolved

image datasets (cells by perturbations by features). However, molec-

ular “omic” data features are simply—if incompletely—contextual-

ized by genomic annotation, allowing rapid initial interpretation.

While the ultimate basis of image features in cell biology represents

a tremendous opportunity, conceptual frameworks and methods for

mapping of these effectively analog, resolution- and marker-

dependent signals into spatially- and molecularly-resolved cell biol-

ogy are complex and at an early stage of development. While analy-

sis of morphological data is a ripe area for further development,

some useful approaches are emerging from the broader single-cell

analysis playbook.

A starting point useful for many projects is image feature selec-

tion based on the statistics of features across the comparison set

12 of 23 Molecular Systems Biology 18: e10768 | 2022 � 2022 The Authors

Molecular Systems Biology Russell T Walton et al



followed by regularization and dimensional reduction using one of a

variety of machine learning approaches including principal compo-

nents analysis, pre-trained convolutional neural networks (CNNs),

or novel CNNs generated using an autoencoder. Results may be

visualized for exploration using one of a variety of 2D embedding

techniques (UMAP, t-SNE) and clustering approaches (hierarchical,

dbSCAN, Leiden, Louvein) at varying levels of clustering resolution

and overlaid annotation of perturbation identities/categories. A set

of control perturbations with previously interpreted biological

effects of interest in the system serve as key reference points to

guide such analyses. For example, variability in observed pheno-

types across multiple perturbations of the same control gene or con-

trol genes with related functions provide measures of variability.

Considering the clustering results together with the spread of control

genes and the biological annotations/priors of all genes is a useful

basis for initial interpretation of multiparameter results. From there,

external data reflecting gene–gene relationships can be overlaid to

further aid biological interpretation, and individual feature scores

can be overplotted to discover which particular image features are

driving plotted variability of biological import.

Roadmap for future methods

The future of optical methods for pooled genomic profiling screens

will see the integration of many of the experimental approaches we

have discussed. In this section, we propose a roadmap for the inte-

gration of new perturbation modalities and phenotypic measure-

ments, the extension of approaches to new biological model

systems, and improvements in workflows to enable greater scale

and dissemination of technologies. While some aspects we discuss

apply to the broader set of microscopy-based screening technolo-

gies, we focus our discussion on future implementations of pooled

profiling technologies, in particular, ISS-based optical pooled profil-

ing screens of mammalian cells (Feldman et al, 2019, 2022; Funk

et al, 2022).

Perturbation modalities
Emerging perturbation technologies promise to make new perturba-

tion modes accessible to screens. Prime editors, fusions of Cas9 to a

reverse transcriptase, have been demonstrated to programmably

write insertion, substitution, and deletion mutations (Anzalone

et al, 2019; preprint: Ioannidi et al, 2021). In particular, screens of

naturally occurring genetic variants, the installation of which often

requires greater precision and flexibility than other approaches

enable, would benefit from the application of prime editors to

screens (Erwood et al, 2022). For epigenetic perturbation, fusions of

Cas9 to enzymatic domains have enabled modulation of DNA

methylation and histone methylation and acetylation (Hilton et al,

2015; Kearns et al, 2015; Polstein et al, 2015; Thakore et al, 2015;

Choudhury et al, 2016; Vojta et al, 2016; Kwon et al, 2017). Imple-

mented in screens, these approaches would provide a greater diver-

sity of perturbations to regulation—targeting range, effect duration,

effect magnitude, dependency on basal epigenetic state—than the

CRISPRi and CRISPRa tools currently employed in screens. RNA-

guided Cas protein fusions have even been leveraged to alter 3D

genome organization and the juxtaposition of genomic loci with liq-

uid–liquid phase segregated domains (Wang et al, 2018b). Expanded

to screening contexts, such technologies could systematically dissect

the impact of specific genomic/cellular organizational paradigms,

genomic interactions, and gene regulatory paradigms.

The extension of new programmable perturbation approaches to

screening contexts first relies on a robust understanding of the per-

formance of these technologies to enable effective in silico experi-

mental design. For example, genetic knockout screens with Cas

enzymes have undergone optimizations for nuclease expression and

nuclear localization as well as guide RNA selection for on-target

activity, including for achieving specific DNA repair outcomes, and

minimizing the risk of off-target edits (Doench et al, 2014, 2016;

Henkel et al, 2020; Michlits et al, 2020; DeWeirdt et al, 2021). These

efforts have yielded ready-to-use Cas9 constructs and validated

guide RNA libraries for cell lines from multiple species. Similar opti-

mizations will be required to bring precision sequence changes and

the wide array of programmable epigenetic perturbation approaches

to widespread use in screening contexts. Significantly, profile-based

screening on highly scalable platforms may not require the same

level of perturbation penetrance as enrichment screens, speeding

adoption of new perturbation approaches. Single-cell-level readout

of complex profiles can in principle enable sensitive filtering of per-

turbed versus non-perturbed cells to select a perturbed cell set for

analysis with enhanced statistical power. Where throughput is high

enough to sample many cells per perturbation, screening may be

practical and effective even when the fraction of perturbed cells is

low.

Combinatorial optical pooled screens offer exciting opportunities

to explore genetic interactions. Additionally, concepts from com-

pressed sensing may decrease the requisite cellular throughput of

screens exploring large combinatorial spaces (preprint: Cleary &

Regev, 2020). The detection of multiple perturbation barcodes per

cell is the primary technical hurdle in implementing combinatorial

optical pooled screens. The design of perturbation reagents encod-

ing multiple perturbations arrayed on a single transcript, such as

Cas12 gRNA arrays, and optionally associated with an auxiliary bar-

code offer one solution (Wong et al, 2016; Erard et al, 2017; Shen

et al, 2017; Zhou et al, 2020). Alternatively, with a single-cell read-

out, pooled profiling screens can recover the identity of multiple

single-perturbation reagents or barcodes delivered to cells. This

approach may be immediately accessible in some systems utilizing

existing single-perturbation libraries delivered serially or at multi-

plicity to cells.

Multiplexed molecular measurements
The diverse array of multiplexed in situ proteomics and transcrip-

tomics techniques promise integration of these information rich

measurement modalities with microscopy-based pooled profiling

screens. The primary challenge in integrating these approaches with

screens will be adapting profiling technologies—typically designed

for maximal multiplexing capacity rather than speed—to meet the

cellular throughput requirements of screens. As demonstrated,

pooled profiling screens already integrate multiplexed protein (IF)

and RNA (sgRNA genotyping by ISS) measurements, and the future

for screens with flexibly integrated multimodal in situ measure-

ments of native proteins and transcripts at higher multiplex is

bright.

As protein localization measurements in genetic screens are

uniquely accessible to microscopy-based screening approaches, the
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integration of multiplexed protein measurements with optical

pooled screens is particularly attractive. In contrast to RNA mea-

surements which are often interpreted as a proxy for protein expres-

sion level, protein measurements can reveal directly interpretable

functional molecular features, such as post-translational modifica-

tions, subcellular localization (RNA localization is generally less

functionally impactful), molecular interactions, and intricate cellular

structures with known functions. Thus, while each RNA abundance

measurement provides a single phenotypic dimension in most use

cases, imaging even a single protein with subcellular and/or tempo-

ral resolution yields multidimensional phenotypic information. This

is an important distinction to note when we compare the multiplex-

ing capacities of RNA and protein measurement approaches; while

the dimensionality of RNA measurements can be considered equiva-

lent to the degree of multiplex, the effective dimensionality of pro-

tein measurements may commonly be a factor higher than the

degree of multiplex.

In terms of protocol compatibility and throughput, linear scaling

iterative IF techniques are attractive methods to integrate with opti-

cal pooled screens. Protein multiplexing limits with IF are bound by

the availability of quality affinity reagents, the spectral properties of

fluorescent labels, the spectral performance of the imaging system,

and the time required for imaging and chemistry steps. In terms of

capacity to detect a given protein or particular post-translational

modification, the availability and identification of quality antibody

reagents is the major limiting factor today, and there is a clear need

to expand the catalog of affinity reagents specific to modified pep-

tide sequences that can efficiently penetrate sample matrices. Tech-

niques that use chemical means to remove signal between rounds,

rather than photobleaching, are generally favorable due to overall

speed for large samples and the ability to parallelize imaging and

signal removal by removing samples from the optical system for de-

staining operations. Within chemistry-based multiplexing methods,

while minimizing incubation times is favorable, parallelization can

mitigate the impact of incubation time for large samples. In particu-

lar, approaches like 4i, Immuno-SABER, and CODEX appear attrac-

tive for multiplexing tens of protein targets at high cellular

throughput (Goltsev et al, 2018; Gut et al, 2018; Saka et al, 2019).

We expect integrating these approaches into the existing optical

pooled screening genotyping procedure to be relatively straightfor-

ward, as we have already implemented one reversible IF protocol

developed at our institute with optical pooled screens (Funk

et al, 2022), although extensive staining, imaging, and destaining

may pose challenges for sample stability and feature fidelity at the

highest levels of multiplexing.

For protein measurements, there is a tradeoff between informa-

tion content and throughput. For simple abundance measurements,

the lowest tolerable resolution is desirable for maximal throughput.

However, greater lateral and z-imaging resolution may reveal

important subcellular details not otherwise discernable (Fig 4F).

Where there is an a priori phenotype of particular interest, the opti-

mal imaging configuration will be the lowest magnification and

fewest z-stacks that can be validated to resolve that phenotype.

Otherwise, for profiling studies, the maximum optical resolution

achievable in a tolerable imaging time is advisable to maximize use-

ful feature yield and phenotyping power. Considering the demon-

strated throughput of multiplexed IF techniques and estimated

magnification-dependent imaging times, multiplexed measurements

of up to 40 protein species should be within reach of high-

throughput screens at 10× magnification, while higher magnifica-

tions may be tolerable at lower multiplexes (Fig 4G).

Considering the multiplexing and throughput tradeoffs of RNA

measurement techniques, measurements of tens to hundreds of

transcripts, but not thousands, are already feasible for screens of

millions of cells (Fig 4G). Targeted ISS of transcripts is one approach

to measure a select number of RNA species, using encoding

schemes that enable measurement of up to 4n RNA species over n

imaging rounds. Further, this approach would be “natively compati-

ble” with ISS-based perturbation barcode sequencing in optical

pooled screens. Given implementation with current protocols at 20×

magnification, we expect that the upper multiplexing limit for quan-

titative measurement will be fewer than 100 RNA species today (Lee

et al, 2014, 2015; Qian et al, 2020).

Linear scaling FISH approaches are another attractive approach

that compensate for lower encoding power with low-magnification

imaging capability. Similar to protein measurements, imaging times

will likely limit linear FISH multiplexing to tens of transcripts

(Fig 4G). Composite RNA measurements and computational signal

separation using compressed sensing approaches offer one potential

solution to expand the capacity of linear FISH approaches beyond

apparent multiplexing limits defined by the product of fluorescent

channels and imaging rounds (Cleary et al, 2017, 2021). Lastly,

owing to the requirements for high spatial resolution,

transcriptome-scale methods like seqFISH+ and MERFISH are cur-

rently suited to screens of tens of thousands of cells or fewer and

indicated when a small number of perturbations are of a priori inter-

est or nominated from other large-scale screening results (Eng

et al, 2019; Wang et al, 2019; Xia et al, 2019b; Fig 4G).

Additional considerations to throughput not yet addressed here

are the cost and time associated with producing the reagents needed

for a given approach. Probe sets for FISH techniques, including

fluorescence-conjugated oligonucleotides and, in some approaches,

primary encoding probes, may be major cost drivers for large

screens. While small probe sets for ISS and simple linear FISH tech-

niques are relatively inexpensive and straightforward to design,

source, and inventory, investments in larger probe sets, such as

those needed for transcriptome-wide or large subsets like the L1000

transcript set (Subramanian et al, 2017), may be justified by their

applicability to more types of studies, offsetting far greater upfront

cost and effort through amortization across multiple screening pro-

jects.

New biological model systems
While our group’s primary focus has been the application of optical

pooled screens in cancer cell lines, these systems adequately model

only a subset of the biology we and others explore. For a given bio-

logical question, cancer cell lines may lack relevant genetic back-

ground or poorly represent a cell type of interest or epigenetic state.

Further, most 2D cell culture systems are ill suited to the exploration

of cell function in tissues and developmental trajectories. Fortu-

nately, ISS approaches have been extended to primary human cells,

organoids, and tissue sections. The extension of optical pooled

screening approaches to these systems will expand the range of bio-

logical questions accessible to systematic screening approaches.

Extending optical pooled screens to primary cells will require

application-specific optimizations. In particular, some cell types
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may require immortalization to allow expansion or extended

in vitro culture times to enable screening. Cell engineering for per-

turbations (e.g., Cas9 activity for gene knockout), perturbation bar-

code expression and in situ detection, phenotypic assay

development, and computational tasks, such as cell segmentation,

may pose specific challenges in primary cell systems, in particular

heterogeneous performance across the population, demanding

greater cellular throughput to maintain statistical power.

Organoid and in vivo screens face their own challenges for in situ

detection of barcodes. Imaging in organoids requires overcoming

poor reagent penetration into 3D multicellular structures, increased

fluorescence background, and the requirement for increased z-plane

optical sectioning for phenotyping and possibly genotyping. Con-

versely, phenotyping is well-established in thin tissue sections, and

ISS has been demonstrated but perturbation barcode recovery from

tissue sections at large scales still faces similar challenges including

tissue autofluorescence and poor barcode detection efficiencies (Ke

et al, 2013; Wang et al, 2018c). Some of these issues may be

addressed through the implementation of tissue clearing, tissue

expansion, and other genotyping protocol optimizations (Chung

et al, 2013; Chen et al, 2015; Alon et al, 2021). Despite these chal-

lenges, Dhainaut et al (2022) have conducted targeted in vivo pooled

screens with protein barcodes, taking advantage of the compatibility

of IF with tissue sections to recover genotypes through iterative IF

and MIBI-TOF.

Analysis methods
Much work is needed to capture the unique opportunities offered by

profiling screens generally, and image-based profiling screens in

particular. Single-cell resolution, and, for microscopy-based profil-

ing, spatial resolution, provide the opportunity to account for con-

founding variables such as cell state, local spatial context, and

perturbation status (Dixit et al, 2016; Duan et al, 2019; Papalexi

et al, 2021; Wang, 2021). For example, an analysis approach termed

mixscape was applied to an scRNA-seq pooled screen to reduce the

contribution of confounding variables like cell cycle stage by com-

paring each perturbed cell to its nearest neighbor unperturbed cells

(Papalexi et al, 2021). With spatial resolution, analogous corrections

could be performed for covariates such as local cell density, well

position, and more. Additionally, in contrast to enrichment screens

where a single phenotype of interest is defined prior to screening,

profiling screens provide the opportunity to explore genotype–phe-

notype associations at the analysis stage. With high-dimensional

single-cell resolved phenotypic measurements, perturbations can be

tested for association with any number of individual features or fea-

ture combinations. In addition, more rigorous statistical testing

frameworks that account for (and test for) single-cell variability in

high-dimensional spaces are needed. Finally, given the increasing

wave of interest in profiling screens, their wide applicability, and

the possibility of much higher throughput implementations, future

analysis frameworks need robust and efficient scaling to billions of

cells.

Technology accessibility
Finally, improving technology accessibility is critical to establish

optical pooled screening and to realize the wide impact of deploying

this technology across a range of samples and disease areas. We

parameterize “accessibility” for data generation and analysis by ease

of use, consumables costs, and requirements for specialized equip-

ment, reagents, and expertise. We see opportunities to improve the

accessibility of optical pooled screens by improving screening effi-

ciency and throughput to reduce required screening time and scale,

reducing the cost of reagents for sequencing and phenotyping, sim-

plifying and standardizing lower-cost instrument configurations,

implementing automated imaging and chemistry, and the availabil-

ity of approachable, automated, and high-performing yet flexible

image analysis solutions and downstream analysis tools.

The first challenge new users encounter in performing an optical

pooled screen is often assay validation in the desired biological

model in combination with cell engineering and protocol require-

ments for genomic perturbation and in situ genotyping. These steps

specifically include verifying the capacity to deliver perturbation

reagents and effect perturbations, measure phenotypes, and recover

perturbation barcodes at quantitatively adequate performance

levels. Reagent databases, especially those validating antibody per-

formance in IF applications, may be valuable resources in develop-

ing a given phenotyping panel. While each screen will still require

application-specific optimizations, continuing validation of pertur-

bation and detection reagents by the research community across a

wide range of biological systems and ongoing demonstrations of

compatibility with in situ genotyping will gradually facilitate the

development of new optical pooled screens.

Optical pooled screens provide a relatively affordable and

approachable workflow for multidimensional profiling screening at

high cellular throughput. However, lowering reagent costs and

improving ease of use for ISS and phenotyping approaches would

further improve accessibility and expand achievable scales. Cur-

rently, sequencing by ligation and SBS approaches have been

demonstrated for ISS genotyping. Sequencing by ligation protocols

use commercially available dye-conjugated oligonucleotides and

enzymes. We and others have used commercially available Illumina

SBS reagent kits designed for four-color readout on instruments

such as the Illumina MiSeq (Payne, 2017; Chen et al, 2018; Feldman

et al, 2019). Today, alternative SBS chemistries with fluorescent

readouts are becoming commercially available from companies

including Singular Genomics, Element Biosciences, and MGI. Con-

currently, multiplexed in situ phenotyping approaches are likely to

become more available and affordable as these approaches become

more popular and the expanding market spurs commercialization.

Several currently marked options span the range of phenotyping

approaches discussed and include HCR probes for amplified linear

FISH (Molecular Biotechnologies), MERFISH probes for exponential

FISH (Vizgen), and oligo-conjugated antibodies for Immuno-SABER

or CODEX iterative IF (several vendors).

Access to instrumentation, including high-throughput screening

microscopes and automated fluidics solutions, is a significant hurdle

to implementing microscopy-based screening. We estimate that an

optical pooled screening microscopy setup similar to those used in

our lab, including wide-field fluorescence microscope, illuminator,

camera, and appropriate filter sets, has a cost range of $100,000–

$200,000 (USD), possibly higher if optical sectioning with confocal

or light sheet imaging is required for assays. Like other major capital

equipment for biological research, justifying this cost in most orga-

nizations depends on a plan for efficient utilization of the equipment

by large projects or sharing instrumentation across many small pro-

jects. In addition, highly configured research microscopes are
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complex custom instruments, and while the hardware and software

can be supported by commercial vendors, acquisition timelines,

integration, setup, maintenance, robustness, and support are infe-

rior in comparison with single-configuration mass-produced scien-

tific instrumentation like dedicated sequencing instruments. “High

content” screening microscopes are a more highly integrated option,

but capital cost can be roughly an order of magnitude higher and

may restrict sample type compatibility or desirable modification or

integration with other automation systems. Finally, a new crop of

integrated fluorescence imaging instruments with fluidics automa-

tion are nearing the market (Nanostring GeoMx, 10X Genomics

Xenium) and may be adaptable for optical pooled screens.

Economic analysis of instrument productivity highlights the

importance of imaging time in determining overall cost and through-

put. Protocol automation, through integrated microscopy and flu-

idics, is an important driver for efficient utilization of equipment

and labor, but poses additional engineering requirements. Custom

built fluidics solutions have been developed to automate chemistry

on microscopy samples (Gut et al, 2018; Almada et al, 2019; Eng

et al, 2019; Xia et al, 2019b). Hurdles to implementing automated

ISS and phenotyping include meeting the high degree of chemistry

and imaging reliability needed for high-throughput applications and

managing workflows requiring staggered processing of multiple

samples. Notably, there is basic compatibility of pooled profiling

screening with the capability of commercial high-throughput

sequencing instrumentation. Many sequencers developed for SBS

with fluorescent readout have advanced and high-throughput imag-

ing and reagent delivery capabilities, offering another path for

repurposing mass-produced commercial instrumentation for optical

pooled screening. Challenges with adapting such instruments for

optical pooled profiling screens include lack of support for user

defined workflows and proprietary sample formats that may not be

suitable for cell- or tissue-based experiments. Several groups have

repurposed retired four-color sequencing instruments for optical

screening (Uemura et al, 2010; Nutiu et al, 2011). For example, Pan-

dit et al (2022) recently demonstrated automated chemistry and

imaging for 4i multiplexed IF on an essentially unmodified Illumina

HiSeq 2500 instrument. Largely replaced by higher throughput

sequencers, retired HiSeq systems are currently available on the

used market at substantially lower cost than new research micro-

scopes.

Disease applications

While we envision that optical pooled screening will help answer a

diversity of biological research questions, we highlight here several

areas where optical screens are particularly exciting for the study of

human disease. Cell-based imaging assays are already critical tools

for the evaluation of gene function and compound mechanism of

action (MOA) in modern drug discovery programs, leveraging a

wide variety of labeling chemistries and imaging techniques to mea-

sure diverse molecular and cellular properties—particularly interme-

diate disease phenotypes visible in cells and reliably associated with

disease etiology in humans. The relevance of in vitro imaging assays

have been bolstered in recent years by advances in physiologically

relevant model systems and advanced image analysis. In this sec-

tion, we highlight the potential for optical pooled screens to

elucidate mechanisms of disease pathogenesis, focusing on illustra-

tive examples in cancer, infectious disease, and neurological disor-

ders.

Ideal cancer therapies selectively kill tumor cells while minimiz-

ing adverse effects on the patient. Unfortunately, high-throughput

drug screens relying on cytotoxicity readouts have generally

returned the same “low-hanging fruit”—previously known MOAs

that are highly druggable, such as microtubule dynamics and DNA

modification (Moffat et al, 2014), slowing the discovery of selective

therapies that address new tumor-specific MOAs. Recently, NGS-

based methods for CRISPR screening and drug susceptibility profil-

ing have made it possible to analyze cancer vulnerabilities at

unprecedented throughput while gene expression profiling has

enabled unbiased investigations of drug mechanisms (Barretina

et al, 2012; Stransky et al, 2015; Iorio et al, 2016; Yu et al, 2016;

Subramanian et al, 2017; Tsherniak et al, 2017; Ghandi et al,

2019; Corsello et al, 2020; McFarland et al, 2020; Srivatsan

et al, 2020). Image-based profiling is a complementary approach

that has been used to map drug-gene interactions and mechanisms

of cytotoxicity (Breinig et al, 2015; Way et al, 2021). Targeted assays

may also be used to examine cancer-relevant phenotypes such as

signaling dynamics, kinase activity, DNA damage, glucose con-

sumption, and epithelial-to-mesenchymal transition (Kim

et al, 2011; Purvis et al, 2012; Regot et al, 2014; Lotz-Jenne

et al, 2016; Ghezzi et al, 2019; Goglia et al, 2020). Pooled screening

approaches facilitate the deployment of these assays across large

libraries of genetic perturbations and multiple cellular models. We

have demonstrated in situ genotyping of sgRNAs in tens of cancer

cell lines, with effective genotyping typically possible using a single,

standard protocol (Feldman et al, 2022).

There is significant interest in using optical pooled screens to

study the effects of genetic perturbations in organoid models and tis-

sue sections. Recently, Dhainaut et al (2022) used protein barcodes

to analyze the effects of gene knockouts on phenotypes measured

in vivo, including tumor growth, immune composition, and gene

expression.

Optical methods have also served a crucial role in the analysis of

host-pathogen interactions, enabling precise studies of pathogen life

cycle, the suite of host antiviral responses, and classification of

diverse infection outcomes. For example, high content assays have

been developed to study individual steps during viral infection,

including viral entry, unpackaging and gene expression (Karlas

et al, 2010; Banerjee et al, 2013). This contrasts with many other

infection screening approaches that provide a unidimensional read-

out of viral binding, entry, or cytopathic effect alone. Amidst the

ongoing SARS-CoV-2 pandemic, imaging approaches have been

used to identify compounds with antiviral properties and to model

the effects of cytokine storm (preprint: Cuccarese et al, 2020; Zhu

et al, 2020).

Meanwhile, antibiotic resistance has stimulated interest in thera-

peutics that target host pathways instead of bacteria directly. An

RNAi screen of the human kinome uncovered several kinases that

inhibit the growth of Salmonella and follow-up studies linked

phagosome maturation in host cells with pathogen survival (Kuijl

et al, 2007). Imaging has also been used to dissect microbe genetics.

For example, an arrayed Mtb transposon screen identified mutants

with impaired capacity to survive inside host macrophages (Barczak

et al, 2017). Imaging is also a powerful tool to probe cell non-
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autonomous phenotypes, such as cell–cell interactions and tissue-

level organization of immune cells, which play important roles in

pathogen responses (Pasqual et al, 2018; Gola et al, 2021).

Neurological disorders are characterized by a number of pheno-

types that are ideally suited to image-based readout, such as neuron

morphology, protein and RNA aggregation, synapse formation, and

electrical function, phenotypes often most relevant in the context of

spatial and functional relationships among cells (Sepp et al, 2008;

Linhoff et al, 2009; Jain & Vale, 2017; Kiskinis et al, 2018; Tian

et al, 2019; Duan et al, 2021). Many cells in neural tissues have

extended morphologies, including long processes where many such

critical functions and interactions are localized. The requirements

for cell dissociation and handling of flow cytometry and single-cell

NGS methods are often incompatible with cells from neural tissues,

limiting researchers to discern what they can from cell nuclei

stripped of most functional cellular components. Optical profiling

screens offer opportunities to study intact interacting cells localized

in or obtained from neural tissues. Pooling offers a straightforward

strategy to scale up assays for neuronal phenotypes across large

genomic libraries, yet presents a number of challenges.

Cell segmentation is particularly difficult in cell types with com-

plex morphologies and long processes like neurons, making it diffi-

cult to associate cell bodies and nuclei with more distal parts of the

same cell where many activities of interest manifest. For optical

pooled screens, this impacts both phenotypic imaging and the asso-

ciation of phenotypes at the cell periphery with perturbation identi-

ties. Neuron barcoding and machine learning approaches offer two

potential classes of strategies for improved segmentation, but have

yet to be fully developed or integrated with optical profiling screens

(Ronneberger et al, 2015; Wroblewska et al, 2018; Chen et al, 2019;

Moen et al, 2019). The establishment of readily engineerable

disease-relevant model systems, such as induced pluripotent stem

cell-derived neurons, as validated models for optical pooled screens

is another priority for technology development in this area. For opti-

cal pooled screens, this requires the demonstration of efficient per-

turbation delivery and in situ detection in neural cell types. As

optical screens move into organoids and solid tissues, the brain is

an attractive system for whole-mount imaging due its relative trans-

parency compared with other tissue types.

Conclusion

The development of programmable genetic perturbation technolo-

gies, microscopy-based high-dimensional phenotypic assays, and

screening methodologies to associate perturbations to phenotypes

have created exciting opportunities to study genotype–phenotype

relationships with genetic screens. We anticipate that these tech-

nologies will mature and be integrated in approachable and accessi-

ble screening workflows at very large scales that enable the broader

research community to routinely access high-dimensional and

single-cell resolved readouts for genome and epigenome scale per-

turbation screens as well as new use cases yet to be imagined.
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