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Abstract: Porcine reproductive and respiratory syndrome (PRRS) is probably the most relevant viral
disease affecting pig farming. Despite the remarkable efforts paid in terms of vaccination administra-
tion and biosecurity, eradication and long-term control have often been frustrated. Unfortunately,
few studies are currently available that objectively link, using a formal statistical approach, viral
molecular epidemiology to the risk factors determining the observed scenario. The purpose of the
present study is to contribute to filling this knowledge gap taking advantage of the advancements
in the field of phylodynamics. Approximately one-thousand ORF7 sequences were obtained from
strains collected between 2004 and 2021 from the largest Italian pig company, which implements
strict compartmentalization among independent three-sites (i.e., sow herds, nurseries and finishing
units) pig flows. The history and dynamics of the viral population and its evolution over time were
reconstructed and linked to managerial choices. The viral fluxes within and among independent pig
flows were evaluated, and the contribution of other integrated pig companies and rurally risen pigs
in mediating such spreading was investigated. Moreover, viral circulation in Northern Italy was re-
constructed using a continuous phylogeographic approach, and the impact of several environmental
features on PRRSV strain persistence and spreading velocity was assessed. The results demonstrate
that PRRSV epidemiology is shaped by a multitude of factors, including pig herd management
(e.g., immunization strategy), implementation of strict-independent pig flows, and environmental
features (e.g., climate, altitude, pig density, road density, etc.) among the others. Small farms and
rurally raised animals also emerged as a potential threat for larger, integrated companies. These
pieces of evidence suggest that none of the implemented measures can be considered effective alone,
and a multidimensional approach, ranging from individual herd management to collaboration and
information sharing among different companies, is mandatory for effective infection control.

Keywords: porcine reproductive and respiratory syndrome; molecular epidemiology; ORF7;
phylodynamics; phylogeography; Italy; evolution; pig flows

1. Introduction

Porcine reproductive and respiratory syndrome (PRRS) is caused by two viruses:
porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) and porcine reproduc-
tive and respiratory syndrome virus 2 (PRRSV-2), which have been recently classified in the
species Betaarterivirus suid 1 and Betaarterivirus suid 2, genus Betaarterivirus, family Arteriviri-
dae (https://talk.ictvonline.org/taxonomy/, (accessed on 10 November 2021)). The PRRSV
genome is a single-stranded, positive-sense RNA (ssRNA (+)) viral genome of ~15 kb [1].
Like other ssRNA (+) viruses, it is featured by a high evolutionary rate, involving both
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frequent mutations (~10−3–10−5 substitutions/site/year) and recombination events [2–4].
Additionally, deletions involving broad regions of the viral genome have been described,
although their biological role and consequences on pathogenesis are not clear [5–7]. Ap-
proximately three-quarters of the genome is occupied by ORF1a and ORF1b, encoding for
14 non-structural proteins, while the terminal part consists of eight partially overlapping
ORFs (ORF2a, ORF2b, ORF3, ORF4, ORF5, ORF5a, ORF6 and ORF7) [1]. These proteins,
and especially the Glycoprotein 5 (GP5) and Nucleocapsid (N) (encoded by ORF5 and
ORF7), are particularly investigated and sequenced for their biological and epidemiological
relevance since they have been traditionally used for strain classification and molecular
epidemiology studies [8–10], benefitting of their high genetic heterogenicity enhanced by
immune-driven selective forces. PRRS is considered one of the most, if not the most, im-
pacting disease affecting pig farming and is responsible for major economic losses [11,12].
PRRSV causes significant production losses due to reproductive failure, including abor-
tions, stillbirth, and premature farrowing. In growing pigs, it can cause respiratory and
systemic diseases, growth retardation, decreased productive performances, and mortality.
The clinical signs can be particularly severe when associated with co-infecting viruses
and bacteria. Additionally, the costs and farm management complications required for
its control cannot be underemphasized. Different commercial vaccines and vaccination
strategies have been developed and widely applied over time. Nevertheless, due to both
genetic and phenotypic variability, affecting the among-strains cross-protection, and viral
avoidance and subversion of innate and adaptive immune responses, their efficacy is
often sub-optimal [13,14]. The application of effective biosecurity measures is therefore of
special relevance, to prevent viral introduction and spreading in an area and/or farm [11].
However, this task has proven extremely challenging since PRRSV efficiently transmitted
between farms through direct and indirect contacts, including animal movements, semen,
fomites, and airborne transmission [11,13,15]. Despite this evidence, a limited number of
studies have thoroughly investigated the determinants affecting virus spreading, and most
of the data are ascribable to occasional reports or remain limited to the study of single
factors. Additionally, in Italy, traditional epidemiological data are sparse. The prevalence
of farms infected by PRRSV has been estimated at around 90%, although not always as-
sociated with clinical signs [16]. Genetically, two main clades, both belonging to Type 1
subtype 1 [17], have been identified so far and comprise the vast majority of Italian strains,
likely resulting from independent introduction followed by local evolution [10]. However,
the determinants of the observed local scenario have never been investigated.

An objective and data-driven approach to PRRS control is still perfectible, and much
has been delegated to veterinary experience and intuition, or practical constraints. Recently,
Alkhamis et al. (2017) and Makau et al. (2021) [18,19] attempted to link PRRSV genetics to
environmental factors potentially affecting its epidemiology in North America. Although
this innovative work is of extraordinary relevance and interest, the organization and
management of the pig farm system were not considered and integrated within the study.
Additionally, the obtained results cannot be a priori extended to other geographical regions
and production systems because of their peculiarities, which are likely to severely affect
PRRSV between-farm spreading and persistence in an area. The present study aims to
further extend the study by Alkhamis et al. (2017) by benefitting from a dataset of almost
a thousand sequences collected over a 17 year-period (2004–2021) from the largest pig
company operating in Northern Italy (hereafter named the Company). Particularly, the
Company is organized according to a strong hierarchical structure, with several (production)
pig flows working in a three-site production system, and major efforts are thus paid to
preserve the separation among these units, minimizing or preventing direct and indirect
contacts among independent production flows. The interplay among PRRSV evolution and
epidemiology, the features of the considered area (i.e., geographic and climatic features,
anthropic pressure, animal population, etc.), and the management of pig production
systems were considered and analyzed in a single/coherent framework, benefitting of
the remarkable advantages that have characterized the field of viral phylodynamics. A
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broad collection of statistical methods has been applied to the Italian scenario to formally
and objectively evaluate the risk factors for PRRSV presence and spread. The consequent
identification of potential control points could be of benefit for both field veterinarians
and managers, thus improving company administration and therefore animal health
and welfare.

2. Materials and Methods
2.1. Dataset Preparation

Complete ORF7 sequences (387 nucleotide long) were obtained during the diagnostic
activity of the Company in the period 2004–2021 and originated from samples collected for
monitor activity or, more commonly, in presence of clinical outbreaks. PRRSV detection
and sequencing were performed as described by Drigo et al. [20]. Most of the sequences
were associated with the following metadata: collection date, location (longitude and
latitude), integrated production chain, and productive site (i.e., sow herds, nurseries, and
finishing units). The initial dataset was refined by selecting only the sequences whose
complete metadata and high-quality ORF7 (evaluated thorough chromatogram inspection
and assessment of the absence of premature stop codon or out of frame mutations) were
available. Selected sequences were aligned to the ones of the vaccines used in Italy, and
those clustering with vaccine strains were excluded from further analysis. Sequences were
then aligned at codon level using the MAFFT [21] method implemented in TranslatorX [22],
and the presence of recombination events was assessed using RDP4 [23] and GARD [24]
to remove them from the dataset. In fact, the presence of recombinant strains would
severely bias the analysis results since different evolutionary histories would be incorrectly
estimated using a single phylogenetic tree. The presence of an adequate phylogenetic
signal was assessed using the likelihood mapping approach, implemented in Iq-Tree [25],
while the presence and strength of temporal signal were assessed using TempEst [26].

2.2. Reconstruction of Viral Population Dynamics and Within-Company Spreading

Viral population parameters (time to the most recent common ancestor (tMRCA),
evolutionary rate, population size over time, etc.) were reconstructed using the serial
coalescent approach implemented in BEAST 10.1 [27]. The substitution model was se-
lected based on the Bayesian Information Criterion (BIC) calculated using Jmodeltest [28],
while the relaxed lognormal molecular clock was preferred over the strict one based on
the Bayesian Factor (BF) calculation through marginal likelihood estimation performed
using stepping stone (SS) and path sampling (PS) approaches [29]. The viral population
dynamics were reconstructed over time using the SkyGrid model [30]. Additionally, the
directionality and intensity of virus diffusion among productive stages were assessed using
a discrete trait analysis (DTA), selecting an asymmetric model with Bayesian Stochastic
Search Variable Selection (BSSVS). The final estimations were obtained by performing a
200 million generation Markov chain Monte Carlo run, sampling parameters and trees
every 20,000 generations. Results were inspected using Tracer 1.6 (BEAST package) and
accepted if mixing and convergence were adequate and the estimated sample size was
greater than 200 for all parameters. Parameter estimation was summarized in terms of
mean and 95% highest posterior density (HPD) after the exclusion of a burn-in equal to
20% of the run length. Maximum clade credibility (MCC) trees were constructed and
annotated using Treeannotator (BEAST package). Data summary statistics and pictures
were generated in R, benefitting from the libraries ggplot2 [31] and ggtree [32].

2.3. Strain Migration among Integrated Pig Productive Chains

The organization of the Company is featured by a marked hierarchical organization,
with pig flows going unidirectionally from sow farms (Site1) to nurseries (Site2) and
finally to finishing units (Site3). More in detail, the multi-site pig-production system
consists of 18 different pig-flows originating from 20 different sow-herds (Site 1). Every
sow-herd delivers pigs to a specific set of Nursery-sites (Site 2) (the total number of
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nursery sites exceeds 80), all of them operated an all-in/all-out (AI/AO) approach. Finally,
weaned-pigs are moved in over 380 finishing units (Site 3) of different sizes, ranging from
1500 to 10,000 heads, operating AI/AO. Direct and indirect contacts among independent
integrated flows are minimized as much as possible. Nevertheless, the effectiveness of
such separation is hard to objectively evaluate. For this purpose, PRRSV migration among
integrated productive chains of the Company was assessed using a structured coalescent
approach. Briefly, according to this model, the considered population was divided into
a series of demes (i.e., the integrated productive flows), which can be considered as
different islands, featured by their own population size and interconnected by a certain
migration rate among them. Considering the high number of potential demes, the BAyesian
STructured coalescent Approximation (BASTA) [33] implemented in BEAST2 [34] was
selected since it combines the accuracy of previous structured coalescent models [35]
with the computational efficiency required to handle several populations. Additionally,
farms belonging to integrated productive flows for which few sequences were available
were merged into a single category to reduce the computational complexity. Finally,
the presence of other pig farms and companies operating in the same Italian area and
participating in and mediating the viral transmission among integrated productive chains
of the Company was accounted for by adding a “ghost” deme (i.e., a deme for which
no sequences were available) [36]. An additional model was also generated assuming
the presence of 2 ghost demes, one representing other integrated pig companies and the
other the unstructured/single/rural farms). Substitution and clock models were selected
as previously described. In both cases, the parameters were estimated performing a
200 million generation Markov chain Monte Carlo run, sampling parameters and trees
every 20,000 generations. Obtained posterior estimations were managed as described in
Section 2.2.

2.4. Continuous Phylogeographic Analysis

The migration of PRRSV over time and space was reconstructed using the continuous
phylogeographic approach described by Lemey et al. (2010) [37] and implemented in
BEAST 1.10 [27]. The substitution model and molecular clock were selected as previously
described. Similarly, the migration model (Lognormal relaxed random walk) was chosen
using the marginal likelihood calculation approach. The final estimations were obtained by
performing a 200 million generation Markov chain Monte Carlo run, sampling parameters
and trees every 20,000 generations. Results were visually inspected using Tracer 1.6
(BEAST package).

The reconstruction of PRRSV movements in Italy was obtained using SpreaD3, sum-
marizing and visualizing the full posterior distribution of trees obtained in continuous
phylogeographic analyses.

The obtained posterior tree distribution was also used to estimate and statistically
evaluate the impact of different environmental variables (reported in Figure S1) on PRRSV
strain distribution and dispersal speed as described by Dellicour et al. (2016) [38] using the
seraphim R package [39]. Original raster encoding the environmental variables of interest
was initially managed using the raster package in R.

The distance, duration, and velocity of virus spatial dispersal were extracted as vectors
that were used to obtain different summary statistics of viral spreading, including dispersal
velocity and maximal wavefront distances (measured from the location of the tree root).
Additionally, the following issues were investigated:

1. The viral lineages tendency to remain in and/or to disperse to areas associated with
higher raster (i.e., environmental variable) values. For this purpose, two statistics
were calculated: E (i.e., the mean of the environmental values extracted at the nodes’
position) and R (i.e., the proportion of branches for which the environmental value
recorded at the oldest node position is higher than the environmental value recorded
at the youngest node position). Therefore, E measures the tendency of tree nodes to
remain located in lower/higher environmental values, while R measures the tendency
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of lineages to disperse towards lower/higher environmental values. To account for
phylogenetic uncertainness, these two statistics were computed from a sample of
100 posterior trees, obtaining their posterior distribution, which was compared to a
null distribution of the same metric computed after having randomized phylogenetic
node positions within the study area, under the constraint that branch lengths, tree
topology, and root position are unchanged. Thus, their statistical significance was
assessed by BF calculation. For example, the BF associated with the statistic E was
calculated as the posterior odds that Eestimated > Erandomised (if the environmental
variable is considered to attract the lineages, the opposite Eestimated < Erandomised if
repulsing them) divided by the equivalent prior odds (assuming the prior probability
for Eestimated > Erandomised to be 0.5). The same approach was used for the R statistics.

2. The association between a particular environmental variable and the dispersal ve-
locity of the considered strains. Two models of spatial movements were considered:
(1) “straight line (SL) path” model, assuming a straight movement between the start-
ing and ending locations of each branch (i.e., the branch weight is computed as the
sum of raster cells covered by the straight line); (2) “least cost (LC) path” model, using
a least-cost algorithm (i.e., the branch weight is computed as the sum of the values
of cells transition values between neighboring cells along the least-cost path). In this
model, the analyzed environmental variable can be considered both as a conductance
(i.e., favoring viral dispersal through the cells with higher values) or resistance factor
(i.e., allowing an easier dispersal through cells with lower values). Both instances
were tested for each considered factor. The obtained “environmental” weights were
used to calculate a regression with the branch duration, and the corresponding co-
efficient of determination (R2

env) was obtained. A null coefficient of determination
(R2

null) was also calculated assuming a null raster (i.e., assuming that only the spatial
distance of each movement affects the branch duration). The statistic Q = R2

env −
R2

null was selected as the final outcome and describes how much the regression is
strengthened when the spatial variation in the environmental variable is included.
To account for the phylogenetic uncertainness, the Q statistic was calculated for a set
of 100 trees sampled from the posterior distribution. A proportion of more than 90%
of positive Q values > 0 was considered suggestive of environmental values effect
and further tested through BF calculation. For this purpose, the same randomization
procedure previously described was used and the BF for an environmental factor
was approximated by the posterior odds that Qestimated > Qrandomised divided by the
equivalent prior odds (still setting the prior probability for Qestimated > Qrandomised
to 0.5).

3. Results
3.1. Dataset

A total of 1008 ORF7 sequences (Acc.Numbers OL698868-OL699876; Figure S2) were
collected from several integrated production flows in the period 2004–2021 and merged
with reference vaccine sequences. After database refinement, 982 were maintained for
further analysis and included in the final dataset. No recombination events were detected
in the analyzed region, as previously reported [8,40], and the phylogenetic and temporal
signals proved adequate for further analysis.

3.2. PRRSV Strain History, Evolution, and Population Dynamics

The phylodynamic analysis revealed an evolutionary rate of 6.40 × 10−3 substitu-
tion/site/year (95HPD: 5.53·10−3–7.36·10−3 substitution/site/year). The introduction of
the ancestor of the sampled strains was predicted approximatively in the ’80s. Overlapping
results were obtained regardless of the implemented analysis (DTA, BASTA, or continuous
phylogeography) (Figure S3). Thereafter, the viral population was featured by a progressive
and relevant increase in relative genetic diversity (i.e., effective population size · generation
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time; Ne × τ) until approximately 2010, when a marked decrease began and persisted until
the end of the study, with a small rebound in 2015 (Figure 1).
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3.3. Within Integrated Pig Production Chain Strain Flow

The DTA, investigating the PRRSV strain migration among the different stages of pig
production, demonstrates the directionality of the viral flux. The asymmetric migration
model was preferred over the symmetric one (Bayesian Factor (BF) > 10), and the estimated
migration rates supported the directionality from site 1 to site 2 to site 3. Moreover, the
migration rate from sow herds to nurseries and from nurseries to finishing units were three
and two times higher than the ones from finishing to sows, from finishing to nurseries
and from sows to finishing. The viral flux from nurseries to sows units was comparable to
the one from sows to nurseries. Therefore, the viral flux essentially followed the pig one,
although with some exceptions (Figure 2).
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3.4. Strain Migration among Integrated Pig Production Chains

The analysis of viral migration among integrated pig companies highlighted substan-
tial compartmentalization among productive units since clades of the MCC tree demon-
strated a clear tendency to include strains sampled from farms of the same integrated
productive flow (Figure 3). Although rare, some among-company migration events were
also present, which were confirmed by the identification of different significant migration
rates that, although relatively low in absolute value (~1 migration event/year), connected
different groups (Figure 3). Additionally, a limited number of integrated production flows
showed significantly higher values (Figure 3).
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The role of ghost demes, representative of unsampled integrated pig companies be-
longing to other commercial groups and to rural pigs was also investigated demonstrating
its non-negligible impact in mediating the passage of PRRSV strains from one integrated
pig flow to another (Figure 4). In the two demes model, the deme size of the ghost deme
was predicted to be approximatively 40 times bigger than the Company one, while in the
three demes model the size of the viral population in the other integrated companies and
unorganized farms was ~4 and 60 times bigger than the Company one, respectively.

3.5. Continuous Phylogeography

The continuous phylogeographic analysis suggested a most likely first introduction of
PRRSV strain in the Regions of central part of Northern Italy (Lombardy, Emilia Romagna
and Veneto), followed by a centrifuge spreading around the initial introduction site and
thereafter to more peripherical areas in the East, such as Friuli Venezia Giulia (~2010), and
West and Central Italy, such as Piedmont and Tuscany (~2015) (Figure 5).
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The analysis of the wavefront distance (Figure 1) suggested a relatively slow increase
of the involved areas during the first 2 decades of PRRSV circulation, which was followed
by a more rapid expansion in the period 2000–2005, leading to the involvement of the final
area distribution. Over the same period, the spreading speed progressively increased from
the introduction to approximatively 1995, while a marked rise in the spreading velocity was
observed until 2000. Finally, a new increase, although with minor fluctuations, featured the
period from 2010 to the end of the study (Figure 1).

The effect of several environmental variables on PRRSV strain distribution was ade-
quately statistically supported. Particularly, a lower tendency of PRRSV strain to be located
in areas with higher values of altitude, road, and human population density was estimated.
On the contrary, higher values of temperature annual range and seasonality, cropland
usage, and pig density enhanced strain persistence in an area (BF > 10).

Similarly, some environmental variables, particularly road density, elevation, and
mean annual temperature, proved to affect viral spreading speed (BF > 10). Road density
and elevation acted as conductance (i.e., enhancing) factors, according to a least-cost
diffusion model, while the annual mean temperature was classified as a resistance factor.

4. Discussion

PRRSV is probably the most frustrating infectious disease affecting commercial pig
farming. Despite the development and application of several vaccines, no vaccination
protocol has proven completely effective [13]. Great efforts have thus been devoted to
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improving biosecurity measures and pig management, with mixed fortunes. Particu-
larly, attempts to reduce the area prevalence and between farms spreading were often
unsuccessful and frequent breakages leading to new strain introduction occur [13,41].

The present study investigates PRRSV circulation in Italy and its drivers, largely
confirming the limitations in PRRSV control despite the remarkable paid efforts. To this
purpose, we obtained the broadest available ORF7 sequences dataset originating from
the diagnostic activity of the largest Italian pig company in the period 2004–2021. The
ORF7 was chosen for several reasons. The selection of a slightly more conserved region
provided several advantages. It is well known that the variability of the ORF5 gene can
pose challenges in PRRSV diagnosis and especially sequencing, creating a potential bias in
the sequencing success based on primer affinity. This threat is largely reduced by selecting
more stable regions as primer target, which guarantees a more representative sequence
(i.e., strains) dataset. Additionally, unlike other ORFs, ORF7 was reported not to be prone
to recombination [8,40], a phenomenon that, if not properly detected and accounted for,
can severely bias the analysis and the results reliability. Nevertheless, unlike the common
thought, the ORF7 is featured by a relevant genetic variability. The mean genetic distance
of our dataset was 9%, with an interval from 0 to 18.8%. Accordingly, the formal test
of phylogenetic signal (i.e., likelihood mapping) demonstrated that the strength of the
phylogenetic information provided by the available sequence alignment was adequate to
perform the analyses.

The origin of Italian PRRSV strains was predicted in the 1980s. Since the estimated
PRRSV origin is far more ancient [42], it can be speculated that Italy remained PRRSV-free
for a long time, potentially due to the structure of the swine industry and limited swine
trade in the first half of the century. However, it must be kept in mind that the herein-
estimated tMRCA refers to the currently circulating (and sampled) strains. Therefore, other
lineages and their ancestors could have been circulating in Italy for a much longer time
without being sampled due to being extinct or limited to certain companies, geographic
areas, or production types (e.g., rural sector) that were not included in the study.

Despite these speculations on virus introduction, the following spreading pattern
appears much clearer. After the initial introduction in the central part of Northern Italy,
it centrifugally spread, affecting the high-density populated areas of Emilia Romagna,
Lombardy and Veneto. Accordingly, the results of strain distribution demonstrated a
positive association between pig density and PRRSV strain location, as well as the tendency
of viruses to be present in an area with high cropland use and low human population and
road density, which simply reflects the agricultural vocation of the affected areas. Similarly,
studies performed in US demonstrated increments of swine density and being located in
cultivated/managed areas to significantly increase the risk for PRRS outbreaks [43,44].

PRRSV diffusion appeared initially slow until an abrupt increase was observed around
the middle of the 90s that led, with approximately a 5 years delay, to a significant expansion
of the involved area reaching the final distribution range. Such rise in viral spreading
closely mirrored the commercial expansion of the Company that, in the same years, acquired
new farms located in different areas of Northern Italy. The increase in animal movements
and the broader spanned distances can thus justify this finding. In fact, the observed
progressive increase in spreading speed can be expected since the broader the affected
area, the higher the number of infected farms and therefore the number of potential
infection sources and contacts. More surprisingly, after the maximal territorial distribution
was reached, the virus continued to move at a comparable or even higher rate. This
evidence testifies an intense strain circulation within the considered area and suggests
the limits of implemented biosecurity and control measures. Interestingly, in the same
period, the introduction and following increase of a second Italian PRRSV clade (Clade B)
was previously reported [10], progressively superseding the previous variant. Therefore,
a higher viral virulence or decrease animal immune-protection cannot be excluded and
could have contributed to the observed pattern. Of note, the viral population increased
constantly from the tMRCA to 2010, when a decrease phase began. In the same years, the
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Company sanitary policy started focusing particularly on gilt acclimatization rather than on
vaccination only. Particularly, a protocol based on a combination of vaccinations followed
by forced infection with autochthonous field strains, achieved by exposing gilts to runts
of the same farm, was applied on a large scale. Therefore, it can be speculated that such
intensive immunization protocol effectively limited viral circulation in the first farming
steps and, combined with following strict biosecurity measures, had a significant effect on
viral circulation in the downstream productive chain.

Nevertheless, the overall picture suggests that even if local biosecurity and control
measures were at least partially effective in decreasing viral prevalence, the circulation
over long distances was not prevented, leading to the relatively frequent introduction of
new strains in distantly related farms. The hierarchical, vertical Company organization
can largely explain the observed scenario; a single farrowing unit provides pigs to several
weaners located in different Italian areas and/or regions that, in turn, supply pigs to
several fattening units. Therefore, according to this picture, PRRSV appears to follow
a spreading pattern mainly driven by pig flow, similar to what previously observed by
Pesente et al. (2006), who reported the movements of carrier animals from sow herds
to nursery and from nursery to finishing as the main route of infection in an integrated
product system [45]. Similar evidence was recently demonstrated in North American
farming [19]. Other studies have previously reported that animal movement represents one
of the most important risk factors for the spreading of PRRSV and other infections in food-
producing animals [19,46–48]. DTA analysis supports this hypothesis since an asymmetric
PRRSV migration model among productive stages was preferred over the symmetric one
and more intense connections from sow herds to nurseries and from nurseries to finishing
units were predicted. Nevertheless, a non-negligible flux of PRRSV dissemination from
nurseries to sow farms was also noticed, confirming the importance of downstream farms
as sources of the virus [44].

While this result can be taken for granted and easily predicted [19], it is more chal-
lenging to evaluate how the overall system was able to prevent viral spreading among
integrated pig production units, creating effective compartments. The phylogenetic tree
evaluation clearly showed the presence of clusters, including strains collected from single
integrated pig farms, demonstrating the effect of vertical integration as a control strategy.
Still, the occurrence of several exceptions and the presence of different migration rates
among those companies (estimated using the structured coalescent) testify to the occur-
rence of several breakages, mirroring what was observed in US farming system [44] and
reinforcing the importance of PRRSV collateral spread.

A similar study performed in Italy on Avian coronavirus suggested much stronger
compartmentalization in chicken farming [49]. The features (e.g., different life span, more
frequent interaction with veterinarians and technicians, and need for a higher number of
travels between birth and slaughtering) of the two productive systems (pigs vs. chickens)
surely played a role. However, it must be also stressed that in the previous study differ-
ent commercial companies were compared and considered as separate demes. Contacts
between companies with different owners can be considered limited. On the contrary, in
the present study, all considered farms were part of the same Company, although divided
into integrated, vertical pig flows. A partial sharing and overlapping of the facilities and
services (veterinarians, technicians, trucks, etc.) occurs, thus increasing the risk of virus
introduction through animal movements and/or contaminated fomites. Accordingly, road
density was proven to be significantly associated with viral migration speed. Therefore,
the relevance of indirect contacts among distant farms and production chains, in addition
to pig movements demonstrate in the present study and Makau et al. (2021) [19], was thus
proven pivotal. The role of indirect contacts on effective PRRSV transmission has been
amply demonstrated and represents one of the main challenges in infection control and,
especially, eradication [11,41,50].

Interestingly, while the animal density was the only factor with a positive effect on
viral spreading speed for poultry, it was not significant for PRRSV in Italy. PRRSV has
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been detected and isolated in aerosols at relatively high distances, thus highlighting the
relevance of bioaerosols in control programs [50]. However, in the present study, although
pig density was positively correlated to strain presence and persistence in an area, it did not
affect viral spreading speed. Aerial spreading seems therefore to play at least a secondary
role in PRRSV introduction into new farms. These pieces of evidence are in contrast with
what was previously reported by Pitkin et al. (2009) [51]. Whether this is due to the features
of Italian pig farms (average herd size, farm structure, aeration, etc.), environment, and/or
other local peculiarities, and the extent to which such conclusion can be generalized to
other contexts, will need further investigation.

Of note, similar to what was demonstrated for the poultry industry, unsampled
companies largely represented by less organized companies or single semi-rural or rural
farms (i.e., the included ghost demes) appear to play a significant role in mediating the
contact among different units of the considered integrated company [49]. Additionally,
for pig farming, PRRSV dissemination was largely featured by transmission between
non-commercially-related farms rather than within a production systems [44].

The structured coalescent analysis predicted several intermediated branches (i.e.,
ancestral unsampled strains), linking groups of viruses collected in the Company, that
circulated in other groups and/or farms. Likely, the lower economic, managerial, and
logistic resources of those farms can justify a higher viral presence and thus “infectiveness”
for other farms.

The predicted deme population size was significantly lower in the Company compared
to the “ghost” deme, which did not reflect the actual proportion of raised pigs, since
about 10–15% of Italian pig production only is held by the Company. Even more inter-
estingly, when a third deme was introduced in the model representing other integrated
pig companies, the respective deme sizes of the Company and other Italian integrated
groups were essentially proportional to the number of raised animals, while the third deme,
i.e., small-independent farms and rurally raised pigs, still showed a disproportionally
large population. This scenario could thus substantiate the higher capability of integrated
companies in reducing PRRSV presence and prevalence through effective and systematic
control measures application.

While these estimations are surely featured by a relevant uncertainness and the predic-
tion of the behavior of demes for which no sequences are available might seem unreliable,
such a modelling approach has been proven effective in depicting the epidemiology of
other veterinary and human infectious diseases [24,26,27]. Therefore, even if specific links
among farms and companies must be interpreted with caution, the overall pattern should
be considered for a better organization of future control plans.

If effective control at the regional level must be achieved, a shared control approach
that simultaneously targets multiple farms within a relatively large region, based on strong
communication and collaboration among productive sites and operators (owners), must
be pursued to minimize the risk of re-introduction of the virus into any single farm, as
previously suggested [13,52]. Unfortunately, although diagnostic and sequencing activity
can be considered intensive in Italy, epidemiological data and sequence obtained by dif-
ferent, independent laboratories are rarely shared or made publicly available, hindering
the understanding of PRRSV behavior, epidemiological links, and contributions of swine
farming actors. Particularly, the present study results are based on high-level integrated
pig company located in Northern Italy. While this can be considered representative of other
intensive productive systems, as demonstrated by the ghost deme estimation performed
through structured coalescent analysis, the results can hardly be confidently extended to
rural farms, especially those located in Central and Southern Italy where the productive
system is radically different. Therefore, additional studies and the sharing of PRRSV se-
quences information would be necessary to properly investigate this context and complete
the pictured of the Italian PRRSV epidemiology.

Finally, environmental and climatic variables also seem to affect PRRSV presence and
spreading. Particularly, low temperatures and high climatic variability (temperature annual
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range and seasonality) were positively associated with viral migration and persistence,
likely because these conditions indirectly act on host susceptibility and viral persistence
in the environment and fomites. These results confirm previous ones, suggesting the
spread of PRRSV from a swine production site to another affected by lower temperature,
relative humidity, and sunlight intensity [51,53,54]. Similarly, when the PRRSV-free status
persistence after the establishment of a new site was assessed, non-winter months were
associated with longer maintenance of the status [41].

More surprisingly, elevation also appeared to positively affect PRRSV spreading speed,
a piece of evidence that could seem counterintuitive. Most of the farrowing units are sited
in elevated areas, a position that typically guarantees higher isolation and distance from
other pig farms. In fact, a lower tendency of PRRSV strain to be located in areas with high
altitude values was proven in the present study and also in the US [43,48], enforcing the
effectiveness of such measures. However, considering that the pig and thus PRRSV strain
flows originate from these units, the reconstructed migration path will often pass through
elevated areas. Therefore, the correlation between the viral spreading flow and elevated
position of the farm of origin can explain the “artefactual” enhancing role of altitude on
the viral spread and, at the same time, the lower tendency of the virus to be present in
such areas.

5. Conclusions

Overall, the present study testifies to the contribution of several factors in shaping
PRRSV epidemiology, at least in Italy. Animal management, and especially proper gilt
acclimatization (i.e., immunization) and independence of pig flows (i.e., biosecurity), were
demonstrated to be highly effective in limiting viral spread and thus constraining viral
population size. A clear advantage in preventing and limiting viral circulation of highly
organized companies over small-rural one appeared evident. On the contrary, small-scale
production represents a threat for major ones, likely incrementing the local farm density
in presence of ineffective control and biosecurity measures, which determines a higher
infectious pressure. Despite all paid efforts, viral transmission could not be prevented
in high-management integrated companies either and different environmental factors
were proven relevant risk factors for viral persistence and spreading. Of note, the herein-
reported results are largely in agreement with the evidence obtained from other studies
performed in the US [17,19,20]. Besides strengthening the robustness of the obtained
results, the prominent role of modern, intensive pig farming organization in affecting
PRRSV epidemiology, rather than the local environment and managerial peculiarities,
is supported.

Based on such an intricate and multifactorial net of PRRSV epidemiology determinants,
the infection can be effectively controlled through comparable multi-level intervention
strategies, including proper planning of farm structure and location, adequate animal
management and immunization within farms, the preservation of independent pig flows,
and strict cooperation and information exchange among different companies and operators
working in the same area [52].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13122510/s1, Figure S1: Rasters of environmental variables used in the present study.
Figure S2: ORF7-based phylogenetic tree depicting the distribution of the sequences obtained in the
present study (colored in red) on the background of other Italian (colored in blue) and international
(colored in black) sequences. PRRSV type II sequences were selected as the outgroup to root the
phylogenetic tree. Figure S3: Density plot of the evolutionary rate (upper figure) and tMRCA (lower
figure) posterior probability estimated using different methods (color-coded).
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