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Renal cell carcinoma (RCC) is one of the ten most common cancers for men and women
with an approximate 75% overall 5-year survival. Sixteen histological tumor subtypes exist
and the most common are papillary, chromophobe and clear cell renal cell carcinoma
(ccRCC) representing 85% of all RCC. Although epigenetically silenced, endogenous
retroviral (ERV) genes become activated in tumors and function to ignite immune
responses. Research has intensified to understand ERV protein function and their role
as tumor antigens and targets for cancer (immune) therapy. ERV-K env is overexpressed
and implicated as a therapeutic target for breast cancer, however studies in RCC are
limited. In this investigation a human RCC tissue microarray (TMA) (n=374) predominantly
consisting of the most common histological tumor subtypes was hybridized with an ERV-
K env antibody and correlated with patient clinical data. TMA results showed the highest
amount of ERV-K env protein expression and the strongest significant membrane
expression in ccRCC versus other RCC subtypes. High ERV-K env total protein
expression of all tumor subtypes significantly correlated with low tumor grading and a
longer disease specific survival using multivariable analyses. Cell proliferation and invasion
were assayed using the kidney cell lines HEK293 with wild-type p53 and a ccRCC cell line
MZ1257RC mutated for p53. Transfecting these cell lines with a codon optimized ERV-
K113 env overexpressing CMV vector was performed with or without 5’-Aza-2’-
deoxycytidine (Aza) treatment to sustain promoter de-methylation. MZ1257RC showed
induction of ERV-K113 expression and significantly increased both proliferation and
invasion in the presence or absence of Aza. HEK293 cells demonstrated a restriction of
ERV-K113 env expression and invasion with no changes in proliferation in the absence of
Aza. However, in the presence of Aza despite increased ERV-K113 env expression, an
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inhibition of HEK293 proliferation and a further restriction of invasion was found. This study
supports ERV-K env as a single prognostic indicator for better survival of RCC, which we
propose represents a new tumor antigen. In addition, ERV-K env significantly regulates
proliferation and invasion depending on p53 status and Aza treatment.
Keywords: endogenous retrovirus, ERV-K, renal cell carcinoma, tumor antigen, patient prognosis, p53,
azacytidine, invasion
INTRODUCTION

ERVs and related sequences are estimated at ~400,000 copies or
4.6% of the human genome, including genomic proviruses like 5’
long terminal repeat (LTR)-gag-pol-env-3’ LTR (1). On the other
hand, LTR-retrotransposons, so called mammalian apparent
LTR retrotransposons (MaLRs) represent 3.6% of the genome
and lack primer binding sites and gag-pol genes (1). Due to
recombination events between 5’ and 3’ LTRs, throughout
evolution internal genes were lost resulting in ERV solitary
LTRs (solo-LTRs). These solo-LTRs contain functional
sequences like promoters, enhancers, polyadenylation signals
and are frequently located near cellular genes. Specifically,
ERV-K members were originally identified due to their
similarity to the Mouse Mammary Tumor Virus (MMTV) and
are subdivided into ten so-called human MMTV-like clades
(HML1–10) (2, 3). It is estimated for ERV-K HML1 through
HML10 that ~600 proviruses and ~4,400 solo-LTRs exist (4, 5).
Underestimated are polymorphisms of ERVs within the global
human populations like ERV-K, which can be used to distinguish
Africans, Europeans and East Asians (6). Especially ERV-K113
and ERV-K115 have been assessed with allele frequencies
between 21-34% in individuals from Africa and only 1-4% in
the United Kingdom (7).

Epigenetic ERV activation occurs in a broad spectrum of
tumors and functions at the RNA level to ignite an interferon
(IFN) immune response via dsRNA formation coined “viral
mimicry” (8). At the protein level, ERVs can drive hormone
induced tumor growth and anchorage independent growth (9),
cancer cell-cell fusion (9, 10), regulation of immune cells, and
mediate signal transduction pathways (8, 11). Overexpressed
ERVs can also serve as tumor-self antigens (12). ERV-K
represents one of the largest and most active ERV-groups, as
well as one of the most recently integrated ERVs (ERV-K HML2)
with multiple copies of intact ORFs (4, 13). In addition to the
ERV-K env protein two alternative splice products Rec or Np9
are also actively involved in carcinogenesis (14). Like other ERVs,
ERV-K is silenced by various epigenetic processes (15). However,
DNA hypomethylation can activate ERV-K during normal
human embryogenesis until the late blastocyst, but also in
different cancer types, like melanoma and breast cancer (14,
16, 17). Treating breast cancer cell lines and human breast tumor
xenografts with ERV-K specific antibodies resulted in decreased
tumor growth and apoptosis supporting ERV-K env is a tumor
antigen which can be targeted for therapy (18).

The ERV-E family consists of more than 1,300 elements
subdivided into LTR2, LTR2B and LTR2C (19–21). Of these
.org 2
elements only a few were proviruses, like ERV-E at chromosome
6q15 and ERV-E 4-1 at chromosome 19p12. However, neither of
the latter coded for a full length env (e.g. ERV-E6q15 env and
ERV-E4-1 env codes for ORFs of 211 and 427 amino acids,
respectively). Several ERVs, especially ERV-E 6q15, have been
found activated in renal cell cancer (RCC) and correlated with an
immunotherapy response (20, 22–25). Specifically, the ERV-
E6q15 provirus encodes a highly immunogenic 10 amino acid
(aa) peptide considered as a tumor-specific antigen (22).
Interestingly, this 10 aa peptide was detected in the blood of a
patient with RCC following an allogeneic hematopoietic stem cell
transplantation, which led to patient tumor cell killing
in vitro (22).

RCC is among the ten most common cancers for bothmen and
women with an approximate 76% overall survival (OS) of 5 years,
but only 12% of patients with metastatic stage IV disease (26). An
increased risk for RCC includes smoking (3-fold), obesity,
hypertension, diet and alcohol. Additionally, older age, genetic
predisposition syndromes such as Von Hippel-Lindau (VHL)
disease as well as male gender also predispose for RCC (26, 27).
Histological subtypes include clear cell renal cell carcinomas
(ccRCC), which comprise 75-80% of all kidney tumors, as well as
papillary, chromophobe and others. One hallmark of ccRCCs are
deletions of chromosome 3p, which eminently result in the loss of
the VHL tumor suppressor gene (27, 28).VHL gene mutations but
also hypermethylation of the VHL promoter contribute to
attenuating its tumor suppressor mechanisms.

Research has intensified to understand ERV protein function
as well as their role as tumor antigens being targets for cancer
immune therapy. In this investigation we focused on ERV-K env
RNA and protein expression and function in RCC as well as the
importance of ERV-K env for prognosis of patients with RCC.
MATERIALS AND METHODS

RCC Tissue Microarray, Pathological and
Patient Clinical Results
The present study was approved by the Ethics Commission of the
FA-University of Erlangen-Nuernberg (# 3755). The procedures
were performed in accordance with the ethical standards
established in the 1964 Declaration of Helsinki and later
amendments. All patients gave written consent for the use of
their tumor material. We implemented an RCC TMA, which
contained 453 tissues derived from formalin-fixed and paraffin-
embedded tumors as previously described (29). The resection
date ranged from 1998 to 2011. The TMA was reviewed by three
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Uropathologists (VW, ME, AH) to verify tumor histology
according to the latest WHO classification of 2016 (30). All
tumor tissues of the TMA represented regions from the tumor
center. Among the 453 cases we excluded 79 cases due to tumor
absence from multiple tissue block usages overtime. Therefore,
for this present study we analyzed 374 tumors, of different RCC
subtypes including ccRCC (n= 288), papillary (type I (n= 18);
type II (n= 27), chromophobe (n= 27), ccRCC with sarcomatoid
features (n= 8), and others (n= 6). Patient survival data was
updated in 2019 with follow-up data available for 314 patients
(84%), with a median potential follow-up time of 65.5 months.
Pathological and clinical parameters and follow-up patient
survival data in months are shown in Supplementary Table 1.

Immunohistochemistry
Hybridization of a purified rabbit polyclonal antibody specific for
ERV-K env (MyBioSource Cat. #: MBS9216561; 1: 1,000 dilution)
was performed with the RCC TMA or hybridized with
MZ1257RC and HEK293 tissue cytoblocks transfected with a
codon optimized overexpressing ERV-K113 env gene cloned into
a pcDNA3.1-vector with a CMV promoter or an empty control
pcDNA3.1vector (see transfections below). The ERV-K env
peptides representing the antigen specific for the antibody are
shown in Supplementary Table 2. IHC was performed with the
mouse & rabbit specific HRP/DAB detection kit according to
manufacturer’s protocol (Abcam). The ERV-K env positive
tumors in the TMA were classified according to localization
(membranous and cytosolic) and intensities scored as H-scores.
The H-score represents the sum of all intensities scored as
percentages [0 {negative}, 1+ {weak}, 2+ {moderate} and 3+
{strong} (31)], which are then combined to a score capped at
300. The H-Score has no dimension. H-Score-Formula: H-score =
{1 × (% cells 1+) + 2 × (% cells 2+) + 3 × (% cells 3+)}. Every H-
score of the RCC TMA is represented in Supplementary Table 3.
Additionally, p53 (Dako, clone: DO-7, monoclonal mouse Anti-
Human antibody, dilution 1: 50) immunohistochemistry was
performed on a BenchMark ULTRA Automated IHC/ISH Slide
Staining System (Ventana; VentanaMedical Systems, Inc., Tucson,
AZ, USA). IHC positive p53 cells were either defined as strong
nuclear overexpression in at least 10% of cells or with a complete
p53 loss of expression (‘null phenotype’).

Cell Lines and Cell Culture Experiments
Eleven ccRCC cell lines (MZ1257RC, Caki1RC, MZ1790RC,
MZ1795RC, MZ2861RC, MZ1846RC, MZ2733RC, MZ1851RC,
MZ1774RC, MZ1973RC, MZ2905RC) were previously
established from primary ccRCC and cultured according to
Seliger et al. (32). The MZ1257RC cell line was used in all
functional studies and cultured in DMEM media, 10% FCS and
L-Glutamine. The human embryonic kidney cell line HEK293
was cultured in DMEM F12 media and 10% FCS. All cell lines
were cultured at 37°C at 5% CO2.

RNA Isolation and Gene Expression
Studies of Primary Tissues and Cell Lines
RNA isolation of microdissected primary ccRCC tissues (n= 14)
and available patient matched tumor associated normal renal
Frontiers in Oncology | www.frontiersin.org 3
tissues (n= 11) was performed using an automated magnetic
bead-based system (Maxwell® 16 Instrument and modified using
the RSC DNA blood kit along with the RNA incubation and lysis
buffer from Promega). For RNA isolation of cell lines Trizol (Life
Technologies) was used according to manufacturer ’s
instructions. All RNAs were treated with DNase I and
quantified. Real time PCR was performed using a StepOnePlus
and SYBR®-Green (Thermo Fisher) detection according to (8).
Specific primers were used to quantify seven codogenic ERV gene
families (ERV-W, ERV-H, ERV-Fc1, ERV-Fc2, ERV-T, ERV-K,
ERV-E) using absolute quantitative real time PCR converted to
absolute molecules/ng RNA as previously described (33).
Primers for three reference genes, 18S-rRNA , TF 5 ’
GCAATTATTCCCCATGAACG, BR 5’ GGCCTCACTAAAC
CATCCAA; ß-actin, TF 5’ TCACCATTGGCAATGAGCGG,
BR 5’ GATGTCCACGTCACACTTCAT; and RPS23, TF 5’
TGGAGGTGCTTCTCATGCAAA, BR 5’ TAATGGCAGAA
TTTGGCTGTTTG were used for normalization according to
MIQE guidelines (34). Additionally, note that primers
specifically detecting the transfected codon optimized ERV-
K113 env gene did not hybridize with the endogenous ERV-K
env gene (35).

Transfection and 5’-Aza-
2’deoxycytidineTreatment of Cells
HEK293 and MZ1257RC cells were seeded at 450,000 or 250,000
cells per 95 mm2 tissue culture dish, respectively, and the next
day transfected either with 3 µg of the codon optimized
overexpressing vector with a ERV-K113 env gene (35) or with
the control pcDNA3.1 vector (Invitrogen) using JetPei
(Polyplus). A pEGFP-N1 vector (Clontech) (3 µg) was
transfected and confirmed a transfection efficiency >80% for
both cell lines. RNAs were harvested post transfection at 16 h,
24 h, 48 h and 72 h in the presence or absence of the DNA
methyltransferase (DNMT) inhibitor Aza (500 nM) (Sigma) to
establish a time kinetic of expression according to Chiappinelli
et al. (8) (n= 2). Tissue cytoblocks were made following
transfection with the codon optimized overexpressing vector
with a ERV-K113 env gene or the control pcDNA3.1 vector at
16 h. Briefly, transfected cells were detached with 0.0625%
Trypsin (Gibco) and cell pellets fixed with 4% PFA for 1 h.
The pellet was washed with 1x PBS, stained with 100% Eosin for
5 min, washed with 1x PBS and then embedded in Histogel
(Thermo Scientific) overnight at 4°C. Following formalin
fixation, ethanol dehydration and paraffin treatment overnight
at 60°C, the tissue culture pellets were embedded in paraffin
at 4°C.

Proliferation and 3D Collagen Invasion
Assays
Following transfection with the codon optimized overexpressing
vector containing an ERV-K113 env gene or with the pcDNA3.1
control vector (after 16 h), 2 x 105 MZ1257RC or HEK293 cells
were seeded in 95 mm2 culture dishes to assay for proliferation in
the presence or absence of Aza. The total number of MZ1257RC
and HEK293 cells transfected with the overexpressing vector
containing the codon optimized ERV-K113 env gene or with the
April 2021 | Volume 11 | Article 657187
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pcDNA3.1 control vector were determined using a Neubauer
hemocytometer chamber at 44 h, 68 h and 92 h post transfection
(n= 4 for MZ1257RC; n= 2 for HEK293). In parallel, 3D collagen
invasion assays were initiated with 50,000 transfected
MZ1257RC (n= 6) and HEK293 cells (n= 3) in the presence
and absence of Aza according to Weigand et al. (36). Invasion
scores represented as invaded cells/mm2 were determined at 68 h
post transfection.

Statistical Analysis
Descriptive statistics were employed to characterize the
distributions of continuous as well as nominal variables. Non-
parametric Wilcoxon rank-sum test was used for comparison of
continuous variables and partitioning testing (mono-forest
prediction) was performed to determine “cut-off” levels for
each tumor subtype because of known biological differences
between the histological RCC tumor subtypes. Multivariable
systems were used and variables included for models were the
following: gender, pT-Stage, pN-stage, lympho-vascular and
angiogenic invasion, presence of distant metastasis, tumor
grading and morphology. All p-values were two-sided and a p-
value <0.05 was considered statistically significant. All statistical
analyses were performed using GraphPad Prism 7.2 (GraphPad
Software Inc.) and JMP SAS 15.2 (SAS).
RESULTS

Gene Expression of ERV Env Genes in
ccRCC and Normal Primary Renal Tissues
In order to examine the expression of codogenic ERV families,
we quantified the mRNA expression levels of seven ERV gene
families using 14 primary ccRCC and 11 patient matched tumor
associated normal kidney tissues (Figure 1A). Compared to
normal kidney samples, all ERV genes were significantly higher
Frontiers in Oncology | www.frontiersin.org 4
expressed in the ccRCC lesions (p < 0.0001) (Figure 1A). For
example, ERV-K env was 134.6-fold higher expressed in ccRCC
compared to normal kidney (1,281.33 vs 9.52 molecules/ng
RNA). The most well studied ERV gene in ccRCC is ERV-
E6q15, where high transcript levels have been noted (20, 25).
We found that ERV-E6q15 env was 76.29-fold higher expressed
in ccRCC compared to controls (832.43 vs 10.91 molecules/ng
RNA). Examining the ratio of ERV-E6q15 env with other ERV
genes revealed a higher expression of ERV-E6q15 env when
compared to the env genes of ERV-E4-1, ERV-H, ERV-T, ERV-
Fc1 and ERV-Fc2 (Figure 1B). In contrast, ERV-W1 env
(Syncytin-1) and ERV-K env were higher expressed in
approximately 50% of ccRCC compared to ERV-E6q15 env.
Interestingly, ERV-K pol had the highest expression in >50% of
RCC compared to ERV-E6q15 env (Figure 1B). The findings that
other ERV genes are highly expressed in ccRCC where transcript
levels exceed ERV-E6q15 env support a functional role for these
ERV genes in RCC.

ERV-K Env Protein Localization in Primary
RCC Tissues and Clinical Associations
Due to the high gene expression of ERV-K env in ccRCC (Figure
1) and the availability of specific antibodies, a TMA consisting of
374 RCC tissues was implemented to determine the ERV-K env
protein expression and localization within cancer cells (Figure
2). Analyzing the amino acid sequence used as the antigen for the
ERV-K env rabbit polyclonal antibody in this study, we identified
at least 15 different members of ERV-K env at specific
chromosomal regions, which might contribute to the overall
ERV-K env expression (Supplementary Table 2). The H-score
of ERV-K env showed a variable distribution and intensity of
membrane vs cytosolic expression among all tumors (Figures 2, 3).
ERV-K env demonstrated the strongest expression of ccRCC at the
membranes compared to the cytosol (p< 0.0001) (Figures 2A, 3A
and Supplementary Table 3). In contrast, all other tumor subtypes
exhibited stronger cytosolic ERV-K env expression compared to
A B

FIGURE 1 | ERV gene expression in primary tissues. (A) ERV expression in ccRCC and control kidney tissues. Seven different ERV gene families were analyzed for
expression in molecules/ng RNA (log10) (Y-axis) from 14 primary ccRCC and 11 patient matched tumor associated control tissues (X-axis). Gene expression was
then compared using Mann-Whitney two-tailed test, where all ccRCC tumors were significantly increased compared to controls (p < 0.0001). (B) ERV6q15 env
expression ratios in primary ccRCC. The graph shows for each ccRCC (n= 14; same tissues as in A) the specific ERV expression from 7 families (A) in a ratio (log10)
(Y-axis) compared with ERV-E6q15 (X-axis - E6q15).
April 2021 | Volume 11 | Article 657187

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Weyerer et al. ERV-K Tumor Antigen
cell membranes (papillary type I and II, p< 0.0001; chromophobe,
p= 0.0003) (Figures 2C, 3A). For ccRCC with sarcomatoid
features, we observed that ERV-K env expression was equally
distributed between the membrane and cytosol (Figures 2D, 3A).
Finally an evaluation between tumor subtypes demonstrated that
ccRCC had the strongest significant ERV-K env membrane
expression compared to papillary and chromophobe subtypes
(Figures 3B, C).

We further analyzed ERV-K-env protein expression for
correlations with patient clinical parameters. For all RCC
subtypes tumor grading demonstrated differences according to
the localization of ERV-K env expression (Figure 3). G1 tumors
exhibited the highest significant ERV-K env expression and G3
tumors the lowest at the membrane, but was reciprocal in the
cytosol (Figures 3E, F). Analyzing pT-staging no significant
correlations with ERV-K env expression were observed (data not
shown). For all RCC subtypes strong expression levels of total
cellular ERV-K env protein significantly correlated with low
tumor grading (Figure 3G) and a longer disease specific
survival (DSS) using a multivariable analysis (p= 0.04, HR=
6.05, 95% CI: 1.11 – 32.93) (Figure 4A). This finding supports
that both ERV-K env membrane and cytosol protein expression
are important for patient clinical outcome. Analyzing single
tumor subtypes no significant correlations of ERV-K env
expression with DSS were found (Figure 4B for ccRCC). As
proof of concept for all RCC subtypes grading and staging
correlated significantly with DSS (Figure 4C).

ERV Gene Expression in ccRCC and
HEK293 Cell Lines
The profile of ERV gene expression from 16 different families was
analyzed with 11 ccRCC cell lines as well as with HEK293 cells.
Frontiers in Oncology | www.frontiersin.org 5
ERV-W1 env (Syncytin-1), ERV-W5 gag, ERV-3, ERV-K env and
pol, ERV-E6q15, and ERV-H env were the highest expressed
genes in these cell lines (Figure 5A). In contrast, HRES-1
(HTLV-related endogenous sequence), an ERV expressing a
gag-like protein (37) was the lowest expressed in ccRCC cells,
but the highest in HEK293 cells (Figure 5A). To determine the
protein function of ERV-K env stemming from an
overexpressing vector, among all the cell lines we chose
MZ1257RC and HEK293 expressing comparable low gene
expression levels of endogenous ERV-K env (Figure 5A). In
addition, HEK293 demonstrated p53 wild type (wt) expression
and localization, whereas MZ1257RC was determined as mutant
with a p53 localization solely in nuclei (Supplementary Figure 1).
Transfection experiments with a CMV based codon optimized
ERV-K113 env overexpressing vector demonstrated the highest
gene and protein expression levels after 16 h and 24 h
post-transfection, which then rapidly decreased by 48 h
(Supplementary Figure 1 and data not shown). It is known
that p53 wt transcriptionally represses the CMV promoter via
binding to the transcriptional machinery (38) and that cells can
generally methylate and silence transfected vectors (39).
Therefore, we compared gene expression levels of the codon
optimized ERV-K113 env gene between both cell lines with
opposite p53 genotypes in the presence or absence of Aza at
24 h post transfection. In the absence of Aza, HEK293 cells
showed ~3-fold less ERV-K113 env gene expression compared to
MZ1257RC, supporting p53 repressor activity in HEK293 cells,
but a loss of repression in MZ1257RC (Figure 6). We propose
this result is due to the p53 mutant protein in the MZ1257RC cell
line. Interestingly, Aza treatment of both cell lines increased and
sustained transfected ERV-K113 env gene expression until 72 h to
almost similar levels (Figure 6).
FIGURE 2 | Representative microscopic images of TMA samples of different RCC tumor subtypes hybridized with a specific ERV-K env antibody. (A) Example of a
ccRCC (Tumor #21 TMA I) with strong protein expression of ERV-K env at the cell membrane. (B) Example of a ccRCC (Tumor #23 TMA I) with strong cytosolic
enrichment for ERV-K env protein. (C) Example of a RCC papillary tumor with strong cytosolic enrichment for ERV-K env protein (Tumor #28 TMA II). (D) Example of
a ccRCC with sarcomatoid features (Tumor #20 TMA III) with strong membranous as well as a partly cytosolic ERV-K env staining. Bar indicates 50µm.
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Influence of ERV-K113 Env
Overexpression on Cell Proliferation
and 3D Invasion
Following transfection of MZ1257RC cells with the codon
optimized ERV-K113 env overexpressing vector, proliferation
was significantly induced from 44 to 92 h post-transfection with
or without Aza treatment when compared with cells transfected
with the control vector (Figure 5B). However, we noted no
significant difference of proliferation of ERV-K113 env
transfected cells between the presence or absence of Aza
treatment. In contrast, HEK293 cells showed no induction of
proliferation following transfection with ERV-K113 env,
however, interestingly in the presence of Aza, proliferation
was restricted even in the presence of ERV-K113 env
(Supplementary Figure 2). When MZ1257RC cells were
transfected with the overexpressing vector containing the
codon optimized ERV-K113 env gene and treated with or
without Aza, we observed a significantly higher 3D cell
invasion at 68 h post-transfection compared to cells transfected
with the control vector (Figure 5C). On the other hand, cell
invasion was inhibited with HEK293 cells transfected with the
ERV-K113 env gene overexpressing vector, but interestingly a
further inhibition was observed in the presence of Aza (Figure
5D). In order to explain the converse proliferation and invasion
results between MZ1257RC and HEK293 upon Aza treatment,
the p53 protein status is pivotal. As previously shown a lack of an
Aza response was noted with other mutant p53 cancer cell lines
(41). Taken together overexpression of ERV-K env regulates
tumor cell proliferation and invasion, however a p53 mutant
Frontiers in Oncology | www.frontiersin.org 6
status could explain the lack of suppression of proliferation and
invasion following Aza treatment of MZ1257RC cells (Figure 6).
DISCUSSION

Tumor antigens are categorized into different classes. One class
reflects gene mutations within tumor cells, which are translated
and processed into neoantigens (42). These neoantigens are then
presented to T-cells via the major histocompatibility complex
(MHC) and initiate tumor cell killing. Another class of tumor
antigens represent overexpressed proteins (tumor-self antigens)
(42). Ideal criteria for tumor antigens as targets for therapy are
enhanced immunogenicity associated with an anti-tumor
response, which directly suppresses an oncogenic phenotype
essential to the tumor. Since ERVs are epigenetically silenced
in somatic cells, activation and overexpression is an opportunity
to study their function in tumors. In addition, targeting
overexpressed ERV proteins in tumors could represent a
therapeutic approach resulting in a better patient clinical
outcome. Our present investigation along with the literature
brings forth new results supporting ERV-K env as a
possible tumor-self antigen in RCC involved in proliferation
and invasion.

Our initial gene expression profiling of 11 ERV families not
only showed significantly overexpressed levels for these ERV
genes in ccRCC compared to normal kidney tissues, but also
identified several ERV genes, which were in part higher expressed
compared to the ccRCC associated bona fide ERV-E6q15 env
A B D

E F G

C

FIGURE 3 | ERV-K env protein localization and clinical correlations between RCC tumor subtypes. (A) ERV-K env cytosolic (cyto) or membrane (mem) localization
represented as H-scores (Y-axis; 0 - 400) for each RCC tumor TMA subtype (X-axis). TMA; ccRCC = clear cell carcinoma (n= 288) with sarcomatoid (Sarcomat)
features (n= 8); Chromo = chromophobe (n= 27); papill-1 and -2 = Papillary 1 (n= 18) and 2 (n= 27). ***p< 0.0001; **p= 0.0003, ns = not significant. Red bar
crosses represent the mean for each cohort tumor subtype. (B) Bar graphs comparing ERV-K env membranous or (C) cytosolic staining or (D) total protein
expression (combined) with the H-score significance and RCC tumor subtypes. (E) Bar graphs comparing ERV-K env membranous or (F) cytosolic or (G) total
protein expression (combined) for each RCC tumor subtype staining with the H-score significance comparing RCC tumor subtypes and tumor grading (G1, G2, G3).
All p-values are indicated within the graphs or ***p< 0.001.
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gene (22, 25). Among these, ERV-W1 env (Syncytin-1), ERV-Fc1
env, ERV-K env and pol were higher expressed than ERV-E6q15,
which led us to focus on ERV-K env for further studies.
Interestingly, except for ERV-Fc1 we found that these same
ERV genes were also expressed in 11 different ccRCC cell lines.
Although, our present study was limited to ccRCC cell lines,
there is a need to analyze ERV gene expression in non-ccRCC
tumor cell lines. However, only a few RCC papillary and no
chromophobe cell lines exist to date (43).

Although, ERV-E6q15 env is considered an important ccRCC
tumor antigen, presently there is no protein data available
localizing its expression within tumor cells. Our detailed
assessment of ERV-K env protein expression in RCC tissues
showed that membrane and cytosolic localization were
significantly different between RCC subtypes supporting
functional roles of ERV-K env at both cellular compartments.
Furthermore, the ERV-K env antibody used in the present study
has the potential to hybridize with more than 15 ERV-K env
members sharing the same or near identical antigen binding site.
This finding supports amplified ERV-K env tumor functions.
Lastly, RCC ERV-K env protein localization in its entirety
Frontiers in Oncology | www.frontiersin.org 7
significantly correlated with low tumor grading and a longer
patient DSS, thus supporting ERV-K env as a prognostic
indicator for patient survival.

In the realm of oncoimmunology immune cell infiltrates
found in RCC (44), or other tumors, like bladder (45), breast
(46), and colon (47) correlated with patient survival. Current
checkpoint inhibition therapies show promising effects in RCC
patients by inhibiting PD-L1 or CTLA-4 pathways (44). In the
last years, epigenetic regulation and activation of ERV RNA,
especially dsRNA, induced an IFN mediated innate immune
response (8) and further activated cellular immunity in mouse
models (48, 49). A global bioinformatics approach profiling
ERVs (hervQuant) of different human tumors using The
Cancer Genome Atlas (TCGA) RNA expression database
revealed that ERV gene expression significantly associated with
clinical prognosis of ccRCC patients (23). ERV expression in
ccRCC also correlated significantly with a B-cell activation
response. As specific predictors for immune checkpoint
therapy remain uncertain in ccRCC, interestingly a recent
study demonstrated an association of response with the
expression of the putative codogenic ERV3-2 gene (50).
A

B

C

FIGURE 4 | ERV-K env and associations with RCC patient survival. (A) Kaplan-Meier survival curves {Disease specific survival (DSS) in months} of all RCC patients
as represented from the TMA showing the association of ERV-K env membranous, cytosolic and total protein expression (combined) according to the H-score
(> blue or < red). Note that ERV-K env total protein shows a significance for longer DSS survival. (B) Kaplan-Meier survival curves (Disease specific survival in
months) of ccRCC patients represented from the TMA showing the association of ERV-K env membranous, cytosolic and total protein expression (combined).
(C) Kaplan-Meier survival curves of all RCC patients represented from the TMA according to staging and grading. For staging the following regressions were: pT2 vs
pT1: HR 13.7; p= 0.0002; 95%-CI: 3.39 - 55.33; pT3 vs pT1: HR 6.36; p= 0.03; 95%-CI: 1.17 - 34.71; pT3 vs pT2: HR 0.46; p= 0.32; 95%-CI: 0.1 – 2.08. For
Grading the regressions were: G3 vs G2 + G1: HR 2.28; p= 0.23; 95%-CI: 0.6 - 8.71. For all curves log rank p-values are shown as well as multivariable adjusted
Hazards ratios (HR) calculated by using Cox regression models. Partitioning tests (mono-forest prediction) were performed to determine “cut-off” levels for each
tumor subtype because of known biological differences between the histological RCC tumor subtypes.
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Another TCGA bioinformatics profiling of 18 different cancers
demonstrated ERV-E and 7 different ERV-K families specifically
associated with ccRCC (51). In addition, ERV-E env could
be a potential tumor-restricting target for T-cell based
immunotherapy (25).

In different cancers a loss of epigenetic silencing
transcriptionally activated ERVs and resulted in adaptive
immune responses to ERV epitopes (52–54). Spontaneous T-
cell and B-cell responses against ERV antigens are well
documented (55, 56). Examples from patients with melanoma
or RCC, specific ERV antigens were recognized by T-cells with
potent anti-tumor activity, demonstrating ERV proteins as
important targets for immune based elimination (22, 57).
Particularly, ERVs, like ERV-K are part of the cancer testis
antigen group, exclusively expressed in germ cells and testis,
but also in multiple cancers (58, 59). ERV-K env protein
expression was specifically expressed in breast tumor tissues
Frontiers in Oncology | www.frontiersin.org 8
and cell lines, elicited a B-cell response and increased antibody
titers in a large proportion of patients as well as mediated T-cell
anti-tumor killing (31, 60).

Oncogenic phenotypes in association with ERV-K env
expression were noted in our study as well as in previous
investigations (11, 18, 61). Importantly, using specific primers
only detected the transfected codon optimized ERV-K113 env
gene and not the endogenous gene, where levels were low in
both HEK293 and MZ1257RC cells. Therefore, we attributed
functional changes of tumor cells due to ERV-K113 env
expression. In addition, we observed that the p53 status may
also play an essential functional role. The ~3-fold restriction of
ERV-K113 env gene expression of p53 wt HEK293 cells
compared to p53 mutant MZ1257RC cells in the absence of
Aza, supports that p53 wt functions as a repressor of the CMV
promoter (Figure 6). In addition, HEK293 and MZ1257RC
cells transfected with the ERV-K113 env gene showed opposite
A

B D

C

FIGURE 5 | ERV gene expression in ccRCC cell lines and functional studies. (A) Graph shows gene expression (molecules/ng RNA, Y-axis) profiling 16 different ERV
gene families (X-axis) of 12 different cell lines (ccRCC = 11 see Materials and Methods; Red= MZ1257RC ccRCC cell line; Green = HEK293). Note that ERV-Fc1 env
and ERV-Rb env are not shown on the graph since they were undetectable for gene expression. (B) Graph shows MZ1257RC cell proliferation (Y-axis = total cell
counts) following transient transfection with the overexpressing CMV vector containing a codon optimized ERV-K113 env gene at 44 h, 68 h and 92 h post
transfection in the presence or absence of Aza. (n= 4); *p = 0.0286. (C) Graph shows MZ1257RC 3D cell invasion into collagen (Y-axis = # of invaded cells/mm2)
following transient transfection with the overexpressing CMV vector containing a codon optimized ERV-K113 env gene at 68 h post transfection in the presence or
absence of Aza. (n= 6), ***p < 0.0001; ns = non-significant. (D) Graph shows HEK293 3D invasion into collagen (Y-axis = # of invaded cells/mm2) following
transient transfection with the overexpressing CMV vector containing a codon optimized ERV-K113 env gene at 68 h post transfection in the presence or absence of
Aza. (n= 3), ***p < 0.0001.
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functional phenotypes for proliferation and invasion, where
HEK293 cells possibly overcompensated high ERV-K113 env
protein levels restricting invasion, whereas in MZ1257RC the
restriction was lost. One possible contributing mechanism of
restriction may stem from translational processing occurring
in the Golgi or ER, which was shown previously for HEK293
cells upon transfection with the same codon optimized
overexpressing vector containing the ERV-K113 env gene
(35). Important signaling pathways identified in the literature
could explain ERV-K113 env protein regulation of proliferation
and invasion. Analyzing human breast cancer cell lines in vitro
and in mice following overexpression or knockdown of the
ERV-K env gene led to an increase or decrease, respectively, of
proliferation, invasion and metastasis (11). The latter
demonstrated that p53, RAS/RAF/MEK/ERK protein
signaling were involved in regulating these tumor functions.
In another study, overexpression of the ERV-K env gene in
human cell lines activated ERK1/2 signaling, induced an
epithelial to mesenchymal transition (EMT) and increased
invasion (61).

In addition to DNA demethylation via DNMT inhibition,
Aza treatment of cells increased p53, activation of p21 and a cell
cycle arrest due to DNA damage (62, 63). TP53 is an important
tumor suppressor gene frequently mutated in human cancers
(64). In our study, Aza treatment of both cell lines increased and
sustained ERV-K113 env gene expression. Aza inhibited HEK293
cell proliferation with a further decrease of invasion supporting
an induction of the p53 wt pathway despite activation of ERV-
K113 env gene expression. In the presence or absence of Aza,
MZ1257RC cell proliferation and invasion did not change,
Frontiers in Oncology | www.frontiersin.org 9
supporting these tumor processes are driven by ERV-K113 env
protein and the p53 status as already shown with other cancer
cell lines (41, 63, 65). P53 wt exerts repression of the
transcriptional machinery at the CMV promoter (Figure 6)
(38). On the other hand p53 wt activates transcription at LTRs
following treatment with DNA damaging agents, however,
activation was low or non-responsive with mutant p53 (66). In
our cell culture studies the CMV over expressing vector was a
tool to unravel ERV-K113 env protein function in p53 wt and
mutant cells. Interestingly, when we examined 16 different
endogenous ERV gene family expression levels, we noted that
expression was higher in p53 wt HEK293 compared to mutant
p53 MZ1257RC cells (Figure 5A). Although, we have not
analyzed the LTRs from these codogenic ERV gene families for
p53 binding sites, we support the idea that p53 is a
transcriptional activator of ERV gene expression via LTRs (66),
depending on the epigenetic landscape (67), but represses ERV
gene expression in the absence of p53 binding sites by interfering
with other proteins (68).

Taken together, evidence from the literature and our present
study show that ERV-K env members; I) are significantly higher
expressed in RCC compared to normal kidney tissue; II) are
accessible at the membrane for possible antibody targeting,
especially in ccRCC; III) strong expression levels of total
cellular ERV-K env protein is associated with a better RCC
patient clinical outcome and finally our functional findings show
that; IV) ERV-K113 env modulates cancer cell proliferation and
invasion depending on DNA methylation and correlates
with the p53 status supporting ERV-K env represents a tumor-
self antigen.
FIGURE 6 | Results and model showing transcriptional regulations and cellular functions of HEK293 and MZ1257RC cell lines following ERV-K113 env gene
transfection in the presence or absence of Aza treatment. Left schematic shows top HEK293 cells or bottom MZ1257RC cells transfected with the overexpressing
CMV vector containing a codon optimized ERV-K113 env gene in the absence of Aza (-Aza). The CMV promoter (grey) with p53 binding to TATA binding protein
(TBP) (38) is methylated (Me). Note that the transcription factor SP1 is not bound. The p53 wt protein is a repressor (green) for HEK293 cells, but mutant
(dysfunctional) p53 (red) for the MZ1257RC cell line. For HEK293 cells the green arrow (ERV-K env) indicates less expression, when compared with MZ1257RC
cells. A 2.99-fold increase of ERV-K113 env gene expression for MZ1257RC (2-DDCt = -Aza = 3,113.2) is indicated compared to HEK293 cells (2-DDCt = -Aza =
1,038.5) at 24 h post transfection. Right schematic shows top HEK293 cells or bottom MZ1257RC cells transfected with the overexpressing CMV vector containing
a codon optimized ERV-K113 env gene in the presence of Aza (+Aza). P53, TBP and SP1 (40) are bound at a de-methylated CMV promoter (grey) promoting
transcription. In the presence of Aza an inhibition of DNA-methylation (Me) and a lack of p53 repression is predicted for HEK293 cells. For both cell lines ERV-K113
env green arrows indicate higher levels of expression when compared to –Aza treated cells (left schematic). ERV-K113 env gene expression for HEK293 was 7.12-
fold higher (2-DDCt = +Aza = 7398.7) and for MZ1257RC cells a 2.86-fold induction (2-DDCt = +Aza = 8927.69) at 24 h. Note that for both cell lines the 2-DDCt ERV-
K113 env gene expression levels were similar at 24 h after Aza treatments. To the far right for both cell lines functional outcomes are indicated for proliferation (at
44 h, 68 h, 92 h) and invasion (68 h), when compared to in the presence or absence of Aza treatment (see Figure 5, Supplementary Figure 2) (black arrows = no
change; red arrows = inhibition; green arrows = increase).
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Supplementary Figure 1 | Cytoblock of MZ1257RC and HEK293 cell sections
hybridized with p53 and the ERV-K113 env antibody. Top left (HEK293) and right
(MZ1257RC) photos show p53 localization hybridizing with a specific p53 antibody
to cells harvested at 16 h post transfection with the overexpressing CMV vector
containing a codon optimized ERV-K113 env gene. No difference was found with
the untransfected control pcDNA3.1 vector (not shown). Middle panel left (HEK293)
and right (MZ1257RC) photos show ERV-K113 env protein cellular localization
hybridizing with a specific ERV-K113 env antibody to cells harvested at 16 hours
post ERV-K113 env CMV vector transfection. Below left (HEK293) and right
(MZ1257RC) photos show hybridization with a specific ERV-K113 env antibody to
cells harvested at 16 hours post transfection with the control pcDNA3.1 CMV
vector. A time gene expression kinetic showed the highest expression at 16 h
(HEK293 2-DDCt = 31,028.66; n= 2; MZ1257RC 2-DDCt = 106,902.78; n= 2). Note
that at 16 h the p53 wt HEK293 cell line was 3.44-fold lower in ERV-K113 env gene
expression compared to the p53 mutant MZ1257RC cell line. This result was similar
comparing both cell lines at the 24 h kinetic time point shown in Figure 6.

Supplementary Figure 2 | HEK293 cell proliferation. Graph shows HEK293 cell
proliferation (Y-axis = total cell counts) following transient transfection with the
overexpressing CMV vector containing a codon optimized ERV-K113 env gene at
44 h, 68 h and 92 h post transfection in the presence or absence of Aza. (n= 2).

Supplementary Table 1 | Clinical-pathological parameters of the RCC cohort.
This table summarizes the main pathological as well as the clinical characteristics of
the analyzed renal cell tumors. Left column represents the histological subtypes,
pN-stage, pM-stage, pT-stage, lymphovascular invasion, blood vessel invasion,
WHO/ISUP grading, gender, patient age and available survival follow-up data of
patients; middle column represents the actual number of available tumors or the
number of available patients for follow-up survival data and the median potential
follow-up time in months; and to the right the percentage of analyzed tumors
compared to the total available tumors and patients available for follow-up of
survival data.

Supplementary Table 2 | Antigens of 15 ERV-K env members specific for the
ERV-K env antibody used in this investigation. This table shows 15 different ERV-K
env gene members with the antigen binding site specific for hybridization with the
ERV-K env antibody used in this study. The first column shows the ERV-K env gene
members localized at specific chromosomal regions; the second column shows the
antibody binding site to the antigen which spans 32 amino acids; and the third
column shows the gene accession number (access. nr).

Supplementary Table 3 | IHC ERV-K env H-scores of RCC TMA (n= 374). This
table shows all membrane staining and cytosolic staining H-scores (0-3 and H-
score) as well as the combined H-scores according to the array and spot positions
on the TMA. Also shown for each patient is the available follow-up survival data in
months and DSS censor data (0= Disease specific death, 1= Censored) (not
available= no number present).
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