
Neural Networks 132 (2020) 428–446

a

b

a
2
e
m
P
m
j
g
o
l
p
a
g

O

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani a,1, Andrew M. Saxe a,2,∗,1, Haim Sompolinsky a,b

Center for Brain Science, Harvard University, Cambridge, MA 02138, United States of America
Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel

a r t i c l e i n f o

Article history:
Received 4 January 2020
Received in revised form 18 August 2020
Accepted 24 August 2020
Available online 5 September 2020

Keywords:
Neural networks
Generalization error
Randommatrix theory

a b s t r a c t

We perform an analysis of the average generalization dynamics of large neural networks trained using
gradient descent. We study the practically-relevant ‘‘high-dimensional’’ regime where the number of
free parameters in the network is on the order of or even larger than the number of examples in the
dataset. Using random matrix theory and exact solutions in linear models, we derive the generalization
error and training error dynamics of learning and analyze how they depend on the dimensionality of
data and signal to noise ratio of the learning problem. We find that the dynamics of gradient descent
learning naturally protect against overtraining and overfitting in large networks. Overtraining is worst
at intermediate network sizes, when the effective number of free parameters equals the number of
samples, and thus can be reduced by making a network smaller or larger. Additionally, in the high-
dimensional regime, low generalization error requires starting with small initial weights. We then
turn to non-linear neural networks, and show that making networks very large does not harm their
generalization performance. On the contrary, it can in fact reduce overtraining, even without early
stopping or regularization of any sort. We identify two novel phenomena underlying this behavior in
overcomplete models: first, there is a frozen subspace of the weights in which no learning occurs under
gradient descent; and second, the statistical properties of the high-dimensional regime yield better-
conditioned input correlations which protect against overtraining. We demonstrate that standard
application of theories such as Rademacher complexity are inaccurate in predicting the generalization
performance of deep neural networks, and derive an alternative bound which incorporates the frozen
subspace and conditioning effects and qualitatively matches the behavior observed in simulation.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Deep learning approaches have attained high performance in
variety of tasks (LeCun, Bengio, & Hinton, 2015; Schmidhuber,
015), yet their learning behavior remains opaque. Strikingly,
ven very large networks can attain good generalization perfor-
ance from a relatively limited number of examples (Canziani,
aszke, & Culurciello, 2017; He, Zhang, Ren, & Sun, 2016; Si-
onyan & Zisserman, 2015). For instance, the VGG deep ob-

ect recognition network contains 155 million parameters, yet
eneralizes well when trained with the 1.2 million examples
f ImageNet (Simonyan & Zisserman, 2015). This observation
eads to important questions. What theoretical principles ex-
lain this good performance in this limited-data regime? Given
fixed dataset size, how complex should a model be for optimal
eneralization error?
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In this paper we study the average generalization error dy-
namics of various simple training scenarios in the ‘‘high-dimen-
sional’’ regime where the number of samples P and parameters
N are both large (P,N → ∞), but their ratio α = P/N is
finite (e.g Advani, Lahiri, & Ganguli, 2013). We start with simple
models, where analytical results are possible, and progressively
add complexity to verify that our findings approximately hold
in more realistic settings. We mainly consider a student–teacher
scenario, where a ‘‘teacher’’ neural network generates possibly
noisy samples for a ‘‘student’’ network to learn from Saad and
Solla (1995), Seung, Sompolinsky, and Tishby (1992) and Watkin,
Rau, and Biehl (1993). This simple setting retains many of the
trade-offs seen in more complicated problems: under what con-
ditions will the student overfit to the specific samples generated
by the teacher network? How should the complexity (e.g. number
of hidden units) of the student network relate to the complexity
of the teacher network?

First, in Section 2, we investigate linear neural networks.
For shallow networks, it is possible to write exact solutions for
the dynamics of batch gradient descent learning as a function
of the amount of data and signal to noise ratio by integrating
random matrix theory results and the dynamics of learning. This
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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s related to a large body of prior work on shallow networks (Bai
Silverstein, 2010; Baldi & Chauvin, 1991; Baldi & Hornik, 1995;
enaych-Georges & Rao, 2011, 2012; Chauvin, 1990; Dodier,
995; Dunmur & Wallace, 1999; Hoyle & Rattray, 2007; Ki-
ouchi & Caticha, 1995; Krogh & Hertz, 1992; LeCun, Kanter,
Solla, 1991; Seung et al., 1992). Our results reveal that the

ombination of early stopping and initializing with small-norm
eights successfully combats overtraining, and that overtraining

s worst when the number of samples equals the number of
odel parameters.
For deep linear neural networks, in Section 3 we derive a

eduction of the full coupled, nonlinear gradient descent dynam-
cs to a much smaller set of parameters coupled only through a
lobal scalar. Our reduction is applicable to any depth network,
nd yields insight into the dynamical impact of depth on training
ime. The derivation here differs from previous analytic works
n the dynamics of deep linear networks (Saxe, McClelland, &
anguli, 2014) in that we do not assume simultaneous diago-
alizability of the input and input–output correlations. It shows
hat generalization error in this simple deep linear case behaves
ualitatively similarly to the shallow linear case.
Next, in Section 4 we turn to nonlinear networks. We con-

ider a nonlinear student network which learns from a dataset
enerated by a nonlinear teacher network. We show through
imulation that the qualitative intuitions gained from the linear
nalysis transfer well to the nonlinear setting. Remarkably, we
ind that catastrophic overtraining is a symptom of a model
hose complexity is exactly matched to the size of the training
et, and can be combated either by making the model smaller
r larger. Moreover, we find no evidence of overfitting: the opti-
al early-stopping generalization error decreases as the student
rows larger, even when the student network is much larger than
he teacher and contains many more hidden neurons than the
umber of training samples. Our findings agree both with early
umerical studies of neural networks (Caruana, Lawrence, & Giles,
001) and the good generalization performance of massive neural
etworks in recent years (e.g. Belkin, Hsu, Ma and Mandal, 2019;
imonyan & Zisserman, 2015; Spigler et al., 2018). In this setting,
e find that bigger networks are better, and the only cost is the
omputational expense of the larger model.
We also analyze a two layer network to gain theoretical intu-

tion for these numerical results. A student network with a wide
idden layer can be highly expressive (Barron, 1993), even if we
hoose the first layer to be random and fixed during training.
owever, in this setting, when the number of hidden units Nh is
arger than the number of samples P , our linear solution implies
hat there will be no learning in the Nh − P zero-eigenvalue
irections of the hidden layer covariance matrix. It follows that
urther increasing the network size will not actually increase
he complexity of the functions the network can learn. Further-
ore, there seems to be an implicit reduction in model complex-

ty and overfitting at late stopping times when Nh is increased
bove P because the non-zero eigenvalues are actually pushed
way from the origin, thus reducing the maximum norm learned
y the student weights. Finally, through simulations with the
NIST dataset, we show that these qualitative phenomena are

ecapitulated on real-world datasets.
The excellent performance of complex models may seem

o contradict straightforward applications of VC dimension and
ademacher bounds on generalization performance (Zhang, Ben-
io, Hardt, Recht, & Vinyals, 2017). We take up these issues in
ections 6 and 7. Our results show that the effective complexity of
he model is regularized by the combined strategy of early stop-
ing and initialization with small norm weights. This two-part
trategy limits the norm of the weights in the network, thereby

imiting the Rademacher complexity. This strategy is analogous to
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that used in support vector machines to allow generalization from
kernels with infinite VC dimension: generalization is preserved
provided the training process finds a large-margin (low-norm
weight vector) solution on the training data. Hence, while a
large deep network can indeed fit random labels, gradient-trained
DNNs initialized with small-norm weights learn simpler functions
first and hence generalize well if there is a consistent rule to be
learned.

Remarkably, even without early stopping, generalization can
still be better in larger networks (Belkin, Hsu, Ma et al., 2019). To
understand this, we derive an alternative bound on the Radem-
acher complexity of a two layer non-linear neural network with
fixed first layer weights that incorporates the dynamics of gra-
dient descent. We show that complexity is limited because of a
frozen subspace in which no learning occurs, and overtraining is
prevented by a larger gap in the eigenspectrum of the data in
the hidden layer in overcomplete models. Our bound provides
new intuitions for generalization behavior in large networks, and
qualitatively matches the findings of our simulations and prior
work: even without early stopping, overtraining is reduced by
increasing the number of hidden units Nh when Nh > P .

Our results begin to shed light on the diverse learning behav-
ors observed in deep networks, and support an emerging view
hat suggests erring on the side of large models before pruning
hem later.

. Generalization dynamics in shallow linear neural networks

To begin, we study the simple case of generalization dynam-
cs in a shallow linear neural network receiving N-dimensional
inputs. We consider a standard student–teacher formulation, a
setting that has been widely studied using statistical mechanics
approaches (see Engel & Van Den Broeck, 2001; Seung et al., 1992;
Watkin et al., 1993 for reviews, and Baldi & Chauvin, 1991; Baldi,
Chauvin, & Hornik, 1990; Baldi & Hornik, 1995; Chauvin, 1990;
Dunmur & Wallace, 1999; Kinouchi & Caticha, 1995; Krogh &
Hertz, 1992; LeCun et al., 1991 for settings more closely related
to the linear analysis adopted in this section). Here a student
network with weight vector w(t) ∈ R1×N trains on examples
generated by a teacher network with weights w̄ ∈ R1×N (see
Fig. 1). The teacher implements a noisy linear mapping between
P inputs X ∈ RN×P and associated scalar outputs y ∈ R1×P ,

y = w̄X + ϵ. (1)

In the equation above, ϵ ∈ R1×P denotes noise in the teacher’s
output. We will model both the noise ϵ and the teacher weights
w̄ as drawn i.i.d. from a random distribution with zero mean
and variance σ 2

ϵ and σ 2
w̄ respectively. The signal-to-noise ratio

SNR ≡ σ 2
w̄/σ 2

ϵ parametrizes the strength of the rule underlying
the dataset relative to the noise in the teacher’s output. In our
solutions, we will compute the generalization dynamics averaged
over all possible realizations of w̄ to access the general features
of the learning dynamics independent of the specific problems
encountered. Finally, we assume that the inputs Xµj are drawn
i.i.d. from a Gaussian with mean zero and variance 1

N so that each
example will have an expected norm of one:

⟨
∥xµ

∥
2
2

⟩
= 1.

The student network is trained using the dataset {y, X} to
accurately predict outputs for novel inputs x ∈ RN . The student is
a shallow linear network, such that the student’s prediction ŷ ∈ R
is simply ŷµ

= w(t) · xµ. To learn its w parameters, the student
network will attempt to minimize the mean squared error on the
P training samples using gradient descent. The training error is

Et (t) =
1
P

P∑
∥yµ

− ŷµ
∥
2
2, (2)
µ=1
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Fig. 1. Learning from a noisy linear teacher. (A) A dataset D = {xµ, yµ
}, µ = 1, . . . , P of P examples is created by providing random inputs x to a teacher network

ith a weight vector w̄, and corrupting the teacher outputs with noise of variance σ 2
ϵ . (B) A student network is then trained on this dataset D. (C) Example dynamics

f the student network during full batch gradient descent training. Training error (blue) decreases monotonically. Test error, also referred to as generalization error,
yellow), here computable exactly (4), decreases to a minimum E∗

g at the optimal early stopping time t∗ before increasing at longer times (E late
g ), a phenomenon

nown as overtraining. Because of noise in the teacher’s output, the best possible student network attains finite generalization error (‘‘oracle’’, green) even with
nfinite training data. This error is the approximation error E∞ . The difference between test error and this best-possible error is the estimation error Eest . (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
A

τ
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nd full-batch continuous-time gradient descent on this error
unction (a good approximation to discrete time batch gradient
escent with small step size) yields the dynamical equations:

ẇ(t) = yXT
− wXXT . (3)

where τ is a time constant inversely proportional to the learning
rate. Our primary goal is to understand the evolving generaliza-
tion performance of the network over the course of training. That
is, we wish to understand the generalization error which is an
average error on a new, unseen example:

Eg (t) =
⟨
(y − ŷ)2

⟩
x,y (4)

as training proceeds. Here the average ⟨·⟩x,y is over potential in-
puts x and labels y. The generalization error will be self-averaging
meaning that the performance of all random instantiations of the
data and model should be the same when the data is sufficiently
high dimensional: N, P → ∞.

2.1. Exact solutions in the high-dimensional limit

How does generalization performance evolve over the course
of training? The long-term behavior is clear: if training is run for
a long time and initialized with zero weights, the weight vector w

will converge to the subspace minimizing the training error (2),
solving the least-squares regression problem,

w(t → ∞) = yXT (XXT )†, (5)

where † denotes the Moore–Penrose pseudoinverse. The error
achieved by the pseudoinverse, along with more general dynam-
ical results for even nonlinear students and teachers, have long
been known (Krogh & Hertz, 1992; LeCun et al., 1991; Seung
et al., 1992). Here we explicitly study the time course with which
parameters are learned, and pursue connections to phenomena in
modern deep learning.

First, we decompose the input data using the singular value
decomposition X = VΛ1/2UT (with U ∈ RP×N , Λ1/2

∈ RN×N , and
V ∈ RN×N ). The input correlation matrix is then

Σxx
= XXT

= VΛV T . (6)

Next we write the input–output correlation matrix as

Σyx
= yXT

= s̃V T , (7)
 σ
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where the row vector s̃ will be called an alignment vector since it
is related to the alignment between the input–output correlations
and the input correlations.

Returning to the dynamics in (3), we make a change of vari-
ables to instead track the vector z ∈ R1×N where w = zV T .
pplying (7) yields:

ż(t) = s̃ − zΛ. (8)

To make sense of the preceding equation we compute s̃ using the
fact that

yXT
= w̄XXT

+ ϵXT
= z̄ΛV T

+ ϵ̃Λ1/2V T , (9)

where we define z̄ = w̄V , and under the assumption of white
Gaussian noise, ϵ̃ ∈ RN has i.i.d. elements drawn from a Gaussian
with variance σ 2

ϵ . The form of Σyx implies s̃ = z̄Λ+ ϵ̃Λ1/2, so we
can rewrite (8) as

τ żi = (z̄i − zi)λi + ϵ̃i
√

λi, i = 1, . . . ,N. (10)

The learning speed of each mode is independent of the others
and depends only on the eigenvalue of the mode in question. As
we will see, in the case of deep learning, there will be coupling
between these modes. However in shallow neural networks, such
coupling does not occur and we can solve directly for the dynam-
ics of these modes. The error in each component of z is simply

z̄i − zi = (z̄i − zi(0))e−
λi t
τ −

ϵ̃i
√

λi
(1 − e−

λi t
τ ). (11)

t follows from the definition of z that the generalization error as
function of training time is

g (t) =
1
N

∑
i

⟨
(z̄i − zi)2

⟩
+ σ 2

ϵ (12)

=
1
N

∑
i

[
(σ 2

w̄ + (σ 0
w)

2)e−
2λi t
τ +

σ 2
ϵ

λi
(1 − e−

λi t
τ )2

]
+σ 2

ϵ , (13)

here the second equality follows from the assumption that the
eacher weights w̄ and initial student weights w(0) are drawn
.i.d. from Gaussian distributions with standard deviation σw̄ and
0 respectively. By denoting the spectrum of data covariance
w
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Fig. 2. The Marchenko–Pastur distribution and high-dimensional learning dynamics. (A) Different ratios of number training samples (P) to network parameters (N)
(α =

P
N ) yield different eigenvalue densities in the input correlation matrix. For large N , this density is described by the MP distribution (15), which consists of a

bulk’ lying between [λ−, λ+], and, when α < 1, an additional delta function spike at zero. When there are fewer samples than parameters (α < 1, left column),
ome fraction of eigenvalues are exactly zero (delta-function arrow at origin), and the rest are appreciably greater than zero. When the number of samples is on
he order of the parameters (α = 1, center column), the distribution diverges near the origin and there are many nonzero but arbitrarily small eigenvalues. When
there are more samples than parameters (α > 1, right column), the smallest eigenvalues are appreciably greater than zero. (B) Dynamics of learning. From (13),
the generalization error is harmed most by small eigenvalues; and these are the slowest to be learned. Hence for α = 1/2 and α = 2, the gap in the spectrum
ear zero protects the dynamics from overtraining substantially (eigenvalues which are exactly zero for α = 1/2 are never learned, and hence contribute a finite
rror but no overtraining). For α = 1, there are arbitrarily small eigenvalues, and overtraining is substantial. (C) Plot of generalization error versus α for several
raining times, revealing a clear spike near α = 1. Other parameters: N = 100, INR = 0, SNR = 5. As the colors vary from red to black the training time increases
t
τ

= [5, 20, 50, 100, 1000]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
f
e

igenvalues as ρ(λ), the generalization error dynamics can be
ritten as:

Eg (t)
σ 2

w̄

=

∫
ρ(λ)

[
(1 + INR)e−

2λt
τ +

1
λ · SNR

(1 − e−
λt
τ )2
]
dλ

+
1

SNR
, (14)

here we have normalized by σ 2
w̄ to set the scale and defined the

nitialization noise ratio INR ≡ (σ 0
w)

2/σ 2
w̄ .

The generalization error expression contains two time-depen-
ent terms. The first term exponentially decays to zero, and
ncodes the distance between the weight initialization and the
inal weights to be learned. The second term begins at zero and
xponentially approaches its asymptote of σ2

ϵ

λi
. This term corre-

ponds to overfitting the noise present in the particular batch of
amples. We note two important points: first, eigenvalues which
re exactly zero (λi = 0) correspond to directions with no learn-
ng dynamics (the right hand side of Eq. (10) is exactly zero) so
hat the parameters zi will remain at zi(0) indefinitely. These di-
ections form a frozen subspace in which no learning occurs. While
in the original basis all weights typically change during learning,
rotation into the principal component directions of the input data
reveals these exactly frozen directions. Hence, if there are zero
eigenvalues, weight initializations can have a lasting impact on
generalization performance even after arbitrarily long training.
Second, smaller eigenvalues lead to the most serious over-fitting
due to the σ2

ϵ

λi
factor in the second term of the generalization error

xpression. The origin of this phenomena is that noise projected
nto these smaller modes cause a large increase in the network
eights (see (11)). Hence a large eigengap between zero and

the smallest nonzero eigenvalue can naturally protect against
overfitting. Moreover, smaller eigenvalues are also the slowest to
learn, suggesting that early stopping can be an effective strategy,
as we demonstrate in more detail later. Finally, the expression
provides insight into the time required for convergence of the
training dynamics. Non-zero but small eigenvalues of the sample
covariance lead to very slow dynamics, so that it will take on the
order of t =

τ
λmin

for gradient descent to minimize the training
error.
431
The generalization dynamics (13) reveal the critical role played
by the eigenvalue spectrum of the sample input covariance ma-
trix. If there are many small eigenvalues generalization perfor-
mance will be poor due to the growth in the norm of the student
weights.

In many interesting cases, the distribution of the eigenspec-
trum of the sample covariance matrix is known in the high-
dimensional limit where the input dimension N and number of
examples P jointly go to infinity, while their measurement den-
sity α = P/N remains finite. In particular, in the setting in which
the inputs are drawn iid from a gaussian with zero mean and
variance 1/N , the eigenvalue distribution of XXT approaches the
Marchenko–Pastur distribution (LeCun et al., 1991; Marchenko &
Pastur, 1967) in the high dimensional limit:

ρMP(λ) =
1
2π

√
(λ+ − λ)(λ − λ−)

λ
+ 1α<1(1 − α)δ(λ), (15)

or λ = 0 or λ ∈ [λ−, λ+], and is zero elsewhere. Here the
dges of the distribution take the values λ± = (

√
α ± 1)2

and hence depend on the number of examples relative to the
input dimension. Fig. 2A depicts this eigenvalue density for three
different values of the measurement density α. In the under-
sampled regime when α < 1, there are fewer examples than
input dimensions and many eigenvalues are exactly zero, yielding
the delta function at the origin. This corresponds to a regime
where data is scarce relative to the size of the model. In the
critically sampled regime α = 1, there are exactly as many
parameters as examples. Here the distribution diverges near the
origin, with increasing probability of extremely small eigenval-
ues. This situation yields catastrophic overtraining. Finally in the
oversampled regime when α > 1, there are more examples
than input dimensions, yielding the traditional asymptotic regime
where data is abundant. The eigenvalue distribution in this case
is shifted away from the origin.

Fig. 2B shows the generalization dynamics resulting from sub-
stituting (15) into (14) in the under-, critically- and over-sampled
regimes. While all three exhibit overfitting, this is substantially
worse at the intermediate point α = 1. Fig. 2C systematically
traces out generalization performance as a function of α at several

training times, showing a clear divergence at α = 1. Hence
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Fig. 3. Generalization and training error dynamics compared with simulations. Here we demonstrate that our theoretical predictions for generalization and training
error dynamics at different measurement densities (α = 1/2, α = 1, and α = 2) match with simulations. The simulations for generalization (blue) and training (green)
rrors have a width of ±2 standard deviations generated from 20 trials using N = 300, P = αN and Gaussian input, noise, and parameters with σw̄ = 1, σ 0

w = 0,
nd SNR = 5. The simulations show excellent agreement with our theoretical predictions for generalization and training error provided in (14) and (26). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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vertraining can lead to complete failure of generalization per-
ormance when the measurement density α is close to 1. The
eneralization error prediction (14) is also validated in Fig. 3
here we compare theory with simulations.
Remarkably, even this simple setting of a linear student and

eacher yields generalization dynamics with complex overtrain-
ng phenomena that depend on the parameters of the dataset. In
he following sections we explore aspects of these solutions in
reater detail, and show that early stopping provides an effective
emedy to combat overtraining.

.2. Effectiveness of early stopping

The generalization curves in Fig. 2B improve for a period of
ime before beginning to worsen and converge to the perfor-
ance of limt→∞ w(t). Thus, there will be an optimal stopping

ime at which simply ending training early would yield im-
roved generalization compared to training for longer times. The
ntuitive explanation for this is that by limiting time we are
ffectively regularizing the parameters being learned. This early
topping strategy is widely used in practice, and has been studied
heoretically (Amari, Murata, & Müller, 1996; Amari, Murata,
üller, Finke, & Yang, 1995; Baldi & Hornik, 1995; Biehl, Caticha,
Riegler, 2009; Chauvin, 1990; Dodier, 1995; Yao, Rosasco, &

aponnetto, 2007). To solve for the optimal stopping time nu-
erically, we can differentiate (14) with respect to t and set the

esult equal to zero to solve for topt . To gain qualitative insights
nto this problem, we solve for the stopping time that minimizes
he error of each mode, yielding:

opt
=

τ

λ
log(SNR · λ + 1). (16)

where we assume for simplicity w(0) = 0. This qualitative scaling
is verified in Fig. 4A. The intuition behind the logarithmic growth
of optimal stopping time with SNR is that high quality data
requires less regularization. However optimal stopping time does
not achieve optimal stopping on every mode if there is a spread
of eigenvalues in the input covariance, and to accurately select
the optimal stopping time more generally, we must select t to
minimize Eq. (14), as done numerically in Fig. 4B. This reveals
a dependence on measurement density, with longest training
around α = 1 where test error peaks.
 i
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2.3. L2 regularization

Another approach is the use of L2 regularization (also called
weight decay), because the divergence of generalization error in
the critical regime is due to divergence in the network weights.
Here we compare the performance of early stopping of gra-
dient descent to the performance of L2 regularization, which
corresponds to solving the optimization problem:

ŵL2 = argmin
w

1
2

[
∥y − wX∥

2
2 +

γ

2
∥w∥

2
2

]
. (17)

his regularization yields a generalization error (Advani & Gan-
uli, 2016b) of the form:

EL2
g (γ )

σ 2
w̄

=

∫
ρ(λ)

[
γ 2

(λ + γ )2
+

λ

SNR(λ + γ )2

]
dλ +

1
SNR

. (18)

Differentiating the above expression with respect to γ , one finds
that the optimal performance of this algorithm occurs when the
regularization strength is tuned to be inversely proportional to
the signal-to-noise ratio: γ =

1
SNR =

σ2
ϵ

σ2
w̄

. In fact, under the as-

sumption of noise, parameter, and input distributions drawn i.i.d.
aussian, no algorithm can out-perform optimal L2 regularization
n terms of generalization error performance, as shown in Advani
nd Ganguli (2016a) and Advani and Ganguli (2016c). Here we
sk how close the performance of early stopping comes to this
est-possible performance. In fact, if we substitute (16) for each
ode into the expression for the time dependent generalization
rror (that is, if we could early-stop each mode individually),
e obtain the same generalization performance as optimal L2
egularization, hinting at a strong relationship between the two
ethods. However, as mentioned above, early stopping gener-
lly performs suboptimally. We compare the two algorithms in
ig. 5A. There is a very close match between their generalization
erformances: here the relative error between the two is under 3
ercent and is the largest around α = 1. This near-optimality of
arly stopping disappears when the initialization strengths of the
etwork weights are large as shown in 5B. Hence early stopping
an be a highly effective remedy against overtraining when the

nitial weights are small.
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Fig. 4. Impact of data quality and dimensionality on optimal stopping time. In (A) we plot the impact of SNR on the optimal stopping time with low measurement
ensity α = .05, and compare this to the predictions of (16) with λ = 1 because the non-zero values of the MP distribution are highly peaked around this value
t low measurement density. In (B) we plot the impact of measurement density on the optimal stopping time in the low noise (SNR = 100) limit, where longer
raining is required near α = 1 because the high quality of the data makes it beneficial to learn weights even in the small eigenvalue directions. In both plots green
urves are optimal stopping time numerical predictions computed via gradient descent on t using (14). (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
Fig. 5. Optimal stopping performance. In (A) we plot the generalization error from early stopping (red stars) versus optimal quadratically regularized regression (blue
line). In this example there is no more than 3 percent relative error between the two, which peaks near α = 1 when the spectrum of non-zero eigenvalues is broader.
n (B) we plot generalization error vs. α for different initial weight norms. In the limited data regime, small initial weights are crucial for good generalization. In
oth plots, we have fixed SNR = 5 and σ 2

w̄ = 1 which implies that even at large measurement density α the generalization error asymptotes to a non-zero value
ue to noise 0.2 =

1
SNR .
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2.4. Weight norm growth with SNR

Given that longer training times provide the opportunity for
more weight updates, one might also expect that the norm of
the weights at the optimal early stopping time would vary sys-
tematically with SNR. Here we show that this intuition is correct.
Assuming zero initial student weights, the average norm of the
optimal quadratic regularized weights (derived in Appendix B)
increases with SNR as:⟨
ŵ2

L2

⟩
= σ 2

w̄

∫
ρMP (λ)

(
λ

λ +
1

SNR

)
dλ. (19)

he intuition behind this equation is that data with a lower SNR
equires greater regularization which leads to a lower norm in
he learned weights. The norm of the learned weights interpolates
etween

⟨
ŵ2
⟩
→ σ 2 as SNR → ∞ and

⟨
ŵ2
⟩
→ 0 as SNR → 0.
w̄
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Thus the signal-to-noise ratio of the data plays a pivotal role
in determining the norm of the learned weights using optimal
regularization. In this setting, a well chosen algorithm leads to
larger weights in the network when the data is easier to predict.3

3 This dependence of weight norm on SNR may help reconcile puzzles in
ecent empirical papers. For instance, Section 5 of Zhang et al. (2017) compares
inear maps learned off of two different nonlinear transformations of the input,
nd finds that the linear map with larger norm sometimes generalizes better-
n apparent contradiction to generalization bounds that rely on norm-based
apacity control. However, based on our results, this finding is expected if one
onlinear transformation reveals more signal than the other: the transformation
ielding higher SNR will require a longer training time, yield larger norm
eights, and attain better generalization performance. Here the larger norm
eights are justified by the stronger rule linking input and output. Comparisons
etween linear maps of different norms learned from the same nonlinear
ransformation, however, will reveal an optimal weight norm (which can be
pproximately found through early stopping).
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.5. Impact of initial weight size on generalization performance

In the preceding sections, we have shown the effectiveness of
arly stopping provided that the student is initialized with zero
eights (INR ≈ 0). The early stopping strategy leaves weights
loser to their initial values, and hence will only serve as effective
egularization when the initial weights are small. To elucidate
he impact of weight initialization on generalization error, we
gain leverage the similar performance of early stopping and
2 regularization when INR ≈ 0. If the student weights are
ot initially zero but instead have variance (σ 0

w)
2, the optimal

2 regularization strength is γ opt
=

σ2
ϵ

(σ0
w )2+σ2

w̄

. This yields the
eneralization error,

g =
(σ 0

w)
2
+ σ 2

w̄

2

(
1 − α − γ opt

+

√
(γ opt + α − 1)2 + 4γ opt

)
+ σ 2

ϵ . (20)

n the limit of high SNR, there are three qualitatively different
ehaviors for the dependence of generalization performance on
he initial weight values in the under-sampled, equally sampled,
nd oversampled regimes. There is a linear dependence on initial
eight size when α < 1, a square root dependence for α = 1,
nd no dependence when α > 1,

g ≈

⎧⎪⎨⎪⎩
((σ 0

w)
2
+ σ 2

w̄)(1 − α) + σ 2
ϵ , α < 1√

(σ 0
w)2 + σ 2

w̄σϵ + σ 2
ϵ , α = 1

σ 2
ϵ

α
α−1 , α > 1.

Hence as more data becomes available, the impact of the
eight initialization decreases. Our dynamical solutions reveal
he source of this effect. When there are few examples relative
o the input dimension, there are many directions in weight
pace that do not change because no examples lie in those
irections, such that the component of weight initialization in
hese directions will remain indefinitely. It is therefore critical
o initialize with small weights to maximize generalization per-
ormance in the overparametrized regime, as shown in Fig. 5B.
ven when the number of examples is matched to the size of
he model (α ≈ 1), large-norm weight initializations remain
etrimental for the optimal early stopping strategy because train-
ng must terminate before the influence of the initial weights
as fully decayed. Hence, based on this simple linear analy-
is, excellent generalization performance in large models can
e obtained through the two-part strategy of early stopping
nd initialization with small-norm weights. Remarkably, this
trategy nearly matches the performance of the best possible
ayes-optimal learning strategy (optimal L2 regularization) for
he setting we consider, and remains effective in the high-dimen-
ional regime where the number of samples can be smaller than
he size of the model.

.6. Training error dynamics

Next we turn to the dynamics of the training error during
earning. As we will show, these dynamics depend strongly on
he small eigenvalues of the data covariance and weakly on the
NR. To derive the training error dynamics, we begin with the
orm:

t (t) =
1
P

∥y − w(t)X∥
2
2. (21)

ubstituting the singular value decomposition of the data X =

Λ1/2UT , and w(t) = z(t)V T yields:
1
∥y − z(t)Λ1/2UT

∥
2. (22)
P 2
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In the oversampled setting (P > N), we define Ũ = (U,U⊥) ∈

RP×P , and if P ≤ N we let Ũ = U so that in both cases ŨŨT
= I .

Rearranging the training error yields:

Et (t) =
1
P

∥yŨ − z(t)Λ1/2UT Ũ∥
2
2

=
1
P

∥ϵ̃ + (z̄ − z(t))Λ1/2
∥
2
2 + ∥ϵU⊥

∥
2
2. (23)

ere ϵ̃ = ϵU . From (11), we derived that the learning dynamics
in linear networks follow:

ϵ̃i +
√

λi(z̄i − zi(t)) =

(√
λi(z̄i − zi(0)) + ϵ̃i

)
e−

λi t
τ . (24)

hus, we may write the training error as a function of time as:

t (t) =
1
P

⎛⎝ N∑
i=1

(
√

λi(z̄i − zi(0)) + ϵ̃i)2e−
2λi t
τ +

P−N∑
j=1

(ϵ̃⊥

j )2

⎞⎠ , (25)

where ϵ̃⊥
= ϵU⊥ and the second sum in the expression above

equals zero if P ≤ N . Note that the training error is strictly
decaying with time. If P < N , the training error will approach
zero as each data point is memorized. If we average the training
error dynamics over the noise, parameter, and data distributions,
we find:

⟨ Et (t) ⟩ =
1
α

∫
ρ(λ)

(
λ(σ 2

w̄ + (σ 0
w)

2) + σ 2
ϵ

)
e−

2λt
τ dλ

+

(
1 −

1
α

)
σ 2

ϵ 1[α > 1]. (26)

See Fig. 3 for demonstration that the theoretical prediction above
matches the results of simulations.

This formula for training error dynamics may help explain re-
cent empirical findings (e.g. Arpit et al., 2017; Zhang et al., 2017)
that neural networks do not find it difficult to memorize noisy
labels and require only slightly longer training times to do so. If
we consider the amount of training time before Et reaches some
pre-determined small value, this will increase slightly as noise
is added to the output labels. If we consider the undersampled
setting in which noise can be memorized (α < 1), then at very
late times (t ≫

τ
λmin

) the training error will decay exponentially,
so that to a good approximation:

Et (t) ∝

(
λmin +

1
SNR

)
e−

2λmint
τ . (27)

It follows that the time required to reach a training error propor-
tional to δ scales as:

t ≈
τ

2λmin
log

(
λmin +

1
SNR

δ

)
. (28)

hus, increasing the variance in the output noise should lead to
nly a logarithmic increase in the time required to memorize a
ataset.

. Generalization dynamics in deep linear neural networks

The results in preceding sections have focused on the simplest
ase of a shallow neural network. We now turn to the ques-
ion of whether similar qualitative properties occur in a class
f simple deep networks. We consider a deep linear student
etwork (Fig. 6A) with weights W1, . . . ,WD forming a (D + 1)-
ayer linear network. In response to an input x ∈ RN , the student
roduces a scalar prediction ŷ ∈ R following the rule ŷ =

DWD−1 · · ·W2W1x = W totx. We initially make no assumptions
about the size of the layers, except for the final layer which



M.S. Advani, A.M. Saxe and H. Sompolinsky Neural Networks 132 (2020) 428–446

f
s

p
o

τ

T
e
t
d
l
v
d
&
2

d
w
s
t
i
w
o
S
v
s
d
d
t

d
e
i

d

T
d

Fig. 6. Reduction of deep linear network dynamics. (A) The student network is a deep linear network of depth D + 1. (B-D) Comparisons of simulations of the
ull generalization dynamics for networks initialized with small weights (gold) to simulations of the reduced dynamics (green) for different depths and parameter
ettings. Training error in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
roduces a single scalar output. Continuous time gradient descent
n the mean squared training error yields the dynamics,

d
dt

Wl =

(
D∏

i=l+1

Wi

)T [
Σyx

−

(
D∏

i=1

Wi

)
Σxx

](
l−1∏
i=1

Wi

)T

. (29)

hese equations involve coupling between weights at differ-
nt layers of the network, and nonlinear interactions between
he weights. While they compute a simple input–output map,
eep linear networks retain several important features of non-
inear networks: most notably, the learning problem is noncon-
ex (Baldi & Hornik, 1989; Kawaguchi, 2016), yielding nonlinear
ynamical trajectories (Arora, Cohen, & Hazan, 2018; Du, Hu,
Lee, 2018; Fukumizu, 1998; Ji & Telgarsky, 2019; Saxe et al.,

014).
We wish to find a simplified expression that provides a good

escription of these dynamics starting from small random
eights. Intuitively, the full gradient dynamics contain repul-
ion forces that attempt to orthogonalize the hidden units, such
hat no two represent the same feature of the input. When
nitializing with small random weights, however, hidden units
ill typically already be nearly orthogonal—and hence these
rthogonalizing repulsive forces can be safely neglected as in
axe et al. (2014). We begin by using an SVD-based change of
ariables to reduce coupling in these equations. We then will
tudy the dynamics assuming that hidden units are initially fully
ecoupled—since this remains a good approximation for the full
ynamics when starting from small random weights, as verified
hrough simulation.

In particular, based on the observation that gradient descent
ynamics in deep linear networks initialized with small weights
xtract low rank structure (Saxe et al., 2014), we make the follow-
ng change of variables: W1(t) = r2z(t)V T , where z(t) ∈ R1×Ni is a
row vector encoding the time-varying overlap with each principle
axis in the input (recall Σxx

= VΛV T ); andWl(t) = d(t)rl+1rTl , l =
2, . . . ,D where the vectors ri ∈ RNl×1 are arbitrary unit norm vec-
tors (rTl rl = 1) specifying freedom in the internal representation
of the network, rD+1 is defined to be one, and d(t) is a scalar
which encodes the change in representation over time. With
these definitions, W tot

=

(∏D
l=2 d(t)rl+1rTl

)
r2z(t)V T

= d(t)D−1

z(t)V T
= u(t)z(t)V T where we have defined the scalar u(t) =

(t)D−1. We show in Appendix A that solutions which start in this
form remain in this form, and yield the following exact reduction
of the dynamics:

τ u̇ = (D − 1)u
2D−4
D−1

(
s̃zT − uzΛzT

)
, (30)

τ ż = u
(
s̃ − uzΛ

)
. (31)

hese equations constitute a considerable simplification of the
ynamics. Note that if there are Nh = Ni hidden units in each

layer, then full gradient descent in a depth D+1 network involves
O(N2

i D) parameters. The above reduction requires only Ni + 1
parameters, regardless of depth. Fig. 6 compares the predicted
435
generalization dynamics from these reduced dynamics to simu-
lations of full gradient descent for networks starting with small
random weights and of different depths, confirming that the
reduction provides an accurate picture of the full dynamics when
starting from small random weights. A line of work has shown
that the full gradient descent dynamics in fact converge to the
low rank structure implied by these initialization conditions, in
a wide range of settings beyond the student–teacher setting we
consider here (Arora et al., 2018; Du et al., 2018; Ji & Telgarsky,
2019). Our result shows that, once attracted to this low rank
solution, the generalization dynamics take a particularly simple
form that reveals links to the shallow case.

In the reduction, all modes are coupled together through the
global scalar u(t). Comparing (31) with (8), this scalar premulti-
plies the shallow dynamics, yielding a characteristic slow down
early in training when both z and u are small (see initial plateaus
in Fig. 6C-D). This behavior is a hallmark of deep dynamics
initialized close to the saddle point where all weights are zero,
and has been found for training error dynamics as well (Good-
fellow, Vinyals, & Saxe, 2015; Saxe et al., 2014). Remarkably, in
the reduction the entire effect of depth is compressed into the
scalar u which sets a global speed of the dynamics shared by
all modes. Otherwise, each mode’s dynamics is analogous to the
shallow case and driven primarily by the size of its associated
eigenvalue λi, with smaller eigenvalues being learned later. This
suggests that optimal stopping will again be effective in deep
networks, with comparable results to the shallow case. And as
in the shallow case, eigenvalues that are zero make no progress,
yielding a frozen subspace in which no learning occurs. Hence
again, large initial weight norms will harm generalization error
in the limited data regime in deep linear networks.

Thus for deep linear networks producing scalar outputs, our
reduction predicts behavior qualitatively like their shallow coun-
terparts in terms of their early stopping error and sensitivity
to weight initializations. However, depth introduces a poten-
tial tension between training speed and generalization perfor-
mance: small initial weights dramatically slow learning in deep
networks, but large initial weights can harm generalization in
the high-dimensional regime. This may underlie observations in
full nonlinear networks that certain initializations can converge
quickly but yield poorer generalization performance (e.g., Mishkin
& Matas, 2016).

4. Generalization dynamics and optimal size in neural nets
with frozen first layer weights

In practical settings, nonlinear activations are essential since
they allow networks to express complex functions. In this section
we explore the degree to which the qualitative intuitions ob-
tained through studying linear networks transfer to the nonlinear
setting by introducing a fixed, random first layer with non-linear
activations in the hidden layer. Nonlinearity introduces the cru-

cial question of model complexity: is there an optimal size of the
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Fig. 7. Learning from a nonlinear teacher. (A) The teacher network (Nt ReLUs). (B) The student network (Nh ReLUs, but only the output weights are trained).
C) Effect of model complexity. Optimal early stopping errors as a function of number of hidden units Nh for the case SNR = 1, INR = 0,Ni = 15,Nt = 30 and
= 300 training samples. Shaded regions show ±1 standard error of the mean over 50 random seeds. (D) Overtraining peaks at an intermediate level of complexity
ear the number of training samples: when the number of free parameters in the student network equals the number of samples (300). (E) The eigenspectrum of
he hidden layer of a random non-linear neural network with P = 1000 samples and an Ni = 100 dimensional input space. We consider three cases and find a
imilar eigenvalue density to a rescaled Marchenko–Pastur distribution when we concentrate only on the small eigenvalues and ignore a secondary cluster of Ni
igenvalues farther from the origin. Left: Fewer hidden nodes than samples (Nh = 500 hidden units) leads to a gap near the origin and no zero eigenvalues. Center:
n equal number of hidden nodes and samples (Nh = 1000) leads to no gap near the origin so that eigenvalues become more probable as we approach the origin.
ight: More hidden nodes than samples (Nh = 2000) leads to a delta function spike of probability 0.5 at the origin with a gap to the next eigenvalue. (F) Average
raining dynamics for several models illustrating overtraining at intermediate levels of complexity. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
tudent, given the complexity of the problem and the number of
raining samples available?

We begin by simulating the dynamics in a student–teacher
cenario (Engel & Van Den Broeck, 2001; Saad & Solla, 1995;
eung et al., 1992; Watkin et al., 1993; Wei & Amari, 2008; Wei,
hang, Cousseau, Ozeki, & Amari, 2008), as depicted in Fig. 7A-
. The teacher is now a single hidden layer neural network with
ectified linear unit (ReLU) activation functions and Nt hidden
eurons. We draw the parameters of this network randomly. To
ccount for the compression in variance of the ReLU nonlinearity,
e scale the variance of the input-to-hidden weights by a factor
2 (He et al., 2016; Saxe et al., 2014). We generate a dataset
s before by drawing P random Gaussian inputs, obtaining the
eacher’s output y, and adding noise. The student network, itself
single hidden layer ReLU network with Nh hidden units, is then

trained to minimize the MSE on this dataset. The procedure is
to train only the second layer weights of the student network,
leaving the first layer weights randomly drawn from the same
distribution as the teacher. This setting most closely recreates
the setting of the shallow linear case, as only the hidden-to-
output weights of the student change during learning. Due to
the nonlinearity, analytical results are challenging so we instead
investigate the dynamics through simulations. For the simula-
tions in Fig. 7, we fixed the teacher parameters to SNR = 1,
Nt = 30 and Ni = 15 and the number of training samples to
P = 300, and then trained student models at a set of hidden
layer sizes Nh = [1, . . . , 16 326] ranging from 300× smaller than
the number of samples to 54× larger. We average results at each
size over 50 random seeds. Fig. 7C-D shows average errors as a
function of the number of neurons in the student. Additionally,
while we can only estimate the generalization error through cross
validation in the setting without a teacher network, we find that
the qualitative trends observed in the teacher–student framework
hold when we instead use the MNIST dataset in Fig. 8.

Our goal is to understand whether the qualitative patterns
of overtraining obtained from the linear analysis hold for this
nonlinear case, and we find the following empirical observations:
436
Overtraining occurs at intermediate model complexity. There is
a peak in overtraining near where the number of samples in the
dataset equals the number of hidden units/free parameters, with
large models overtraining less than intermediate-sized models
(Fig. 7C-D). Hence qualitatively, the network behaves akin to the
linear case, with a peak in overtraining when the number of train-
able parameters is matched to the number of training samples.
To understand this behavior, we computed the eigenspectrum of
the hidden layer activity in Fig. 7E. Despite the nonlinearity, we
see qualitatively similar behavior to the linear case: the small
eigenvalues approximately follow the MarchenkoPastur distribu-
tion (c.f. Fig. 2). The asymptotic distribution of the eigenvalues of
this covariance matrix has been derived in Pennington andWorah
(2017), and a similar observation about the small eigenvalues
computed from the hidden layer was also used in a slightly
different context to study training error in Pennington and Bahri
(2017). We provide additional simulations in Fig. 14 showing
this overtraining peak for different SNRs, which demonstrate that
noisy data will amplify overtraining causing it to grow approxi-
mately proportionally to the inverse SNR as should be expected
from (13).

Larger models are better when early-stopped. Strikingly, we find
no evidence of overfitting: larger models are always better in
terms of their early stopping test error. Here the teacher network
has just 30 hidden neurons and the dataset consists of just 300
examples. Nevertheless, the best student model is the largest one
tested, containing 16326 hidden units, or 344× as many hidden
neurons as the teacher and 54× more neurons than training
samples. This benefit of large models requires early stopping
and initialization with small random weights, and hence reflects
regularization through limiting the norm of the solution (see
extended comments in Section 7). If instead training is continued
to much longer times (green curve Fig. 7C), the optimal model
size is smaller than the number of samples (≈ 60 hidden units),
consistent with standard intuitions about model complexity. We

note that in this setting, although the late test error does not
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diverge to infinity in large models, it is nevertheless better for
smaller models, which may appear to conflict with observations
in other recent work (Belkin, Hsu, Ma et al., 2019). As we discuss
in Section 6, whether an overparametrized model will general-
ize better than smaller models in our setting depends on the
signal-to-noise ratio of the dataset.

Mathematical decomposition of generalization error

To gain insight into this more complex nonlinear case, we
erive a decomposition of the test error into several interpretable
omponents. In the setting of a frozen first layer and trained
econd layer, the generalization error can be decomposed into
hree parts: an approximation error, an over-fitting error, and a
ull-space error. This decomposition helps to explain how varying
he number of parameters in a network can improve gener-
lization performance when the number of examples is held
ixed. It also provides one interpretation of how the student–
eacher framework might apply to more realistic settings where
he model is not in the same class as the data. In essence, the
est possible neural network acts as an effective teacher, with
he label noise capturing the remainder of the transformation
hat the neural network cannot represent. That is, we find that
pproximation error behaves very similarly to an external noise
rom the perspective of the neural network in estimating over-
raining error. This implies that even in settings when there is no
abel noise in the problem, there may be an effective noise based
n the student network architecture.
We can write a two layer neural network in the form:

ˆa(x) =

Nh∑
i=1

waiφi(x). (32)

n general φi is the mapping from the input to a hidden represen-
ation and can be nonlinear. Here x ∈ RNi , y ∈ RNo , and φi : RNi →

R. We leave the specific choice of φi general, but in a typical two
layer network it would have the form: φi(x) = σ

(∑
j Jijxj

)
, where

the matrix J represents fixed input to hidden layer weights.
We then train the network using a set of input–output data

(xµ, yµ) for µ = 1, . . . , P generated from some process which
can be deterministic or stochastic. Assuming a MSE loss function
the training error has the form:

Et =
1
2

∑(
yµ
a −

Nh∑
waiφi(xµ)

)2

. (33)

a,µ i=1
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We define the hidden layer activity matrix Φiµ = φi(xµ) and the
output matrix Yaµ = yµ

a .
Assuming initial output weights of zero, the weights that will

be learned at late time by the network ŵ are:

ŵ = R̂Ĉ†, (34)

where we define:

R̂ = YΦT , Ĉ = ΦΦT . (35)

The network weights which minimize the generalization error for
the given architecture are simply:

w∗
= RC†, (36)

where Cij =
⟨
φi(x)φj(x)

⟩
x, and Rai = ⟨ ya(x)φi(x) ⟩x.

However, when training on finite data, the student network
eights only grow in directions in which the hidden layer co-
ariance is not null, so it is useful to define w∗

∥
to be the weights

hich minimize generalization error subject to the constraint
f being zero in the null space of the empirical hidden layer
ovariance. If we define the projection onto the space in which
he data lies in the hidden layer as P∥ = (ΦΦT )(ΦΦT )†, then we
can show that:

w∗

∥
= RC†P∥, (37)

o that the best possible weights restricted to the subspace paral-
el to the data are simply the projection of w∗ onto this subspace.

We find one can decompose the generalization error into three
terms to explain the behavior of late stopping generalization error
as:

E late
g = EΦT (ΦΦT )† C (ΦΦT )† ΦET

+ Tr
[
RC†P⊥CPT

⊥
C†RT ]

+
⟨
ϵ(x)2

⟩
x , (38)

where we refer to the first term as the overfitting error Eoverfit
g , the

second term as the null-space error Enull
g , and the third term as the

approximation error Eapprox
g , and we define an approximation noise

matrix:

Eiµ = Yiµ −

∑
j

w∗

ijΦjµ. (39)

The approximation error
⟨
ϵ(x)2

⟩
x is defined as the minimal

generalization error that can be achieved given a particular net-
work architecture, by optimizing over the weights. If the network



M.S. Advani, A.M. Saxe and H. Sompolinsky Neural Networks 132 (2020) 428–446

n
(
r

i
a

i
t
s
e

d
p
o
i
e
f
c
p
e

g
s

y

w

Fig. 9. Two layer network generalization error decomposition: Here we use data generated from a two layer teacher network with ReLU activations, 20 hidden units,
and no noise. The student network has fixed random first layer weights and ReLU activations. (A) Shows the approximation error in blue, the null-space error in
red, the over-fitting error in gold, and the sum of all three in cyan. Generalization error computed from 5000 new examples are black error bars. Plus sign denotes
generalization error with a two layer teacher with w∗

∥
weights and Gaussian noise with a variance matched to the sum of approximation and null-space error. The

umber of examples used in training is P = 50 (dashed vertical line) and number of trails used to compute error bars is 500. (B) Shows the approximation error
blue) and null space error (red) as well as the sum of the two (dashed black). (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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s too small or simple relative to the rule being learned the
pproximation error will be large.
The null-space error can be understood as additional approx-

mation error due to the fact that no learning can take place in
he null space of the hidden layer activity, and only occurs in this
etting when the number of hidden units exceeds the number of
xamples.
Finally, the over-fitting error is the error due to the fact the

ata set is finite and depends strongly on the ratio of number of
arameters to examples through the eigenvalue decomposition
f the empirical hidden covariance matrix. This over-fitting error
s highly non-monotonic and can lead to a massive peak in gen-
ralization error at the point where the number of examples and
ree parameters matches. Derivation details on the decomposition
alculation may be found in Appendix C. The decomposition is
lotted in Fig. 9A and the sum is compared to the generalization
rror.
Interestingly, if we replace the actual data with new data

enerated from a model where noise is restricted to the data
ubspace:

˜
µ

=

Nh∑
j=1

w∗

∥j
φj(xµ) + zµ

a , (40)

here zµ
a ∼ N

(
0,
⟨
ϵ∥(x)2

⟩)
, we find a good agreement with the

predictions of overfitting error and generalization from the linear
network calculations (see Fig. 9A ‘noisy Eg ’). Here the variance of
the effective noise is due to the approximation error restricted to
the data subspace:⟨
ϵ∥(x)2

⟩
= Tr

[
RC†P⊥CPT

⊥
C†RT ]

+
⟨
ϵ(x)2

⟩
x . (41)

This suggests that we can think of the approximation error as
label noise which decays as the architecture grows until the
number of parameters added exceeds the number of training
examples at which point the restricted approximation error stops
decreasing and begins to saturate (see Fig. 9B). Further general-
ization error improvement with wider networks in this context is
not due to the networks reduced restricted approximation error,
but to the eigenspectrum of the empirical co-variance, since the
gap between small and zero eigenvalues grows with increased
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network width. Thus, the decomposition helps to explain how,
even without regularization or early stopping, large neural net-
works avoid over-fitting and can achieve better generalization
error when they have more parameters than examples.

With some additional modifications, it also helps one under-
stand the impact of initialization weights and true label noise on
the performance of non-linear networks of different sizes. Eq. (38)
gives the generalization error at late times starting with zero
initial weights. If instead initial weights w(0) are drawn iid with
zero mean and variance (σ 0

w)
2, then for large networks we can

average over this initialization to find:

E late
g = EΦT (ΦΦT )† C (ΦΦT )† ΦET

+ Tr
[
RC†P⊥CPT

⊥
C†RT ]

+
(
σ 0

w

)2
Tr
[
P⊥CPT

⊥

]
+
⟨
ϵ(x)2

⟩
x , (42)

where we can consider both the second and third terms part of
the null-space error because the initialization weights are frozen
during training, so that large initialization scales increase the
generalization error when Nh > P . In addition, i.i.d. label noise
will appear in the generalization error under the transformation⟨
ϵ(x)2

⟩
→
⟨
ϵ(x)2

⟩
+ σ 2

ϵ .
We demonstrate in Fig. 10 how label noise makes the shifts

n approximation error due to the network architecture less im-
ortant so that the over-fitting error and hidden layer covariance
pectrum are more relevant in determining generalization error.
hus, this setting is most similar to the single layer network
ynamics. We also demonstrate how initial weight scale can
mpact performance in large over-parameterized networks more
han under-parameterized ones in Fig. 11. In this case, the null-
pace error grows with the variance of initialization and causes
he generalization error to increase in the Nh > P setting.

. Fully trained two-layer network

Next, we allowed both layers of the student network to train,
s is typically the case in practice. Fig. 12 shows that similar
ynamics are obtained in this setting. Overtraining is transient
nd peaked at intermediate levels of complexity, roughly where
he number of free parameters (Ni · Nh + Nh) equal the number
f examples P . This is the point at which training error hits
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Fig. 10. Impact of label noise on performance of wide networks: We plot the generalization error decomposition as in Fig. 9 for (A) an under-parameterized Nh = 10
and (B) an over-parameterized Nh = 200 network. Because output noise is added to both networks, approximation of the function is difficult even for the larger
network because the function it is learning is not deterministic. However, the fitting error is larger in the larger network due to the eigenvalue spectrum of the
hidden layer covariance. This is in contrast to our finding that larger networks perform better in the deterministic, low noise setting depicted in Fig. 9. Other
parameters: P = 50, Nt = 20, σ 0

w = 0, σw̄ = 1.
Fig. 11. Impact of initialization on performance of wide networks. We plot the generalization error decomposition as in Fig. 9 for (A) an under-parameterized Nh = 10
and (B) an over-parameterized Nh = 200 network. We demonstrate that large initializations have a detrimental impact on generalization performance in wide neural
networks which are over-parameterized and not on smaller networks. This effect is due to the frozen subspace observed when training with fewer examples than
free parameters, and again is in contrast to our finding that larger networks perform better in the low initialization setting depicted in Fig. 9. Other parameters:
P = 50, Nt = 20, σϵ = 0, σw̄ = 1.
zero at long training times (red curve, Fig. 12A), consistent with
recent results on the error landscape of ReLU networks (Soudry
& Hoffer, 2017; Spigler et al., 2018). Regarding model complex-
ity, again we find that massive models relative to the size of
the teacher and the number of samples are in fact optimal, if
training is terminated correctly and the initial weights are small.
In particular, good performance is obtained by a student with
34,430 hidden neurons, or 1147× the number of teacher neurons
and 115× the number of examples. In contrast, without early
stopping, the long-time test error has a unique minimum at a
small model complexity of ≈ 5 hidden neurons in this instance.
Hence as before, early stopping enables successful generalization
in very large models, and the qualitative behavior is analogous to
the linear case. We caution that the linear analysis can only be
expected to hold approximately. As one example of an apparent
difference in behavior, we note that the test error curve when the
439
number of parameters equals the number of samples (Fig. 12C
middle) diverges to infinity in the linear and fix hidden weights
cases (see Fig. 2B middle and Fig. 7F middle), while it appears
to asymptote in the two-layer trained case (see Fig. 12C middle).
Nevertheless, this asymptote is much larger at the predicted peak
(when the number of free parameters and samples are equal)
than at other network sizes.

5.1. Real-world datasets: MNIST

Finally, to investigate the degree to which our findings ex-
tend to real world datasets, we trained nonlinear networks on
a binary digit recognition task using the MNIST dataset (LeCun,
Cortes, & Burges, 1998). We trained networks to discriminate
between P = 1024 images of 7s and 9s, following the setting of
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Fig. 12. Training both layers of nonlinear student. These simulations are of the same setting as that of Fig. 7, but with both layers of the student network trained.
The number of hidden units for which the total number of free parameters is equal to the number of samples (Nh + NiNh = P) is marked with a dashed line and
ligns well with the peak in overtraining observed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
Fig. 13. Two layer network trained (without frozen weights) on binary MNIST classification of 7s vs. 9s with 1024 training samples. The qualitative trends identified
arlier hold: over-training is a transient phenomenon at intermediate levels of complexity, and large models work well: no over-fitting is observed given optimal
arly stopping. Note that the over-training is less distinct than before primarily because these experiments were run for only 5000 epochs as opposed to tens of
housands of epochs as in Figs. 7 and 12, due to computational constraints.
ouart, Liao, and Couillet (2017). Each input consists of a 28 × 28-
ixel gray-scale image, flattened into a vector of length Ni = 784.
nputs were scaled to lie between 0 and 1 by dividing by 255 and
ach element was shifted to have zero mean across the training
ataset. The target output was ± 1 depending on the class of the
nput, and the loss function remained the mean squared error
n the training dataset. We train models using batch gradient
escent with a single hidden layer for a fixed first layer and
ith both layers trained. Fig. 13 shows the resulting train and
est errors for different model sizes and as a function of early
440
stopping. Again, all qualitative features appear to hold: overtrain-
ing peaks when the number of effective parameters matches the
number of samples, and larger models perform better overall.
We note that in these experiments, due to computational re-
strictions, training was continued for only 5000 epochs of batch
gradient descent (c.f. 75−150k epochs for the other experiments
reported in this paper), yielding less pronounced overtraining
peaks; and the maximum model size was 1740, making the peak
in overtraining less identifiable, particularly for the fixed first
layer case. There is additionally no evidence of overfitting, as
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Fig. 14. Memorization, generalization, and SNR. Nonlinear ReLU networks with fixed first layer (same setting as Fig. 7) are trained on target labels of varying SNR.
(A-B) Nearly random target labels (SNR = 0.01). In the high dimensional regime in which the model size outstrips the number of examples (here Nh > 300, indicated
by vertical dotted line), all networks easily attain zero training error when trained long enough, thereby showing the ability to memorize an arbitrary dataset. (C-D)
These exact same model sizes, however, generalize well when applied to data with nearly noise-free labels (SNR = 10). In fact in the low noise regime, even early
stopping becomes unnecessary for large enough model sizes. The dynamics of gradient descent naturally protect generalization performance provided the network
is initialized with small weights, because directions with no information have no dynamics. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
the largest models outperformed smaller models. Overall, the
qualitative findings accord well with those from the student–
teacher paradigms, suggesting that our analysis accesses general
behavior of generalization dynamics in gradient-trained neural
networks.

6. Double descent, interpolation, memorization, and general-
ization

In the interpolation regime where training error can be driven
to zero, influential work by Belkin, Hsu, Ma et al. (2019) and
Belkin, Hsu and Xu (2019) has shown that very large models can
achieve better test error than smaller models. We find similar
behavior in our Fig. 9, for a setting with little label noise. How-
ever, it is important to note that larger models do not always
perform better after extensive training in our setting. Fig. 14
shows test error as a function of model size for two SNR levels.
While we generically observe a double descent curve in which
late test error is non-monotonic in hidden layer size (Belkin, Hsu,
Ma et al., 2019), whether a smaller or larger model will achieve
lower test error depends on the SNR. In the high label noise
regime (Fig. 14A-B), smaller models perform better; while in the
low noise regime (Fig. 14C-D), overparametrized models perform
better. To understand the source of this difference, we turn to the
error decomposition shown in Fig. 10: as noise increases, approx-
imation error increases in small and large models because there
441
is no way to exactly implement the non-deterministic teacher.
However, the larger network has a larger error contribution from
the error-fitting term, as shown in Fig. 10B (gold). Hence in the
high noise regime, overparametrized models do not generalize as
well as smaller models after extensive training.

To generalize well, a model must identify the underlying rule
behind a dataset rather than simply memorizing each training
example in its particulars. An empirical approach to test for
memorization is to see if a deep neural network can fit a train-
ing set with randomly scrambled labels rather than the true
labels (Zhang et al., 2017). If a network can fit arbitrary random
labels, it would seem to be able to memorize any arbitrary train-
ing dataset, and therefore, have excessive capacity and poor gen-
eralization performance. This approach has been taken by Zhang
et al. (2017), and extended by Arpit et al. (2017). Their main
empirical findings conflict with this intuitive story: while large
deep networks do readily achieve zero training error on a dataset
that has been randomly labeled, they nevertheless generalize well
when trained on the true labels, even without any regularization
or early stopping. Our results provide a straightforward expla-
nation of these phenomena in terms of the signal-to-noise ratio
of the dataset and the high dimensional dynamics of gradient
descent.

In our student–teacher setting, a randomly-labeled training set
corresponds to a situation where there is no rule linking input to
output, and is realized in the regime where SNR → 0. As shown
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n Fig. 14A (red curve), nonlinear networks with more param-
ters than samples can easily attain zero training error on this
ure-noise dataset. However, they do not generalize well after
ubstantial training, or even after optimal early stopping, because
he model has fit pure noise. When the exact same networks are
nstead trained on a high SNR dataset (Fig. 14C), they generalize
xtremely well, nearly saturating the oracle lower bound. More-
ver, in the high-SNR regime, the performance gain from early
topping nearly disappears for larger network sizes. To take a spe-
ific example, the largest network size considered (Nh = 16 326)
an easily fit noise labels in the low-SNR regime, but attains the
est generalization performance of all models in the high-SNR
egime, even without any early stopping. This behavior arises due
o two important phenomena that arise in the high-dimensional
etting: First, in overcomplete networks, gradient descent dynam-
cs do not move in the subspace where no data lies. This frozen
ubspace implicitly regularizes the complexity of the network
hen networks are initialized with small norm weights. Regard-

ess of network size, only a P−dimensional subspace remains
ctive in the learning dynamics. Second, as overcompleteness in-
reases, the eigengap (smallest nonzero eigenvalue) of the hidden
ayer correlation matrix also increases due to the nature of the
archenko–Pastur distribution, which protects against overtrain-

ng even at long training times. This increasing eigengap is a
undamental property of the high dimensional setting. Thus large
eural networks can generalize well even without early stopping,
rovided that the rule to be learned in the dataset is prominent,
he network is large, and the network is initialized with small
eights. We provide more details on this finding through the lens
f Rademacher complexity in the following section.

. Rademacher complexity and avoiding overfitting in non-
inear neural networks

We want to understand why traditional Rademacher complex-
ty bounds do not qualitatively match the overtraining picture
bserved in neural networks. In particular, they do not seem to
quare with the excellent generalization performance that can be
chieved by large neural networks. To this end, we sketch how
he dynamics of gradient descent learning may be included in
he Rademacher complexity, yielding a bound which is more intu-
tively useful for understanding overtraining in neural networks.
ne particularly nice property of the bound we derive is that it
hows how generalization can occur without early stopping: the
ademacher complexity can be expected to decrease with the
umber of hidden units Nh for Nh > P even when training is

continued for long times.
As noted by Zhang et al. (2017), on the surface the excellent

generalization ability of large networks seems to contradict the
intuition from traditional measures such as Rademacher com-
plexity and VC dimension. We find that a straightforward ap-
plication of these measures yields not only loose bounds, but
even the opposite qualitative behavior from what is observed in
simulations.

A simple illustration of this can be seen in Fig. 7C where the
task is fitting a random non-linear teacher. Here the size of the
student network is increased well beyond the number of samples
in the dataset and the number of hidden units in the teacher
network, yet the generalization performance of early stopping
continues to improve. The Rademacher complexity and VC di-
mension of the network is growing with the number of hidden
units due to the fact that larger neural networks can more easily
fit randomly labeled data, as discussed in Zhang et al. (2017).
If we consider training a large non-linear neural network with
a random first layer, the empirical Rademacher complexity of a
442
classification problem (see e.g. Mohri, Rostamizadeh, & Talwalkar,
2012) is

R(H) =

⟨
sup
h∈H

1
P

P∑
µ=1

σµh(xµ)

⟩
σ ,x

, (43)

here H is the class of functions the network or classifier can
ave (mapping input xµ to an output), and σµ

= ±1 are ran-
omly chosen labels. The Rademacher complexity measures the
bility of a network to learn random labels, and leads to a bound
n the gap between the probability of correct classification of a
ew example or training example, denoted as generalization error
nd training error respectively below. The bound states that with
robability at least 1 − δ,

g − Et ≤ 2R(H) +

√
log 1

δ

2P
. (44)

As we increase the width of a large random network, we
see empirically that the number of points which may be fit
exactly grows with the size of the network. Thus the bound above
becomes trivial when Nh > P since R(H) ≥ O(1) in this limit
and any random classification can be realized because solving for
the weights in the final layer requires solving for Nh unknowns
with P random constraint equations. This argument shows that
the bound is loose, but this is to be expected from a worst-case
analysis. More surprising is the difference in qualitative behavior:
larger networks in fact do better than intermediate size networks
at avoiding overtraining in our simulations.

However, we will see that a more careful bounding of the
Rademacher complexity which uses the learning dynamics of
wide networks does allow us to capture the overtraining behavior
we observe in practice. For a rectified linear network with one
hidden layer, a bound on the Rademacher complexity (Bartlett &
Mendelson, 2002) is

R(H) ≤
B2B1C

√
Nh

√
P

, (45)

here B2 is the norm of the output weights, B1 is the maximum
2 norm of the input weights to any hidden neuron, and C is
he maximum norm of the input data. From this it is clear that,
o matter how many hidden neurons there are, the hypothesis
omplexity can be controlled by reducing the weight norm of the
econd layer.
Both early stopping and L2 regularization are capable of

ounding the second layer weights and thus reducing overfitting,
s we observe in simulations. In the case of early stopping, the
ynamics scan through successively more expressive models with
arger norms, and early stopping is used to pick an appropriate
omplexity.
Yet remarkably, even in the absence of early stopping we

ind that our analytic solutions provide a bound on the second
ayer weights in terms of the eigenspectrum of the hidden layer.
he essential intuition is that, first, when a model is massively
vercomplete, there is a large frozen subspace in which no learn-
ng occurs because no training samples lie in these directions;
nd second, the eigengap between the minimum eigenvalue and
ero increases, protecting against overtraining and limiting the
verall growth of the weights. To derive new bounds on the
ademacher complexity that account for these facts, we consider
nalytically how the weight norm depends on training time in our
ormulation. In the non-linear, fixed random first layer setting we
re considering a model where

ˆ(x) =

Nh∑ wa
√
N

φa(x). (46)

a=1 h
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e will abuse notation because of the similarity with the single
ayer case, letting Xaµ

h =
1√
Nh

φa(W 1
a · xµ). If we then diagonalize

the covariance of the hidden layer s.t. Xh(Xh)T = VhΛhV T
h and

olve for the dynamics of the weights, we find:

h
i (t) =

z̃hi
λh
i
(1 − e−

λhi t
τ ) + zhi (0)e

−
λhi t
τ . (47)

ere we define the vectors: zh = wV T
h , z̃

h
= y(Xh)TVh, and zhi (0)

= w(0)V T
h , and we denote the eigenvalues of the hidden layer

covariance as λh
1, . . . , λ

h
Nh
. Thus, the average squared norm of the

output layer weights is⟨
∥w(t)∥2 ⟩

=

∑
i

z2i (t)

=

∑
i

(
∥z̃i

h
∥
2

(λh
i )2

(1 − e−
λhi t
τ )2 + ∥zhi (0)∥

2e−2
λhi t
τ

)
. (48)

n the case of a linear shallow network, without a hidden layer,
he expression for the growth of the norm of weights is very
imilar, we simply substitute z̃hi = z̄hi +

ϵ̃i√
λhi

, and in this case

the distribution of eigenvalues approach the Marchenko–Pastur
distribution in the high dimensional limit.

We now make the assumption that the initial weights are zero
(σ 0

w = 0), since this is the setting which will minimize the error
and our large scale simulations are close to this limit (note that
in deep networks we cannot set the initial weights exactly to
zero because it would freeze the learning dynamics). It follows
that

⟨
∥w(t)∥2

⟩
will monotonically increase as a function of time

implying the Rademacher complexity bound is increasing with
time.

The smallest non-zero eigenvalue constrains the maximum
size that the norm of the weights can achieve, and zero eigen-
values result in no dynamics and thus do not impact the norm
of the weights. Thus, even without early stopping, we can bound
the norm of the weights in the hidden layer by an upper bound
on the late-time behavior of (48) in the large P,Nh limit:

∥w∥
√
Nh

≤

√ maxi ∥z̃hi ∥2

mini,λhi >0 (λ
h
i )2

min(P,Nh)
Nh

= B2. (49)

The minimum over P and Nh arises because there will be no im-
pact on learning from eigenvalues of strength zero, corresponding
to the frozen subspace. The presence of the minimum eigenvalue
in the denominator indicates that, as the eigengap grows, the
bound will improve. Substituting this into (45) yields a bound on
the Rademacher complexity in terms of the eigenspectrum of the
hidden layer:

R(H) ≤ B1C

√ maxi ∥z̃hi ∥2

mini,λhi >0 (λ
h
i )2

min(P,Nh)
P

. (50)

he above bound qualitatively matches our simulations with a
on-linear network and fixed first layer weights, which show that
he gap between training and generalization error at late stopping
imes drops as we increase the number of network parameters
eyond the number of examples (see Fig. 7C-D). In the equations
bove, as we increase Nh above P , min(P,Nh) remains fixed at

P , but we do increase the minimum non-zero eigenvalue of the
hidden layer covariance matrix (see e.g. Fig. 7E). This gap in the
eigenspectrum can thus reduce the Rademacher complexity by
bounding attainable network weights in massively overcomplete
networks.
443
8. Discussion

Our findings show that the dynamics of gradient descent
learning in the high-dimensional regime conspire to yield ac-
ceptable generalization performance in spite of large model sizes.
Making networks very large, even when they have more free
parameters than the number of samples in a dataset, can reduce
overtraining because many of the directions of the network have
zero gradient and thus are never learned. This frozen subspace
protects against overtraining regardless of whether learning is
stopped early. The worst setting for overtraining is when the
network width matches the number of samples in shallow net-
works and when the number of parameters matches the number
of samples in nonlinear random networks. Thus, our analysis of
the learning dynamics helps to explain why overtraining is not a
severe problem in very large networks.

Additionally, we have shown that making a non-linear two
layer network very large can continuously improve generalization
performance both when the first layer is random and even when
it is trained, despite the high Rademacher complexity of a deep
network (Zhang et al., 2017). We demonstrate this effect both on
learning from a random teacher and on an MNIST classification
task.

Our findings result from random matrix theory predictions
of a greater abundance of small eigenvalues when the number
of samples matches the number of parameters. In the under-
or over-complete regimes, learning is well-behaved due to the
gap between the origin and the smallest non-zero eigenvalue of
the input correlation matrix. In our analysis, we have employed
a simplified setting with Gaussian assumptions on the inputs,
true parameters, and noise. However, the Gaussian assumption
on parameters and noise is not essential. All that is required is
that they are sampled i.i.d. with a finite mean and variance. In
terms of other input distributions, we have shown empirically
that our results apply for the MNIST dataset, but more broadly,
the Marchenko–Pastur distribution is a universal limit for the
eigenvalues of random matrices containing i.i.d. elements drawn
from non-Gaussian distributions with sub-exponential tails (see
e.g. Pillai, Yin, et al., 2014). Thus, the predictions are theoreti-
cally justified when the noise, parameters, and input are selected
i.i.d. from non-heavy tailed distributions. We note that the exact
extent of this universality is a current topic of research, and
in particular, input distributions with strong correlations can
deviate substantially.

Finally, our analysis points to several factors under the control
of practitioners that impact generalization performance. To make
recommendations for practice, it is necessary to understand the
regime in which high-performing deep networks typically oper-
ate. We suggest that the relevant regime is the high-dimensional,
high-SNR setting (α < 1, SNR ≫ 1). In this regime, very large
networks have dramatic advantages: they generalize better than
their smaller counterparts, even without any regularization or
early stopping (c.f. Fig. 14). Consider, for instance, our results on
the MNIST dataset presented in Fig. 13. Here, while early stop-
ping could improve performance, even at long training times the
best model was the largest tested. For this setting, the practical
message emerging from our theory is that larger models have no
downside from a generalization perspective, provided they are
initialized with small initial weights. Our results point to a strong
impact of initialization on generalization error in the limited-data
and large network regime: starting with small weights is essen-
tial to good generalization performance, regardless of whether a
network is trained using early stopping.

Except for the deep linear network reduction, our results have
focused on minimally deep networks with at most one hidden
layer. It remains to be seen how these findings might generalize
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o deeper nonlinear networks (Kadmon & Sompolinsky, 2016),
nd if the requirement for good generalization (small weights)
onflicts with the requirement for fast training speeds (large
eights, Saxe et al., 2014) in very deep networks.
Since the original pre-print version of this paper was released,

ecent works have considered similar ideas (see Bahri et al., 2020
or a review). In particular, Spigler et al. (2018) trained deeper
etworks with a hinge loss and observed a similar empirical find-
ng to the one observed in this paper that over-training is most
roblematic when the number of examples is near the number
f effective parameters in a neural network. There has also been
urther investigation of the ‘double-descent’ phenomena (Belkin,
su, Ma et al., 2019; Belkin, Hsu and Xu, 2019), including in
odern state of the art deep learning models (Nakkiran et al.,
020), and a growing number of papers have provided settings
here double descent can be analyzed precisely (Ba, Erdogdu,
uzuki, Wu, & Zhang, 2019; Bartlett, Long, Lugosi, & Tsigler, 2020;
elkin, Hsu and Xu, 2019; Hastie, Montanari, Rosset, & Tibshi-
ani, 2019). For instance, Hastie et al. (2019) statistically analyze
idgeless regression (corresponding to infinitely late time in our
nalysis) in nonlinear settings. Going beyond learning readout
eights from fixed nonlinear transforms, Ba et al. (2019) investi-
ate asymptotic performance in a student–teacher setting where
nly the first layer weight matrices are trained, for different
nitialization regimes. Other studies have used tools from random
atrix theory to investigate more complex input statistics than

he simple Gaussian assumption considered here, including the
mpact of clustered inputs (Louart et al., 2017), and features
rising from random nonlinear transformations (Pennington &
orah, 2017).
The importance of initialization in controlling inductive biases

n deep networks has been highlighted by results showing that
nfinitely wide networks can be trained in an ‘‘active’’ or ‘‘lazy’’
egime (Chizat, Oyallon, & Bach, 2018). In the lazy regime corre-
ponding to relatively large initializations, the dynamics of deep
onlinear networks evolve as a linear system with features deter-
ined by the Neural Tangent Kernel (Arora, Du, Hu, Li, & Wang,
019; Jacot, Gabriel, & Hongler, 2018; Lee et al., 2019), showing
hat the frozen subspace idea extends straightforwardly to this
etting. However in the active regime, the dynamics remain non-
inear and can differ dramatically from this linearized behavior,
ften attaining better performance (Chizat et al., 2018; Mei, Mon-
anari, & Nguyen, 2018), and presenting a continuing challenge
or theoretically understanding generalization properties in deep
eural networks.
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Appendix A. Deep linear neural network dynamics

Here we derive the reduction describing the dynamics of
learning in deep linear neural networks. To begin, we make
the following change of variables: W1(t) = r2z(t)V T , where
(t) ∈ R1×Ni is a vector encoding the time-varying overlap with
ach principle axis in the input (recall Σxx

= VΛV T ); and
l(t) = d(t)rl+1rTl , l = 2, . . . ,D where the vectors ri ∈ RNl×1 are
rbitrary unit norm vectors (rTl rl = 1) specifying freedom in the
nternal representation of the network, rD+1 is defined to be one,
nd d(t) is a scalar encoding the change in representation over
ime. With these definitions,W tot

=

(∏D
l=2 d(t)rl+1rTl

)
r2z(t)V T

=

(t)D−1z(t)V T
= u(t)z(t)V T where we have defined the scalar u(t)

d(t)D−1.
We thus have, for l > 1,

τ
d
dt

Wl =

(
D∏

i=l+1

Wi

)T [
Σyx

−

(
D∏

i=1

Wi

)
Σxx

]

×

(
l−1∏
i=1

Wi

)T

, (51)

τ
d
dt

d(t)rl+1rTl = rl+1d(t)D−l [Σyx
− d(t)D−1z(t)V TVΛV T ]

× Vd(t)l−2z(t)T rTl (52)

τ
d
dt

d(t)rl+1rTl = d(t)D−2 [s̃zT − d(t)D−1z(t)Λz(t)T
]
rl+1rTl (53)

and equating coefficients yields the dynamics

τ
d
dt

d(t) = d(t)D−2 [s̃zT − d(t)D−1z(t)Λz(t)T
]

(54)

as desired. We then change variables to u(t) = d(t)D−1 to derive
the first differential equation:

τ u̇ = (D − 1)u
2D−4
D−1

(
s̃zT − uzΛzT

)
. (55)

imilarly for l = 1, we have

τ
d
dt

W1 =

(
D∏

i=2

Wi

)T [
Σyx

−

(
D∏

i=1

Wi

)
Σxx

]
, (56)

τ
d
dt

r2z(t)V T
= r2d(t)D−1 [Σyx

− d(t)D−1z(t)V TVΛV T ] , (57)

d
dt

r2z(t)V T
= d(t)D−1 [s̃ − d(t)D−1z(t)Λ

]
V T . (58)

Again equating coefficients and making the substitution u(t) =

d(t)D−1 yields

τ ż = u
(
s̃ − uzΛ

)
. (59)

Appendix B. Optimal weight norm growth with SNR

Here we derive the optimal weight norm as a function of the
signal to noise ratio ((19) in the main text). We analyze ridge
regularized regression with strength γ =

1
SNR ,

ŵ = yXT
(
XXT

+
1

SNR
I
)†

. (60)

ubstituting from the model that

= w̄X + ϵ, (61)

ields:

ˆ =
(
w̄XXT

+ ϵXT ) (XXT
+

1
I
)†

. (62)

SNR
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E

tilizing the decompositions

XT
= VΛV T , (63)

= VΛ1/2UT , (64)

he previous equation can be written as

ˆ V =

(
w̄VΛ + ϵU

√
Λ

)
(Λ + γ I)−1. (65)

Because the noise and parameter values are drawn iid, the rota-
tions U and V will not impact their mean or moments, we can
square the above equations and compute the average parameter
strength:

⟨
ŵ2 ⟩

= σ 2
w̄

1
N

N∑
i=1

λi

λi +
1

SNR

→ σ 2
w̄

∫
ρMP(λ)

(
λ

λ +
1

SNR

)
. (66)

hus, we see that the average estimated parameter norm mono-
onically increases with SNR which makes sense intuitively be-
ause there is less regularization required as the data quality
mproves.

ppendix C. Generalization error decomposition

We begin by defining w∗

∥
to be the weights which minimize

eneralization error for a specific architecture given that the
eights must be zero in the null space of the hidden layer co-
ariance. By optimizing generalization error under this constraint
t follows that:

∗

∥
= RC†P∥. (67)

e can then define approximation noise in the parallel subspace
s:

∥(x) = y(x) − w∗

∥
φ(x). (68)

t follows from the definition of w∗

∥
that

ϵa
∥
(x)(u · φ(x))

⟩
∀a, (69)

here u is in not in the null space of Ĉ . This fact will allow us
o simplify cross terms in the expression for generalization error.
e begin by decomposing the training data into a realizable

omponent along with approximation noise:

= w∗

∥
Φ + E, (70)

here Yaµ = ya(xµ), Φjµ = φj(xµ), and Eaµ = ϵa(xµ). From Eq. (70)
and the expression for ŵ, we find:

ŵ = w∗

∥
+ EΦT (ΦΦT )† . (71)

he generalization error has the form:

g =

⟨∑
a

⎛⎝∑
j

ŵajφj(x) − ya(x),

⎞⎠2 ⟩
x

(72)

hich we can write as:

g =

⟨∑
a

⎛⎝∑
j

(ŵaj − (w∗

∥
)aj)φj(x) − ϵa

∥
(x)

⎞⎠2 ⟩
x

. (73)

e can compose the average into 3 terms with the cross term
oing to zero because ŵ − w∗

∥
must lie in the parallel subspace

or each a. It follows that:

g =
(
ŵ − w∗

∥

)
C
(
ŵ − w∗

∥

)T
+

∑⟨
ϵa
∥
(x)2

⟩
. (74)
a
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Substituting the form of Ŵ from Eq. (71) into the above equation
yields:

Eg = EΦT (ΦΦT )† C (ΦΦT )† ΦET
+

∑
a

⟨
ϵa
∥
(x)2

⟩
. (75)

Dropping the index a, from the form of ϵ and ϵ∥ for simplicity,
we have that:⟨ (

ϵ∥(x)
)2 ⟩

x
=

⟨ (
y − w∗

∥
φ(x)

)2 ⟩
=

⟨ (
y − RC†P∥φ(x)

)2 ⟩ (76)

It follows that:⟨ (
ϵ∥(x)

)2 ⟩
x
=

⟨ (
y − RC†φ(x) + RC†(I − P∥)φ(x)

)2 ⟩
, (77)

which (from the orthogonality of phi and epsilon) may be ex-
panded as:⟨ (

ϵ∥(x)
)2 ⟩

x
=
⟨
ϵ(x)2

⟩
x +

⟨
φ(x)T (I − P∥)TC†RTRC†(I − P∥)φ(x)

⟩
.

(78)

It follows that:⟨ (
ϵ∥(x)

)2 ⟩
x
=
⟨
ϵ(x)2

⟩
x + Tr

[
RC†P⊥CPT

⊥
C†RT ] . (79)

The second term simply corresponds to the generalization error
due to the optimal weights projected onto the orthogonal sub-
space. Note that the trace is not needed for scalar output settings.
More generally if there are some initialization weights they will
be added in with RC† to the second term above, which is the error
from the frozen subspace approximation.

References

Advani, M., & Ganguli, S. (2016a). An equivalence between high dimensional
bayes optimal inference and m-estimation. Advances in Neural Information
Processing Systems.

Advani, M., & Ganguli, S. (2016b). Statistical mechanics of high dimensional
inference supplementary material. In: See https://ganguli-gang.stanford.edu/
pdf/HighDimInf.Supp.pdf.

Advani, M., & Ganguli, S. (2016c). Statistical mechanics of optimal convex
inference in high dimensions. Physical Review X, 6(3), Article 031034.

Advani, M., Lahiri, S., & Ganguli, S. (2013). Statistical mechanics of complex
neural systems and high dimensional data. Journal of Statistical Mechanics:
Theory and Experiment, (03), P03014.

Amari, S., Murata, N., & Müller, K. R. (1996). Statistical theory of overtraining -
Is cross-validation asymptotically effective?. Advances in Neural Information
Processing Systems.

Amari, S., Murata, N., Müller, K. R., Finke, M., & Yang, H. (1995). Asymptotic
statistical theory of overtraining and Cross Validation. IEEE Transactions on
Neural Networks, 8(5), 985–996.

Arora, S., Cohen, N., & Hazan, E. (2018). On the optimization of deep networks:
Implicit acceleration by overparameterization. In 35th international conference
on machine learning, ICML 2018, Vol. 1 (pp. 372–389).

Arora, S., Du, S. S., Hu, W., Li, Z., & Wang, R. (2019). Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural
networks. In 36th international conference on machine learning (pp. 477–502).

Arpit, D., Jastrz, S., Kanwal, M. S., Maharaj, T., Fischer, A., Courville, A., et al.
(2017). A closer look at memorization in deep Networks. In ICML.

Ba, J., Erdogdu, M. A., Suzuki, T., Wu, D., & Zhang, T. (2019). Generalization
of two-layer Neural networks:an asymptotic Viewpoint. In International
conference on learning representations. 2016.

Bahri, Y., Kadmon, J., Pennington, J., Schoenholz, S. S., Sohl-Dickstein, J., &
Ganguli, S. (2020). Statistical mechanics of deep learning. Annual Review of
Condensed Matter Physics, 11(1), 501–528.

Bai, Z., & Silverstein, J. W. (2010). Spectral analysis of large dimensional random
matrices. Springer.

Baldi, P., & Chauvin, Y. (1991). Temporal evolution of Generalization during
Learning in Linear networks. Neural Computation, 3, 589–603.

Baldi, P., Chauvin, Y., & Hornik, K. (1990). Supervised and unsupervised learning
in Linear Networks. In International neural network conference (pp. 825–828).

Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 2(1), 53–58.

Baldi, P. F., & Hornik, K. (1995). Learning in linear neural networks: a survey.
IEEE Transactions on Neural Networks, 6(4), 837–858.

http://refhub.elsevier.com/S0893-6080(20)30311-7/sb1
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb1
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb1
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb1
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb1
https://ganguli-gang.stanford.edu/pdf/HighDimInf.Supp.pdf
https://ganguli-gang.stanford.edu/pdf/HighDimInf.Supp.pdf
https://ganguli-gang.stanford.edu/pdf/HighDimInf.Supp.pdf
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb3
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb3
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb3
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb4
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb4
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb4
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb4
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb4
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb5
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb5
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb5
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb5
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb5
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb6
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb6
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb6
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb6
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb6
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb7
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb7
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb7
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb7
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb7
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb8
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb8
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb8
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb8
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb8
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb9
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb9
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb9
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb10
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb10
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb10
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb10
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb10
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb11
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb11
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb11
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb11
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb11
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb12
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb12
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb12
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb13
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb13
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb13
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb14
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb14
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb14
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb15
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb15
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb15
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb16
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb16
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb16


M.S. Advani, A.M. Saxe and H. Sompolinsky Neural Networks 132 (2020) 428–446

B

B

B

B

M

M
M

N

P

P

P

S

S

S

S

arron, A. R. (1993). Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Transactions on Information Theory, 39(3), 930–945.

artlett, P. L., Long, P. M., Lugosi, A., & Tsigler, G. (2020). Benign overfitting in
linear regression. Proceedings of the National Academy of Sciences.

artlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities:
Risk bounds and structural results. Journal of Machine Learning Research, 3(3),
463–482.

elkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 116(32), 15849–15854.

Belkin, M., Hsu, D., & Xu, J. (2019). Two models of double descent for weak
features. arXiv preprint arXiv:1903.07571.

Benaych-Georges, F., & Rao, R. (2011). The eigenvalues and eigenvectors of finite,
low rank perturbations of large random matrices. Advances in Mathematics,
227(1), 494–521.

Benaych-Georges, F., & Rao, R. (2012). The singular values and vectors of
low rank perturbations of large rectangular random matrices. Journal of
Multivariate Analysis, 111, 120–135.

Biehl, M., Caticha, N., & Riegler, P. (2009). Statistical mechanics of on-line
learning. In T. Villmann, M. Biehl, B. Hammer, & M. Verleysen (Eds.),
Similarity-based clustering: recent developments and biomedical applications.
Berlin Heidelberg: Springer.

Canziani, A., Paszke, A., & Culurciello, E. (2017). An analysis of deep neural
network models for practical applications. (pp. 1–7). In: arXiv.

Caruana, R., Lawrence, S., & Giles, C. L. (2001). Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In Advances in
neural information processing systems (pp. 402–408).

Chauvin, Y. (1990). Generalization dynamics in LMS Trained linear networks. In
NIPS (pp. 890–896).

Chizat, L., Oyallon, E., & Bach, F. (2018). On lazy training in differentiable
programming. In NeurIPS.

Dodier, R. (1995). Geometry of early stopping in Linear Networks. In Advances
in neural information processing systems 8.

Du, S. S., Hu, W., & Lee, J. D. (2018). Algorithmic regularization in learning deep
homogeneous models: Layers are automatically balanced. Advances in Neural
Information Processing Systems, (NeurIPS), 384–395.

Dunmur, A. P., & Wallace, D. J. (1999). Learning and generalization in a linear
perceptron stochastically trained with noisy data. Journal of Physics A:
Mathematical and General, 26(21), 5767–5779.

Engel, A., & Van Den Broeck, C. (2001). Statistical mechanics of learning.
Cambridge: Cambridge University Press.

Fukumizu, K. (1998). Effect of batch learning in multilayer neural networks. In
Proceedings of the 5th international conference on neural information processing
(pp. 67–70).

Goodfellow, I. J., Vinyals, O., & Saxe, A. M. (2015). Qualitatively characterizing
Neural Network Optimization problems. In The international conference on
learning representations. San Diego, CA: Oral presentation.

Hastie, T., Montanari, A., Rosset, S., & Tibshirani, R. J. (2019). Surprises in
high-dimensional ridgeless least squares interpolation. arXiv preprint arXiv:
1903.08560.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In ICCV
(pp. 1026–1034).

Hoyle, D. C., & Rattray, M. (2007). Statistical mechanics of learning multiple
orthogonal signals: Asymptotic theory and fluctuation effects. Physical Review
E, 75.

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Conver-
gence and generalization in neural networks. Advances in Neural Information
Processing Systems, (4), 8571–8580.

Ji, Z., & Telgarsky, M. (2019). Gradient descent Aligns the Layers of deep Linear
Networks. In International conference on learning representations.

Kadmon, J., & Sompolinsky, H. (2016). Optimal architectures in a solvable model
of deep networks. In NIPS.
446
Kawaguchi, Kenji (2016). Deep learning without Poor Local Minima. In NIPS.
Kinouchi, O., & Caticha, N. (1995). On-line versus off-line learning in the linear

perceptron: A comparative study. Physical Review E, 52(3).
Krogh, A., & Hertz, J. A. (1992). Generalization in a linear perceptron in

the presence of noise. Journal of Physics A: Mathematical and General, 25,
1135–1147.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
LeCun, Y., Cortes, C., & Burges, C. J. C. (1998). The MNIST database of handwritten

digits.
LeCun, Y., Kanter, I., & Solla, S. A. (1991). Eigenvalues of covariance matrices:

Application to neural-network learning. Physical Review Letters, 66(18), 2396.
Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R., Sohl-Dickstein, J., et al.

(2019). Wide Neural Networks of any Depth evolve as linear models under
gradient descent. In NeurIPS.

Louart, C., Liao, Z., & Couillet, R. (2017). A random matrix approach to neural
networks. arXiv preprint arXiv:1702.05419.

Marchenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for some
sets of random matrices. Matematicheskii Sbornik, 114, 507–536.

ei, S., Montanari, A., & Nguyen, P. M. (2018). A mean field view of the landscape
of two-layer neural networks. Proceedings of the National Academy of Sciences,
115(33), E7665–E7671.

ishkin, D., & Matas, J. (2016). All you need is a good init. In ICLR (pp. 1–13).
ohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine
learning. MIT press.

akkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., & Sutskever, I. (2020). Deep
double descent: Where Bigger Models and more data Hurt. In International
conference on learning representations.

ennington, J., & Bahri, Y. (2017). Geometry of neural network loss surfaces
via random matrix theory. In International conference on machine learning
(pp. 2798–2806).

ennington, J., & Worah, P. (2017). Nonlinear random matrix theory for
deep learning. In Advances in neural information processing systems
(pp. 2637–2646).

illai, Natesh S., Yin, Jun, et al. (2014). Universality of covariance matrices. Annals
of Applied Probability, 24(3), 935–1001.

aad, D., & Solla, S. A. (1995). Exact solution for on-line learning in multilayer
neural networks. Physical Review Letters, 74, 4337–4340.

axe, A. M., McClelland, J. L., & Ganguli, S. (2014). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In Y. Bengio and Y.
LeCun (Eds.), The international conference on learning representations. Banff,
Canada.

chmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117.

eung, H. S., Sompolinsky, H., & Tishby, N. (1992). Statistical mechanics of
learning from examples. Physical Review A, 45(8), 6056–6091.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In ICLR (pp. 1–14).

Soudry, D., & Hoffer, E. (2017). Exponentially vanishing sub-optimal local minima
in multilayer neural networks. In: arXiv.

Spigler, S., Geiger, M., d’Ascoli, S., Sagun, L., Biroli, G., & Wyart, M. (2018). A jam-
ming transition from under-to over-parametrization affects loss landscape
and generalization. arXiv preprint arXiv:1810.09665.

Watkin, T. L. H., Rau, A., & Biehl, M. (1993). The statistical mechanics of learning
a rule. Reviews of Modern Physics, 65(2), 499–556.

Wei, H., & Amari, S. (2008). Dynamics of learning near singularities in radial
basis function networks. Neural Networks, 21, 989–1005.

Wei, H., Zhang, J., Cousseau, F., Ozeki, T., & Amari, S. (2008). Dynamics of learning
near singularities in layered networks. Neural Computation, 20, 813–843.

Yao, Y., Rosasco, L., & Caponnetto, A. (2007). On early stopping in Gradient
Descent Learning. Constructive Approximation, 26, 289–315.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding
deep learning requires rethinking generalization. In ICLR.

http://refhub.elsevier.com/S0893-6080(20)30311-7/sb17
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb17
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb17
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb18
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb18
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb18
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb19
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb19
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb19
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb19
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb19
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb20
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb20
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb20
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb20
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb20
http://arxiv.org/abs/1903.07571
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb22
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb22
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb22
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb22
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb22
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb23
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb23
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb23
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb23
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb23
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb24
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb24
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb24
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb24
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb24
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb24
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb24
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb25
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb25
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb25
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb26
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb26
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb26
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb26
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb26
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb27
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb27
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb27
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb28
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb28
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb28
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb29
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb29
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb29
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb30
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb30
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb30
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb30
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb30
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb31
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb31
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb31
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb31
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb31
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb32
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb32
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb32
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb34
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb34
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb34
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb34
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb34
http://arxiv.org/abs/1903.08560
http://arxiv.org/abs/1903.08560
http://arxiv.org/abs/1903.08560
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb36
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb36
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb36
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb36
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb36
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb37
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb37
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb37
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb37
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb37
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb38
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb38
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb38
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb38
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb38
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb39
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb39
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb39
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb40
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb40
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb40
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb41
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb42
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb42
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb42
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb43
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb43
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb43
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb43
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb43
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb44
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb45
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb45
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb45
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb46
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb46
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb46
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb47
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb47
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb47
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb47
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb47
http://arxiv.org/abs/1702.05419
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb49
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb49
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb49
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb50
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb50
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb50
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb50
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb50
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb51
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb52
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb52
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb52
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb53
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb53
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb53
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb53
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb53
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb54
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb54
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb54
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb54
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb54
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb55
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb55
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb55
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb55
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb55
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb56
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb56
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb56
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb57
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb57
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb57
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb59
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb59
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb59
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb60
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb60
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb60
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb61
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb61
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb61
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb62
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb62
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb62
http://arxiv.org/abs/1810.09665
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb64
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb64
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb64
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb65
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb65
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb65
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb66
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb66
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb66
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb67
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb67
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb67
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb68
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb68
http://refhub.elsevier.com/S0893-6080(20)30311-7/sb68

	High-dimensional dynamics of generalization error in neural networks
	Introduction
	Generalization dynamics in shallow linear neural networks
	Exact solutions in the high-dimensional limit
	Effectiveness of early stopping
	L2 regularization
	Weight norm growth with SNR
	Impact of initial weight size on generalization performance
	Training error dynamics

	Generalization dynamics in deep linear neural networks
	Generalization dynamics and optimal size in neural nets with frozen first layer weights
	Mathematical decomposition of generalization error

	Fully trained two-layer network
	Real-world datasets: MNIST

	Double descent, interpolation, memorization, and generalization
	Rademacher complexity and avoiding overfitting in non-linear neural networks
	Discussion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Deep linear neural network dynamics
	Appendix B. Optimal weight norm growth with SNR
	Appendix C. Generalization error decomposition
	References


