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Abstract

Repair of a double-strand break (DSB) by an ectopic homologous donor sequence is subject

to the three-dimensional arrangement of chromosomes in the nucleus of haploid budding

yeast. The data for interchromosomal recombination suggest that searching for homology is

accomplished by a random collision process, strongly influenced by the contact probability

of the donor and recipient sequences. Here we explore how recombination occurs on the

same chromosome and whether there are additional constraints imposed on repair. Specifi-

cally, we examined how intrachromosomal repair is affected by the location of the donor

sequence along the 813-kb chromosome 2 (Chr2), with a site-specific DSB created on the

right arm (position 625 kb). Repair correlates well with contact frequencies determined by

chromosome conformation capture-based studies (r = 0.85). Moreover, there is a profound

constraint imposed by the anchoring of the centromere (CEN2, position 238 kb) to the spin-

dle pole body. Sequences at the same distance on either side of CEN2 are equivalently

constrained in recombining with a DSB located more distally on one arm, suggesting that

sequences on the opposite arm from the DSB are not otherwise constrained in their interac-

tion with the DSB. The centromere constraint can be partially relieved by inducing transcrip-

tion through the centromere to inactivate CEN2 tethering. In diploid cells, repair of a DSB via

its allelic donor is strongly influenced by the presence and the position of an ectopic intra-

chromosomal donor.

Introduction

A fundamentally important step in the repair of a broken chromosome by homologous recom-

bination is the identification and use of a homologous donor sequence to repair the DSB [1–

6]. In eukaryotes, DSBs are processed by exonucleases to expose 3’-ended single-stranded

regions upon which Rad51 recombination protein is loaded and forms a nucleoprotein
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filament. The Rad51 filament, like its bacterial RecA counterpart, then interrogates other

sequences in the genome to locate a homologous segment with which it can promote strand

invasion to form a displacement loop and then initiate DNA synthesis using the homologous

sequence as a template to repair the DSB. How the search for homology—on a sister chroma-

tid, a homologous chromosome or at an ectopic site—is accomplished remains a subject of

active investigation. Several lines of evidence suggest that the search is more efficient intra-

chromosomally—at least over modest distances of 100–200 kb [2,6], but this question needs to

be explored in more detail.

Recently we developed an ectopic donor assay to study DSB repair efficiency in haploid Sac-
charomyces cerevisiae [2]. A site-specific DSB, created by the galactose-inducible HO endonu-

clease, could be repaired by a single ectopic donor sequence, which shares 1 kb homology with

either side of the break and is located elsewhere in the genome. By placing a donor at 20 differ-

ent locations throughout the genome, we showed that the efficiency of interchromosomal

recombination was strongly correlated with the likelihood that the donor region would come

into contact with the recipient site, based on chromosome conformation capture analysis

[2,7]. In some cases, a donor site that was quite inefficient when used to repair the DSB on

Chr5 became much more efficient when confronted with a different DSB induced on Chr2,

consistent with the differences in its contact frequencies with the regions surrounding the two

break sites. Studies by Agmon et al. [1] and by Zimmer et al. [8] also reached similar conclu-

sions, with focus on the recombination when both DSB and donor are located at pericentri-

meric or subtelomeric regions.

Here we have extended our analysis to examine the correlation between contact frequencies

and repair for intrachromosomal events. We find again a strong correlation with contact fre-

quency but also see additional constraints imposed by the centromere and by the very high

level of contacts made by nearby intrachromosomal sequences.

Results

Intrachromosomal GC is subjected to chromosome organization

In our previous study, we mainly focused on the correlation between chromosome organiza-

tion and recombination frequencies in interchromosomal noncrossover gene conversion

events [2]. A DSB was induced within leu2 sequences inserted on Chr5, while a homologous

2-kb LEU2 donor was placed at 4 positions on the same chromosome or at 20 locations on dif-

ferent chromosomes. Repair occurs predominantly by synthesis-dependent strand annealing

in which by a patch of DNA newly copied from the donor to replaces the 117-bp HO cleavage

site sequences [2,9]. We and others have observed that intrachromosomal gene conversion

occurred generally more efficiently and with a faster kinetics than interchromosomal events

[1,2,10].

To examine intrachromosomal repair in more detail, we constructed a series of 12 strains,

in which a DSB was created within a 2-kb LEU2 gene inserted 625 kb from the left end on

chromosome 2 (Chr2) and a donor was inserted at different sites across the chromosome (Fig

1A). The DSB, created by galactose-inducible expression of the HO endonuclease gene, is situ-

ated 387 kb from CEN2 and 188 kb from the right telomere (http://www.yeastgenome.org/).

The efficiency of DSB repair of each of the 12 strains was measured by plating cells on YEP-

galactose plates to continuously induce the HO endonuclease, compared to the same number

of cells plated on glucose-containing medium. Virtually all of the survivors repaired the DSB

by ectopic gene conversion rather than by nonhomologous end-joining, which occurs only in

0.2% of cases [2]. Cell viabilities among the 12 strains ranged from 9% to 89%; because these

repair events occur on the first cell cycle, the observed frequencies are equivalent to rates.

Intrachromosomal recombination in budding yeast
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Repair efficiencies were then plotted with respect to the total contact frequencies between

the DSB region and the donor region, which is calculated by adding up all the interaction

reads, measured by [7], between +/-25 kb region surrounding the DSB site and either a +/-10

kb (Fig 1B) or +/-20 kb (Fig 1C) region surrounding a donor site. Cell viability displayed a

strong correlation with the total contact frequency; however, the effect of contact frequency on

cell viability approached saturation when donor was within about 100 kb of the DSB, where

contact frequencies also reached a maximum (S1 Fig). The calculated correlation coefficient

using Pearson correlation analysis was r = 0.82 (P = 2 x 10−3) with +/-10 kb window around

Fig 1. Viability assay to assess repair efficiency for 12 intrachromosomal loci. (A) The scheme of

viability assay. The leu2::HOcs was inserted at 625 kb on Chr2. The DSB could be repaired by an ectopic

LEU2 donor inserted on the same chromosome. The locations for the 12 donors were shown along Chr2. (B

and C) Correlation between cell viability (%, shown in blue) and total contact frequency using ±25 kb window

size around Chr2-DSB and ±10 kb (B) or ±20 kb window size around donor (C). Only 11 loci were analyzed in

(B) since no productive contact was detected between ±25 kb around DSB and ±10 kb around site 4. Error

bars indicate one SD from three independent experiments.

https://doi.org/10.1371/journal.pone.0180994.g001
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the donor and r = 0.85 (P = 5 x 10−4) with +/-20 kb window around the donor. Thus, intra-

chromosomal recombination is strongly constrained by the likelihood that two sequences will

come into contact, as we saw for interchromosomal events.

We note that when donors were located within 50 kb from a telomere (locus 1 and 12),

their measured viabilities were higher than expected based on their contact frequency (Fig

1B and 1C). It has been reported that chromosomal conformation capture methods tend to

underestimate productive contacts in subtelomeric regions [7]. Although sequences more

than 20 kb from a telomeric anchor appear to be unconstrained [11], it seems possible that

the underestimation of contact frequencies may explain the higher-than-predicted recombi-

nation efficiencies for these two loci. The results for donors placed within 100 kb of the

DSB target appear to reflect a plateau, consistent with the leveling off of contact frequencies

(S1 Fig).

DSB repair is constrained by centromere tethering

If one plots the correlation between cell viability and the distance of a homologous LEU2
donor from the left end of Chr2, it becomes evident that donors located close to the centro-

mere display a low repair rate compared to donors located within a chromosome arm (Fig

2A). Indeed, the efficiencies of repair are in agreement with the idea that the two chromosome

arms are in the Rabl orientation [12], with the centromere anchored at the spindle pole body

(SPB) (S2 Fig). In budding yeast the centromere remains attached to the SPB throughout the

cell cycle [13]. Interestingly, if one re-plots recombination efficiencies as a function of the dis-

tance from CEN2, it becomes apparent that the left arm—where the homologous LEU2 loca-

tions are significantly more linearly distant from the DSB itself—behaves as if these sites are as

accessible as those on the right arm (Fig 2B). These results suggest that the tethering of the

telomere of the left arm does not prevent sequences from interacting with the DSB on the

opposite arm as efficiently as sites on the right arm, when the sites are equally distant from the

centromere.

To further explore if the correlation between genomic distance and cell viability is affected

by centromere tethering, we enquired whether detaching the centromere from SPB would

alter the pattern of repair we observed in wild type strains. Cohesin is an essential protein com-

plex that facilitates spindle attachment to the centromere. Mcm21 is a non-essential kineto-

chore component of the COMA complex [14] that is responsible for the enrichment of

cohesin at the pericentromeric region. Deletion ofMCM21 results in a partial dispersal of

kinetochores from the normal cluster around the SPB, but does not prevent relatively normal

chromosome segregation [15]. However, deletingMCM21 did not result in a change in repair

efficiency (and thus cell viability) among four of theMCM21 deletion strains whose donors

were close to CEN2 (S3 Fig), suggesting that the depletion of Mcm21 protein might not be suf-

ficient to fully inactivate the attachment of centromere to the SPB.

As an alternative way of disrupting kinetochore attachment to the SPB, we introduced a

conditionally functional centromere by placing a galactose-inducible promoter upstream of

the centromeric DNA sequence [15,16]. A GAL::CEN centromere is functional when cells are

grown on glucose-containing plate but its function is impaired when cells are transferred to

galactose-containing plate, as the strong transcription disrupts normal assembly of the kineto-

chore at this centromere. Our recent study of the GAL-CEN3 construct showed that sister

chromosomes properly segregated only 1/3 of the time, and then only after some delay [15].

We therefore replaced CEN2with cen2::GAL-CEN3 in several of the intra-chromosomal donor

strains (Fig 3A and S4 Fig). Placing cells on galactose, which simultaneously induced HO

endonuclease expression and inactivated the Chr2 centromere, had no significant effect on
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donors located far from CEN2, but did significantly raise the level of repair of two loci near

CEN2 (Fig 3B).

To confirm that transcription did indeed perturb centromere function in these strains we

carried out pedigree analysis to measure missegregation of the chromosome by the appearance

Fig 2. Correlation between cell viability and distance of a homologous LEU2 donor from (A) the left

telomere and (B) the centromere (CEN2). Pearson’s correlation test was conducted for either side of CEN2

(including CEN2) respectively. Donor sites 10–12 (729 kb, 742 kb and 768 kb) are excluded from the analysis

because viability had reached a plateau. r = 0.93 for right side of CEN2, and r = 0.95 for left side of CEN2.

https://doi.org/10.1371/journal.pone.0180994.g002
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of daughter cells that failed to inherit Chr2 [15]. To be sure that segregation was not also influ-

enced by the HO cleavage, we modified strains by removing the HO cleavage site, so that only

the GAL::CENwould be affected by addition of galactose. This was accomplished by trans-

forming the strain with a HPH-marked plasmid expressing both Cas9 and a guide RNA tar-

geted to the HO cleavage site. Transformants grown on glucose medium proved to have lost

the cleavage site, by DSB-induced gene conversion using the ectopic LEU2 donor (data not

Fig 3. Effect of cen2Δ::GAL-CEN3 on viability. Inactivation of CEN2 significantly increased viability of two

donors located close to CEN2. Error bars indicate one SD from three independent experiments.

https://doi.org/10.1371/journal.pone.0180994.g003
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shown). For strains with wild type CEN2 (cutsite-deleted derivatives of strains YWW113 and

119), both mother and daughter cells gave rise to colonies in each of 45 cases. For the modified

strain YWW216 (donor at 220 kb, 18 kb from CEN2), lacking the HO cutsite, 16 of 29 daugh-

ters failed to produce colonies, and for modified strain YWW231 (donor at 252 kb, 14 kb from

CEN2), 7 out of 20 daughter cells failed to give rise to colonies. Finding approximately 1/3 of

pedigrees failing to properly disjoin the GAL::CEN chromosome is consistent with our previ-

ous study and confirms that when galactose was added to induce HO it also would disrupt nor-

mal CEN function [15].

Interchromosomal versus intrachromosomal repair of a DSB

In diploid yeast, mitotic homologous chromosomes are not evidently paired with each other

although some preferential interactions have been reported [17–19]. We created diploids to

ask how the presence of a competing allelic donor would affect repair via an intrachromosomal

site. Whereas the ectopic intrachromosomal donor shares only 1 kb on each side of the DSB,

the homologous chromosome shares the entire chromosome arm. The diploid strains were

constructed by mating strains that carried the leu2::HOcs at 625 kb and an intrachromosomal

ectopic LEU2 donor at a different location with a strain carrying a URA3-selectable marker

and a leu2-K donor at 625 kb; that is, at the allelic position to the DSB (Fig 4A). Normal MAT
sequences were deleted (see Materials and methods). In these strains, viability after HO induc-

tion was nearly 100%, as expected for a diploid where an unrepaired DSB and chromosome

loss would still lead to a viable aneuploidy [20]. HO cleavage is nearly 100% efficient so only

cells that had repaired the leu2::HOcs site are detected by PCR analysis.

We assessed the use of the intrachromosomal ectopic (LEU2) and allelic (leu2-K) donors by

PCR-amplifying the repaired locus followed by KpnI digestion and determining the propor-

tion of repair events resistant to KpnI digestion. This analysis was carried out both from colo-

nies of individual recombinants (Fig 4B) and by analysis of the mixture of repair events

present in an HO-induced culture with millions of cells. In both instances, the use of the

ectopic (KpnI+) intrachromosomal donor was substantially reduced (Fig 4B and S5 Fig) com-

pared to the use measured in a haploid strain by a viability assay (Fig 1B). For example, when

LEU2was placed at site 2 (122 kb), which was 36% viable in the haploid strain assay, analysis

of pooled diploid cells (which were nearly 100% viable) showed only 12% of the repair events

used this intrachromosomal donor. For site 8 (532 kb), which was a highly efficient donor

(85%) in the haploid assay, its use was decreased to 58% in the diploid (strain YWW210), with

the remainder coming from the allelic locus (S5 Fig). For a donor located near the centromere,

at 252 kb, which was 9% viable in the haploid intrachromosomal assay, its use fell to 3% in

competition with the allelic donor (S5 Fig).

The PCR-KpnI assay used in pooled cells slightly underestimated the use of the allelic

donor because it failed to capture the fraction of allelic gene conversion events that co-con-

verted leu2-K and the adjacent URA3marker (as illustrated in Fig 4B, bottom panel). This

larger insertion was not amplified under the PCR conditions used to assay the population of

recombinants, as shown in S5B Fig. To assess the proportion of the three types of possible out-

comes, we analyzed individual repair events (Fig 4B), where we used PCR conditions that

recover all of the relevant products (Fig 4C). Of 31 repair events from strain YWW210 (58%

intrachromosomal donor usage as described above), 16 (52%) used the intrachromosomal

donor, while 12 repaired the DSB without co-converting the adjacent URA3marker and 3 co-

converted URA3 along with leu2-K. Hence, by both assays the usage of the intrachromosomal

donor fell from >85% in the haploid to about 60% in the diploid when the allelic locus could

compete for repair.
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Fig 4. Competition between interchromosomal and intrachromosomal donors. (A) Scheme for DSB

repair in diploid strains. The DSB could be repaired by gene conversion using an ectopic intrachromosomal

LEU2 sequence, an allelic leu2-KpnI sequence, or the homologous sequence outside of the leu2-KpnI. Each

outcome is revealed by KpnI-digestion of the indicated PCR fragments, yielding respectively 3, 2 and 1

fragments, as illustrated in (C). (B) Usage of ectopic and allelic donors assessed from 31 colonies of individual

recombinants in YWW210 (58% intrachromosomal donor usage assessed in pooled cells from S5 Fig and

85% viability in haploid strain from Fig 1). (C) Three types of possible outcomes for individual repair events

revealed by KpnI-digestion: (1) repair from intrachromosomal LEU2; (2) allelic repair without URA3 co-

conversion; (3) allelic repair with URA3 co-conversion.

https://doi.org/10.1371/journal.pone.0180994.g004
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The ectopic donor shares 1 kb homology on either side of the DSB whereas the allelic

donor has extensive homology on both sides of the break (though with a 1-kb insertion on one

side). Previously we have shown that increasing homology from 1 kb to 2 or 3 kb on each side

of the DSB had a very significant effect on the efficiency of ectopic DSB repair [2]; the data

here are consistent with the idea that sharing more extensive homology, even if interrupted on

one side by a heterology [5,10], has a highly significant effect on the likelihood that a donor

will be successful in repairing the DSB, but the intrachromosomal site remained the preferred

donor.

Discussion

In haploid yeast genome, the sixteen chromosomes adopt a preferential 3D conformation with

centromeres clustered at spindle pole body and telomeres loosely associated at the nuclear

envelope, the so-called Rabl configuration [21]. Our previous work and that of others have

shown that 3D nuclear architecture is a key factor that influences the rate and efficiency of

interchromosomal DSB repair, with a striking correlation between repair and the estimation

of the physical distance of two DNA fragments in the genome (contact frequency). These

studies also demonstrated that a site that served as an efficient donor to repair a DSB at one

location could be a very inefficient donor when the site of DSB (with the same homologous

sequences) was moved to a different chromosome; thus most donor sites were not “hot” or

“cold” because of local chromatin features.

Here we show that chromosome conformation capture data also provide strong predictions

for intrachromosomal DSB repair frequencies. Sites within approximately 100 kb of the DSB,

which show very high levels of contact frequency, reach a plateau in their ability to recombine,

but beyond that distance repair roughly diminishes with distance as the donors are placed

closer to the centromere. However, at increasing distance from the centromere on the opposite

chromosome arm, repair frequencies increase. This pattern is consistent with the Rabl config-

uration of chromosomes and, further, that a site 200 kb on the left arm is approximately as

able to recombine as one on the right arm, despite being much further away as viewed along

the chromosome itself. These results suggest that the left arm is not tethered away from the

DSB site. The high level of accessibility of sites on the left arm that are distant from the centro-

mere is not evident in the Hi-C data, which is swamped by interactions close to the site of

interest (S1 Fig).

Our results demonstrate a strong constraint on the ability of centromere-proximal

sequences to recombine with distant loci, although Agmon et al. [1] showed that recombina-

tion between centromere-adjacent sequences on different chromosomes is efficient, consistent

with the bundling of centromere-adjacent sequences held by the cluster of centromeres at

the SPB. Our results contrast with those of Agmon et al., who suggested that recombination

involving one interstitial element should not be impaired by any tethering effects [1].

Despite reports that deletion ofMCM21 leads to the partial dislocation of centromeres from

the SPB [14], this deletion did not relieve the constraint of centromere proximity in DSB

repair. However, disruption of CEN2 function by galactose-induced transcription proved to

cause a modest but statistically significant increase in the ability of centromere-proximal

sequences to recombine. We note that even with GAL::CEN disruption, 2/3 of cells are able to

maintain proper chromosome segregation, so the effect of disrupting GAL::CENwould not

necessarily be expected to have a larger consequence.

Previously we had shown that there could be a strong completion between an intrachromo-

somal donor and a competitor at an allelic site for spontaneous mitotic recombination [2,6].

Here, we show that this conclusion holds true for events known to be initiated by a site-specific
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DSB, depending on the contact frequency between intrachromosomal sites. It will be interest-

ing to assess these results in more detail when contact probabilities have been determined in

diploid strains.

Materials and methods

Strains

All strains were derived from YCSL305 (ho hmlΔ::ADE1 mataΔ::hisG hmrΔ::ADE1 leu2::KAN

ade3::GAL::HO ade1 lys5 ura3-52 trp1 Chr2.625kb::leu2::HOcs). The specific locations of the

donors inserted on Chr2 and the derivatives containing either mcm21Δ or a GAL::CEN
replacement of CEN2 are presented in S1 Table. A NAT-MX cassette amplified from pJH1513

was inserted at the specific donor location and was then replaced by a TEFp-LEU2-TEFt frag-

ment through homologous recombination. Deletion ofMCM21was accomplished by trans-

forming cells with a PCR-amplified NAT-marked deletion, copied from the yeast genome

knockout collection [22]. The URA3::GAL::CEN3 sequence was amplified from pJH870 using

PCR primers cen2::GAL-CEN3 p4 and cen2::GAL-CEN3 p5 to replace the CEN2 region. The

sequences of the primers used in strain construction are presented in S2 Table.

Diploid strains were constructed by mating a-like strains (deleted for MAT) that carried the

leu2::HOcs at 625 kb and an intrachromosomal ectopic LEU2 donor at different locations with

anotherMAT-deleted strain carrying a URA3 selectable marker and a leu2-K donor at 625 kb

(that is, at the allelic position to the DSB). Mating was accomplished by transforming the sec-

ond strain with a TRP1-markedMATα plasmid, which was not retained after mating.

Growth conditions

Single colonies were inoculated into YP-Lactate medium and grown to log phase at 30˚C. Via-

bility assays were carried out as described by Lee et al. [2]. The viability was calculated as the

number of colonies that grew on YEP-galactose medium divided by the number of cells grew

on YEPD medium. Three biological replicates were performed on each strain. Pearson’s corre-

lation test was conducted between viability and contact frequency.

Pedigree analysis

The disruption of normal Chr2 segregation in the cen2::GAL::CEN3 strain was determined

by pedigree analysis as previously described [15]. Individual unbudded (G1) cells were

micromanipulated and allowed to grow until mother and daughter cells could be separated.

The subsequent growth of the mothers and daughters was observed after 24 h. Daughter cells

that failed to inherit Chr2 at the first cell division failed to proliferate beyond another cell

division, whereas a normal cell or a mother cell that inherited an extra copy of Chr2 grew

into a microcolony.

PCR analysis of diploid strains

Single colonies were inoculated into 4ml of YP-Lactate medium and grew at 30˚C overnight.

To assess donor usage in pooled cells (S5 Fig), the culture was diluted and grew to log phase.

Then the DSB was induced by adding 20% galactose to a final concentration of 2%. To assess

individual repair events (Fig 4), colonies that were repaired after DSB induction were selected

from YEP-galactose plates and re-streaked to obtain single colonies. The repaired region

was amplified from purified genomic DNA using flanking primers Mcm7p3 and Leu2p18B

(sequences are presented in S2 Table). For pooled cells, a short PCR extension time was used

to avoid the amplification of URA3 from the homologous chromosome. For individual
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recombinants, longer extension times were used to recover all of relevant repair events. The

PCR amplicon was digested with KpnI overnight. The digested fragments were separated and

visualized on an agarose gel. For pooled cells, the relative usage of intrachromosomal donors

was calculated by dividing the sum of intensity of the KpnI-digested fragments by the total

intensity of all amplicons whereas for individual recombinants, a single outcome was obtained

in each case. All possible outcomes are represented in Fig 4. The experiments were repeated

three times in each strain.

Supporting information

S1 Fig. Distribution of intrachromosomal contacts to the DSB site. The contacts were calcu-

lated using ±25 kb window size around the DSB (Chr2, 625 kb). The contact frequency

between the DSB and the donor is determined by adding up all individual contacts around the

donor location. The position of the HO cleavage site is given by a red arrow.

(TIF)

S2 Fig. Rabl configuration of a chromosome in budding yeast. The centromere is tethered

to the spindle pole body and the telomeres are clustered at the nuclear envelope.

(TIF)

S3 Fig. Effect of mcm21Δ on viability.

(TIF)

S4 Fig. Scheme of GAL-CEN conditional chromosome. Wild type CEN2was replaced by a

URA3marked GAL-CEN3 fragment through homologous recombination. The conditional

chromosome contains a GAL1 promoter adjacent to CEN3.

(TIF)

S5 Fig. Intrachromosomal donor usage assessed in pooled cells. (A) Scheme to assess ectopic

and allelic donor usage from a population of cells. The 3kb URA3-leu2-KpnI sequence was

excluded in the PCR-based analysis by using short amplification times, as indicated by smaller

arrowheads. (B) An example of donor usage measurement on agarose gel (YWW210, 58%

intrachromosomal donor usage in diploid strain, 85% viability in haploid strain). The top

band (1045 bp) represents leu2-KpnI repair product. The lower two bands (732 bp and 313

bp), digested by KpnI, represent LEU2 repair product. The intrachromosomal donor relative

usage (%) was calculated as the intensity of the sum of lower two bands divided by the total

intensities of the three bands. (C) Plot of intrachromosomal donor relative usage versus con-

tact frequency (±10 kb around donor and ±25 kb around DSB). The intrachromosomal donor

locations and their corresponding viabilities (%) in haploid strains are shown in blue. Error

bars indicate one SD from three independent experiments.

(TIF)

S1 Table. List of strains.

(DOCX)

S2 Table. List of primers.

(DOCX)
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