
American Journal of Ophthalmology Case Reports 20 (2020) 100886

Available online 20 August 2020
2451-9936/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Plateau iris syndrome and angle-closure glaucoma in a patient with 
nail-patella syndrome 

Margot A. Gardin a,*, Chiea Chuen Khor b, Luis Silva a, Einar A. Krefting c, Robert Ritch a 

a Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, 310 E 14th St, New York, NY, 10003, USA 
b Division of Human Genetics, Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore 
c Eye Department, University Hospital of North Norway, Sykehusvegen 38, 9019, Tromsø, Norway   

A R T I C L E  I N F O   

Keywords: 
Nail-patella syndrome 
Plateau iris 
Angle-closure glaucoma 
LMX1B 

A B S T R A C T   

Purpose: To describe a case of plateau iris syndrome (PIS) and angle-closure glaucoma (ACG) in a patient with 
nail-patella syndrome (NPS). 
Observation: A 33 year-old woman of Slovakian ancestry from Norway with a history of NPS presented with 
angle-closure secondary to plateau iris. At the time of her NPS diagnosis, she had no ocular pathology. Genetic 
testing revealed a rare de novo mutation in LMX1B [c.668G>C (p.Arg223Pro)]. Two years later, she experienced 
acute bilateral ocular pain and blurred vision in the setting of one year of reported visual loss. Subsequent 
ophthalmic examinations revealed closed angles and plateau iris OU with ACG OD and angle-closure OS. Peri-
metry showed superonasal visual field defects OD and no defects OS. Ocular coherence tomography (OCT) 
revealed thinning of the inferior pole of the optic nerve OD. Medical management proved ineffective. A laser 
peripheral iridotomy (LPI) OD was performed, without resolution of the angle-closure, and a diagnosis of plateau 
iris syndrome (PIS) was made. She was then treated with an argon laser peripheral iridoplasty (ALPI) and clear 
lens extraction with a posterior chamber intraocular lens (PCIOL) and goniosynechialysis OD, but her IOP 
remained elevated OU. She was referred to New York Eye and Ear Infirmary of Mount Sinai, where an LPI OS was 
performed, but angle-closure persisted, consistent with PIS. An ALPI OS with touch-up was performed, and her 
IOP normalized with dark-room gonioscopy revealing open angles OU. 
Conclusions And importance: NPS has been associated with ocular hypertension (OHTN) and open-angle glaucoma 
(OAG); however, to our knowledge, no association between NPS and angle-closure has previously been reported. 
The case described here, of a patient with a rare de novo mutation and ocular findings of PIS with associated 
ACG, represents a novel genetic and clinical presentation of NPS.   

1. Introduction 

Nail-patella syndrome (NPS) is a rare pleiotropic autosomal domi-
nant condition, with a reported incidence of 1 in 50,000 live births.1 It 
primarily affects the integumentary and musculoskeletal systems; 
however, other body systems, including the eye, and renal and neuro-
logic systems, are frequently involved.1,2 The classic clinical tetrad of 
NPS, some of which was first described in the late 1800s, consists of 
abnormalities of the nails, knees, elbows, and iliac bones.1–4 In 1998, the 
LIM-homeodomain gene LMX1B was identified as the gene responsible 
for NPS.5,6 The encoded transcription factor, LMX1B, plays a role in 
dorsoventral patterning in the developing limb,7–9 differentiation of the 

anterior segment of the eye,10 glomerulogenesis,11–14 and the develop-
ment of certain neuronal populations.15–17 Haploinsufficiency of this 
transcription factor has been implicated in the pathogenesis of 
NPS.5,6,18–20 

NPS is a highly penetrant disorder with variable expressivity, pre-
senting with varied intra- and interfamilial frequency and severity.1 

Common manifestations include hypoplastic nails, triangular or absent 
nail lunulae, patellar hypoplasia, reduced elbow range of motion, iliac 
horns, lean body habitus, difficulty gaining weight, low muscle mass in 
the proximal extremities, poor breast development, loss of distal inter-
phalangeal (DIP) skin creases, “swan necking” of the fingers, talipes 
equinovarus, back pain, and renal, gastrointestinal, neurologic, 
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vasomotor, and dental defects.1 Radiologic findings include hypoplasia 
of the lateral humeral epicondyles and capitellum, prominent medial 
humeral epicondyles, and dysplasia and dislocation of the radial head.1 

Ocular abnormalities have also been documented in patients with 
NPS.14,20–23 Ocular hypertension (OHTN) and open-angle glaucoma 
(OAG) are the primary manifestations, with a reported prevalence of 
approximately 7.2% and 9.6%, respectively.1 In patients over age 40, 
these values increased to 11.9% and 16.7%, respectively.1 In a study of 
24 patients from two families, Lichter et al described cosegregation of 
NPS and OAG in 50% of NPS patients, providing evidence for a genetic 
basis for their association.21 Other reported ocular abnormalities 
include microcornea, sclerocornea, congenital cataracts, iris processes, 
and cloverleaf pigmentation of the inner margin of the iris (“Lester’s 
sign”).4 However, to our knowledge, an association between NPS and 
plateau iris syndrome (PIS) and/or angle-closure glaucoma (ACG) has 
not been previously reported. We describe a patient with NPS who has 
ACG associated with PIS. 

2. Case presentation 

In April 2017, a 33 year-old woman of Slovakian ancestry with a 
history of NPS was referred from Norway to the New York Eye and Ear 

Infirmary of Mount Sinai for treatment of angle-closure secondary to 
PIS. She was officially diagnosed with NPS in 2014, presenting with 
pathognomonic features including hypoplastic fingernails with absent 
lunulae on fingers 2–5 in both hands (Fig. 1), dysplastic toenails on toes 
2–5, and patellar hypoplasia. Other clinical manifestations included 
swan-neck finger deformities and hypomobile DIP joints with loss of 
overlying skin creases in fingers 2–4 on both hands (Fig. 1), low upper 
body muscle mass, poor breast development, reduced appetite, difficulty 
gaining weight, limited elbow extension, pronation, and supination, 
surgically corrected talipes equinovarus, and generalized musculoskel-
etal pain. Radiologic findings included hypoplasia of the lateral humeral 
epicondyles and dislocation of the radial heads, dysplasia of the distal 
ulnae with absent ulna styloid processes and minimal ulna plus variance 
(Fig. 2), shortened first metacarpal and second and fifth intermediate 
phalanges, and reduced height of the tarsometatarsal joints spaces with 
small bony accumulations in the first tarsometatarsal joint. Other than 
low hyperopia requiring glasses at age 10, she had no prior history of 
ocular disease. Her other medical history included depression, treated 
with mirtazapine. 

Her family history was negative for NPS or other musculoskeletal or 
ocular diseases. Genetic testing in 2014 revealed a rare de novo muta-
tion [c.668G>C (p.Arg223Pro)] in the LMX1B gene. This mutation was 

Fig. 1. Clinical features of nail-patella syndrome. (a) Hypoplastic nails with absent lunulae and loss of distal interphalangeal skin creases on fingers 2–4. (b) Swan- 
neck deformities of fingers 2–4. 

Fig. 2. Radiologic features of nail-patella syndrome, right upper extremity. (a) Hypoplasia of the lateral humeral epicondyle, dislocation of the radial head, and 
dysplasia of the distal ulna with an absent ulna styloid process. (b) Shortened first metacarpal and second and fifth intermediate phalanges. 
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not observed in any of the >100,000 participants from the gnomAD 
database, which aggregates whole exome and whole genome sequencing 
data from participants of African, Asian, European, and Latino 
ancestry.24 Subsequent renal testing revealed no abnormalities. 

In June 2016, she presented in Slovakia with acute eye pain, blurred 
vision, and elevated intraocular pressures (IOPs) of 54 mmHg OD and 
37 mmHg OS due to acute angle-closure OU, in the setting of one year of 
reported visual loss. She was diagnosed with ACG OD and angle-closure 
OS and started on dorzolamide-timolol OU. A week later at a follow-up 
visit in Norway, her IOPs had decreased to 21 mmHg OD and 16 mmHg 
OS. Her best corrected visual acuity (BCVA) at this time was 0.9 
(+2.25–1.0 x 99) OD and 1.0 (+1.25–0.5 x 80) OS. Her anterior chamber 
depth and axial length measurements were 2.7 mm OU and 21.9 mm 
OU, respectively. Corneal thickness was 540 μm OU. Her slit lamp exam 
revealed narrow angles OU via the Van Herick technique (Fig. 3), and an 

increased cup-to-disc ratio OD (Fig. 4). Gonioscopy and anterior 
segment ocular coherence tomography (OCT) also revealed very narrow 
angles OU, which opened more with pilocarpine (Fig. 5). Dynamic 
gonioscopy revealed possible plateau iris configuration (PIC) OU and 
extensive peripheral anterior synechiae (PAS) temporally OD. Her visual 
field test and retinal OCT showed superonasal glaucomatous visual de-
fects OD and thinning of the inferior pole of the optic nerve OD, 
respectively, with normal perimetry and OCT OS (Fig. 6). 

After failed trials of brinzolamide OU and pilocarpine 2% OS, she 
was treated with a YAG laser peripheral iridotomy (LPI) OD (8/2016), 
without anatomical or functional effect. She continued to experience 
pain with accommodation, and with dim light testing had IOP spikes of 
>50 mmHg OU, consistent with a diagnosis of PIS. A trial of reading 
glasses failed to control these IOP spikes. A repeat LPI OD was per-
formed, followed by a 180◦ argon laser peripheral iridoplasty (ALPI) OD 

Fig. 3. Slit lamp exam: Van Herick technique (June 2016). (a) Van Herick grading revealing a narrow angle and superotemporal anterior synechia OD. (b) Van 
Herick grading revealing a narrow angle OS. 

Fig. 4. Disc photos (June 2016). Inferior cupping of the optic nerve head OD.  

Fig. 5. Anterior segment ocular coherence tomography (Tomey AS-OCT - Japan) image OS (June 2016). (a) Narrow angles. (b) Pupillary constriction with partial 
opening of the iridocorneal angle temporally after administration of topical pilocarpine. 
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Fig. 6. Octopus visual fields and ocular coherence tomography (June 2016). (a) Perimetry reveals superonasal glaucomatous visual defects OD, with normal 
perimetry OS. (b) Ocular coherence tomography reveals thinning of the inferior pole of the optic nerve OD. 
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using settings of 500-μm spot size, 0.5-s-duration, and 240-mW power. 
She continued to experience IOP elevations, and underwent clear lens 
extraction with a posterior chamber intraocular lens (PCIOL) and 
goniosynechialysis OD (10/2016), complicated by persistent low-grade 
chronic uveitis. She was started on brinzolamide-timolol and 
chloramphenicol-dexamethasone daily OD and pilocarpine 0.5% TID 
OS, but her IOPs continued to fluctuate, with elevations up to 45 mmHg 
OU. Her treatment regimen was adjusted to pilocarpine 2% QID OU and 
chloramphenicol-dexamethasone BID OD. 

At this point, she was referred to the New York Eye and Ear Infirmary 
of Mount Sinai (NYEE) for further treatment. Due to difficulties effec-
tively treating the right eye, treatment of the left eye was delayed until 
the patient was able to come to New York for treatment. Upon presen-
tation at NYEE, her BCVA was 20/25 (− 1.25 + 1.00 x 175) OD and 20/ 

20 (+0.25 + 0.25 x 175) OS. Her IOPs were 18 mmHg OD and 16 mmHg 
OS, prior to using her morning drops. Her slit lamp exam showed evi-
dence of a patent LPI and a PCIOL OD, with evidence of inferior ONH 
cupping OD. Dark-room gonioscopy OD revealed a Shaffer grade III 
angle inferiorly and nasally with PAS to the lower pigmented trabecular 
meshwork (TM), slit superiorly, and anterior iris insertion, mostly to the 
base of the PTM, with iris adhesions to the cornea superotemporally. 
Dark-room indentation gonioscopy OS revealed the angle to be closed to 
the upper trabecular meshwork for 360◦, opening to the scleral spur 
with indentation, with increased pigment and PAS to the mid-pigmented 
meshwork superiorly. A prominent double hump sign and a Fuji sign 
(indicative of a lens-related component) were present OS (Fig. 7). 24-2 
SITA Standard Humphrey Visual Field testing showed superonasal and 
inferonasal defects OD and was normal OS (Fig. 8). 

A LPI OS was performed, with a post-treatment IOP of 12 mmHg OU. 
She was started on pilocarpine 2% TID OD, and prednisolone QID OS. 
Two days later, her IOP measurements were 30 mmHg OD and 34 mmHg 
OS. She reported non-adherence to pilocarpine due to adverse effects, 
including headaches, ocular itchiness, and blurred vision. Gonioscopy 
OD showed no change, and gonioscopy OS revealed an angle that was 
slit to closed to the upper TM, consistent with PIS. After treatment with 
brimonidine and pilocarpine OS, a 360◦ ALPI OS was performed using 
settings of 500-μm spot size, 0.7-s-duration, and 240-mW power, with 
post-procedure reductions in IOP measurement to 18 mmHg OD and 14 
mmHg OS. She was switched to brimonidine TID OU and continued on 
prednisolone QID OS. The following day, her IOP measurements were 
20 mmHg OD and 16 mmHg OS. Dark-room gonioscopy revealed open 
angles OU, with some slit areas OS. A touch-up ALPI OS using settings of 
200-μm spot size, 0.5-s-duration, and 280-mW power was performed to 
eliminate any remaining appositional closure, with repeated dark-room 
gonioscopy showing open angles for 360◦ OS. 

3. Discussion 

Our patient presented with many of the characteristic clinical and 
radiologic features of NPS, including hypoplastic fingernails with absent 

Fig. 7. Gonioscopic view OS after indentation, photographed status post LPI 
and ALPI. Reveals characteristic double hump sign due to plateau iris. 

Fig. 8. 24-2 SITA Standard Humphrey Visual Fields (April 2017). Reveals superonasal and inferonasal defects OD (a) with normal perimetry OS (b).  
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lunulae, swan-neck finger deformities, loss of DIP skin creases, patellar 
hypoplasia, limited elbow range of motion, talipes equinovarus, 
musculoskeletal pain, hypoplastic lateral humeral epicondyles and 
radial head dislocation. However, she deviated from previously identi-
fied cases in the novel nature of her ocular involvement. OHTN and OAG 
have been associated with NPS, with POAG as the most commonly re-
ported abnormality.1,14,20,21,23 Pigmentary glaucoma, congenital glau-
coma, and normal-tension glaucoma have also been associated with 
NPS.14,20,21 However, to our knowledge, there have been no previous 
reports of PIS or ACG in a patient with NPS. 

Plateau iris is a common cause of angle-closure in younger patients, 
predominantly in women 30–50 years of age.25 Plateaus iris configu-
ration (PIC) occurs when the iris root angulates forward and then cen-
trally, thereby narrowing the anterior chamber angle despite a normal 
range anterior chamber depth. The sine-wave shaped curve of the pe-
ripheral iris appears as a double hump sign on indentation gonioscopy. 
When appositional closure persists after a patent iridotomy has elimi-
nated any contributing pupillary block, this condition is termed plateau 
iris syndrome.26 PIS can be classified as either complete or incomplete 
depending on the height of the iris plateau. In complete PIS, 
angle-closure occurs at the level of the upper trabecular meshwork or 
Schwalbe’s line, resulting in IOP elevations like those seen in our pa-
tient, whereas in incomplete PIS, the closure occurs at the 
mid-meshwork level, leaving the IOP unaffected.27 Patients with PIS can 
develop extensive PAS, persistently elevated IOPs, and ultimately, 
ACG.26 

In a study of 67 patients aged ≤40 years with angle-closure, Ritch 
et al. found that 52% had a diagnosis of PIS. Similar to our patient, most 
of these patients (74%) were female, with a mean age of 34.9 ± 4.6 years 
at the time of diagnosis.25 Unlike in our patient, a family history of ACG 
is often seen in this population. In contrast to angle-closure due to 
relative pupillary block, which more commonly occurs in middle-aged 
and elderly individuals, angle-closure due to plateau iris tends to 
occur in younger patients who are less hyperopic, as in this case.25 High 
hyperopia increases a patient’s risk for angle-closure due to relative 
pupillary block, as hyperopic eyes are anatomically smaller with ante-
rior chambers that are shallow and therefore more prone to 
crowding.25,28–30 This is distinct from our young patient with 
angle-closure due to plateau iris, who was only slightly hyperopic, with 
a normal-range axial length (21.9 mm OU) and anterior chamber depth 
(2.7 mm OU).31–33 Medical management of this condition begins with 
use of topical miotic drugs (e.g. pilocarpine) that promote contraction of 
the iris sphincter and ciliary body muscles, thereby thinning the iris and 
distancing it from the trabecular meshwork. However, LPI and ALPI are 
the primary treatment modalities for patients with PIC and PIS, 
respectively, as was the case for our patient.34,35 

Currently, there is no established genetic basis for an association 
between NPS and ACG, as exists for NPS and OAG. It is possible that our 
patient’s presentation is coincidental, rather than an ocular manifesta-
tion of her systemic disease. However, recent genome-wide association 
studies have found that although POAG and primary ACG (PACG) were 
once thought to be distinct, certain loci (PLEKHA7, FERMT2) previously 
implicated in PACG are also associated with OAG and IOP.36,37 Given 
that large-scale genetic studies are now showing subtle but significant 
genome-wide overlap between IOP, POAG, and PACG, we would not be 
surprised if there is similar pleiotropy at LMX1B, which is already 
associated with OAG, with regards to ACG. 

Furthermore, LMX1B is expressed in a variety of tissues, notably in 
the periocular mesenchyme and its derivatives, including the iris, ciliary 
body, and trabecular meshwork. In a study of the murine eye, Pressman 
et al demonstrated that in the absence of lmx1b expression, mice that are 
homozygous for a targeted mutation of lmx1b display anterior segment 
anomalies, such as iris and ciliary body stromal hypoplasia, lack of 
ciliary folds, and reduction in anterior chamber depth.10 LMX1B thus 
plays an integral role in the development of the anatomical structures 
involved in ACG associated with PIS, which results from iris or ciliary 

body abnormalities, such as anteriorly positioned ciliary processes.27 

Our patient’s particular LMX1B genetic variant [c.668G>C (p. 
Arg223Pro)] is extremely rare. A review of databases containing over 
100,000 exomes and over 1,200 LMX1B variants revealed no previous 
reports of this variant.24,38 As such, the role of this specific variant in the 
development of PIS or ACG in a patient with NPS has not yet been 
explored. Given its rarity, further research is necessary to elucidate the 
functional effect of this particular LMX1B variant and its contributions 
to the development of PIS and ACG. 

4. Conclusion 

Clinical and genetic associations between NPS and OAG are well- 
established. Our patient presented with ACG associated with PIS, 
which has not been previously described in a patient with NPS, and she 
possessed a rare LMX1B variant that lacks documentation in the current 
literature. Her case thus represents a novel genetic and clinical presen-
tation of NPS and the associated ocular manifestations. 
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