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In order to improve the detection accuracy of pulmonary nodules in CT image, considering two problems of pulmonary nodules
detection model, including unreasonable feature structure and nontightness of feature representation, a pulmonary nodules
detection algorithm is proposed based on SVM and CT image feature-level fusion with rough sets. Firstly, CT images of pulmonary
nodule are analyzed, and 42-dimensional feature components are extracted, including six new 3-dimensional features proposed by
this paper and others 2-dimensional and 3-dimensional features. Secondly, these features are reduced for five times with rough set
based on feature-level fusion.Thirdly, a grid optimization model is used to optimize the kernel function of support vector machine
(SVM), which is used as a classifier to identify pulmonary nodules. Finally, lung CT images of 70 patients with pulmonary nodules
are collected as the original samples, which are used to verify the effectiveness and stability of the proposed model by four groups’
comparative experiments.The experimental results show that the effectiveness and stability of the proposed model based on rough
set feature-level fusion are improved in some degrees.

1. Introduction

Lung cancer is a malignant tumor with the highest morbidity
and mortality rate in the world, posing a serious threat to
human life and health [1, 2].The ability to estimate the risk of
lung cancer is important in two common clinical models [3]:
pulmonary nodules management and risk prediction model.
Identification of early symptomatic in lung cancer is very
important to improve early survival and reduce emergency
presentations. Early detection is the most popular method to
improve the effectiveness of the treatment of patients with
lung cancer. Since pulmonary nodules are the early form of
lung cancer [4], the detection of pulmonary nodules plays
a critical role in the early diagnosis and treatment of lung
cancer. Recent advances in computed tomography (CT) have
a progressively increased spatial resolution and decreased
acquisition times,making it possible for high resolution,mul-
tiangle, 3-dimensional, isotropic image of the whole lung to
be acquired in less than 10 seconds. This has expanded capa-
bilities for the early detection of small pulmonary nodules [4].

It is believed that early detection of lung cancer will result
in earlier treatment at lower stages of the disease, thereby
improving the 5-year survival rate, which has remained
relatively constant at 15% for the last 30 years. However, with
the wide application of CT in the lung imaging, the issues of
CT data overloading and subjective interpretation of images
result in a high clinical misdiagnosis rate [5].

Computer-Aided Diagnosis (CAD) systems provided a
beneficial support and enhance the diagnostic accuracy.
CAD is capable of performing the preliminary screen of the
vast amounts of CT image and marking suspicious lesions,
thereby helping radiologists to carry out the quadratic dis-
crimination to reduce the workload and improve the accu-
racy rate of cancer diagnosis [6, 7].

Pulmonary nodule detection technology is one of the hot
topics in the field of CAD in recent years. For example, ROI
segment is a key problem, Xia et al. [8] using local variational
Gaussianmixturemodels to segment brainMRI image Based
on Learning Local Variational GaussianMixtureModels, seg-
mentation of breast ultrasound images are discussed by Xian
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[9, 10] and Santos et al. [11] segment the lung parenchyma
based on region growing algorithm. Magalhães Barros Netto
et al. [12] use growing neural gas (GNG) to segment the
lung parenchyma, the obtained pulmonary nodules are then
separated from tissues containing blood vessels and bronchi
according to the 3D distance transform, and finally SVM is
used to carry out the effective identification of pulmonary
nodules with shape and texture features. Ye et al. [13] firstly
segment and extract region of interest (ROI) with fuzzy
threshold in combinationwith Gaussianmatrix, mean curva-
ture, and Hessian matrix, then choose the local shape infor-
mation and local intensity dispersion as the feature expres-
sion of ROI, and finally use theweighted SVM for recognition
of pulmonary nodules. Tan et al. [14] segment pulmonary
nodules based on the blood vessels and nodule enhancement
filter proposed by Li et al. [15], then locate the clustering cen-
ter of pulmonary nodules based on the divergence calculated
by Gaussian template and achieve ROI extraction, and finally
use the classifier based on genetic model, artificial neural
network (ANN), and SVM for comparative analysis of the
detection effectiveness of pulmonary nodules; Cascio et al.
[16] use regional growthmodel andmorphological operation
to extract the ROI firstly, then reconstruct B-spline surface
based on 3D spring model in order to extract the related 3D
gray features and shape features, and detect the pulmonary
nodules using ANN. Although the above literature explores
the methods of detecting pulmonary nodules, overall, these
are still two disadvantages of these methods in feature
structure design and feature set expression as follows.

(1) When extracting and quantifying feature for ROI, the
feature structure design is irrational, reflected by the
fact that the combination of global features and local
features and the combination of two-dimensional and
three-dimensional features are not fully considered.

(2) When fusing feature data, the compactness of feature
expression is a difficult problem. Therefore, feature
redundancy is usually not eliminated. Moreover, the
feature-level fusion method without prior knowledge
is rarely used.

Rough set theory was developed by Zdzislaw Pawlak in
the early 1980s and can be regarded as a new mathematical
tool for feature selection, feature extraction, and decision rule
generation without prior knowledge. Rough sets provide the
mechanism to find the minimal set of attributes required to
classify the training samples. This minimal set of attributes is
called reduct and contains the same knowledge as the original
set of attributes in a given information system. Therefore,
reducts can be used to obtain different classifiers. Wang et al.
[17] present a framework for a systematic study of the rough
set theory. Various views and interpretations of the theory
and different approaches to study the theory are discussed.
The relationships between the rough sets and other theories,
such as fuzzy sets, evidence theory, granular computing, for-
mal concept analysis, and knowledge spaces, are examined.
Cost of disease prediction and diagnosis can be reduced by
applying machine learning and data mining methods. Dis-
ease prediction and decision-making play a significant role in

medical diagnosis. Udhaya Kumar and Hannah Inbarani [18]
put forward a novel neighborhood rough set classification
approach to deal with medical datasets. Experimental result
of the proposed classification algorithm is compared with
other existing approaches such as rough set, 𝐾th-nearest
neighbor, support vector machine, BP NN, and multilayer
perceptron to conclude that the proposed approach is a
cheaperway for disease prediction anddecision-making. Fea-
ture Selection (FS) is a solution that involves finding a subset
of prominent features to improve predictive accuracy and
to remove the redundant features. Thus, the learning model
receives a concise structure without forfeiting the predictive
accuracy built by using only the selected prominent features.
Therefore, nowadays, FS is an essential part of knowledge dis-
covery. Inbarani et al. [19] proposed new supervised feature
selection methods based on hybridization of Particle Swarm
Optimization (PSO), PSO based Relative Reduct (PSO-RR),
and PSO based Quick Reduct (PSO-QR) presented for the
diseases diagnosis, in order to seek to investigate the utility
of a computer-aided diagnosis in the task of differentiating
malignant nodules frombenign nodules based on single thin-
section CT image data. In Shah et al. [20], CT images of soli-
tary pulmonary nodules were contouredmanually on a single
representative slice by a thoracic radiologist. Two separate
contours were created for each nodule, one including only the
solid portion of the nodule and one including any ground-
glass components. For each contour, 75 features were calcu-
lated that measured the attenuation, shape, and texture of the
nodule.These features were then input into a feature selection
step and four different classifiers to determine if the diagnosis
could be predicted from the feature vector. Hassanien [21]
discuss a hybrid scheme that combines the advantages of
fuzzy sets and rough sets in conjunction with statistical
feature extraction techniques. An application of breast cancer
imaging has been chosen and hybridization scheme have
been applied to see their ability and accuracy to classify the
breast cancer images into two outcomes: cancer or noncancer.

Based on the above reasons, a pulmonary nodule detec-
tion model based on rough set (RS) feature-level fusion and
SVM is proposed in this paper. To overcome the first afore-
mentioned disadvantage, the shape feature, intensity feature
and texture feature are extracted. For shape feature, three new
3-dimensional features, namely, External Spherical Volume
(ESV), Surface-Center Distance Standard Deviation (SCD-
STD), and External Rectangle Cross Line Distance (ERCLD)
are proposed. For intensity feature, three new 3-dimensional
features, namely intensity gradient (from inside to outside),
Laplace Divergence Mean (LDM), and Laplace Divergence
Distance (LDD) are proposed. Regarding feature description,
two-dimensional texture feature, three-dimensional shape
feature, and intensity feature are used for quantification.With
regard to the second aforementioned disadvantage, rough set
feature-level fusion is adopted since it can fully retain the
properties of the features without prior knowledge. Finally,
a grid optimizationmodel is employed to optimize the kernel
function of support vector machine (SVM), which is used to
conduct the recognition and detection of pulmonary nodules.
In order to verify the validity and stability, advantages of
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the model, four groups of comparative experiments are per-
formed in this paper, that is, model validation experiments
before and after rough set reduction, model stability experi-
ments before and after rough set reduction, validation exper-
iments of the superiority of the rough set feature-level fusion
model, and comparative experiments with other pulmonary
nodule detection models to compare the performance. The
experimental results show that the method proposed in this
paper can improve, to a certain extent, the rationality of fea-
ture structure and compactness of feature expression, thereby
improving the detection accuracy of pulmonary nodules.

2. Related Theory

The description of ROI features is determined by both
its comprehensiveness (features cannot be “observed” with
“multiperspective” approach if the features amount is too
little) and the accuracy of characterization (more quantized
values diverged from the real information will cause a low
feature discrimination). A large number of noise information
sets will reduce the ROI feature extraction accuracy and affect
the final results of detection. Therefore, for comprehensive
and accurate expression of the morphological structure of
ROI and local features, six new 3-dimensional features are
proposed based on the analysis of ROI for lung CT image.
These new 3-dimensional features are used to qualitatively
analyze and quantitatively characterize the lesions from 2-
dimensional and 3-dimensional perspectives in combination
with other shape features, intensity features, texture features.

2.1. Pulmonary Nodules Features in CT Image

2.1.1. Shape Characteristics. Shape characteristics analyze the
spatial distribution of gray values, by computing local features
at each point in the image. Shape feature is the most intuitive
visual feature, which can be used to describe themainmedical
signs of CT image of pulmonary nodule ROI, such as nodule
sign, lobulation sign, spinous process sign, vacuole sign, and
spicule sign, from the perspectives of geometric shape, edge
roughness, and topology structure. In this paper the extracted
components of the shape features mainly include perimeter,
area, volume, roundness, rectangularity, elongation, Euler
number, Harris, Hu moment, ESV, SCDSTD, and ERCLD.
Here some features are given [22]:

(1) Area

𝑆 =

𝑁

∑

𝑥=1

𝑀

∑

𝑦=1

𝑓 (𝑥, 𝑦) , (1)

where 𝑓(𝑥, 𝑦) is the pixels of the target and𝑀 and𝑁 are the
length and width, respectively.

(2) Perimeter

𝐶 =

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

𝑝 (𝑖, 𝑗) , (2)

where 𝑝(𝑖, 𝑗) is the pixels of the target edge and𝑀 and𝑁 are
the length and width, respectively.

(3) Circularity

𝑅
0
=
𝐶
2

4𝜋𝑆
. (3)

Circularity describes object shape that is close to the
degree of circular, where 𝑆 is the area of the target region and
𝐶 is circumference of the target region. 0 < 𝑅

0
< 1 and 𝑅

0

value reflects the complexity of the measurement boundary;
the shape is more complex and the 𝑅

0
value is more smaller.

(4) Rectangularity

𝑅 =
𝑆

(𝐻 ∗𝑊)
, (4)

where 𝑆 is the area of the target region and𝐻 and,𝑊 are the
length and width, respectively.

(5) Elongation

𝐸 =
min (𝐻,𝑊)
max (𝐻,𝑊)

. (5)

Elongation can distinguish different shapes of the images
(such as circle, square, ellipse, thin and long, and short and
wide), where𝐻 and𝑊 are the length and width, respectively.

(6) Euler Number

𝐸 = 𝐶 − 𝐻, (6)

where 𝐶 is the number of connection parts and 𝐻 is the
number of holes.

(7) External Spherical Volume (ESV). ESV is the ratio of each
ROI 𝐴

𝑖
(maximum diameter is dim(𝐴

𝑖
)) to the External

Spherical Volume VS(𝐴
𝑖
) extracted from three-dimensional

CT image, which reflects the similarity between the region
and the sphere, as shown in Figure 1(b).

Volume (VS (𝐴
𝑖
)) =

4

3
× 𝜋 × (

dim
2
)

3

𝐸
1
(𝐴
𝑖
) =

Volume (𝐴
𝑖
)

Volume (VS (𝐴
𝑖
))
.

(7)

(8) Surface-Center Distance STandard Deviation (SCDSTD).
SCDSTD is the coordinate distance standard deviation of
each individual element 𝐶(𝑆

𝑖
) and regional center 𝐶cen(𝐴 𝑖)

from the surface of each ROI; its value also describes the
similarity with sphere of ROI. If the value is 0, 𝐸

2
(𝐴
𝑖
) is

a standard sphere. With the increase in 𝐸
2
(𝐴
𝑖
) value, the

magnitude of the deviation from the sphere in the region
increases, as shown in Figure 1(c).

𝐸
2
(𝐴
𝑖
) = std(

󵄩󵄩󵄩󵄩𝐶 (𝑆𝑖) − 𝐶cen (𝐴 𝑖)
󵄩󵄩󵄩󵄩

mean (󵄩󵄩󵄩󵄩𝐶 (𝑆𝑖) − 𝐶cen (𝐴 𝑖)
󵄩󵄩󵄩󵄩)
) . (8)

(9) External Rectangle Cross Line Distance (ERCLD). ERCLD
is the distance from center voxel𝐶cen(𝐴 𝑖) of ROI to the center
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Figure 1: Three-dimensional character sketch.

dim(𝐿
𝑖
) (𝑖 = 1, 2, . . . , 12) of its 12 intersecting lines, which

may indicate that the regional voxel is evenly distributed in
the rectangular body, as shown in Figure 1(d).

𝐸
3 (𝐴) =

󵄩󵄩󵄩󵄩mean (𝐶cen (𝐴 𝑖) − 𝐶cen (dim (𝐿 𝑖)))
󵄩󵄩󵄩󵄩

mean (𝐶cen (dim (𝐿 𝑖)))
. (9)

2.1.2. Hu Moment Characteristics. Moments and the related
invariants have been extensively analyzed to characterize the
patterns in images. The moment invariants are independent
of position, size, and orientation but also independent of
parallel projection. Hu [23] was the first person to prove the
central moment invariants. The central geometric moment
invariants are derived based upon algebraic invariants,
including six absolute orthogonal invariants and one skew
orthogonal invariant. The moment invariants have been
proved to be the adequatemeasures for tracing image patterns
about the images translation, scaling, and rotation.

Hu moment invariants define seven values, computed by
normalizing central moments through order three, which
are invariant to object scale, position, and orientation, and a
large number of papers that have significant contribution to

the application of Hu moment. Two-dimensional moments
of a digitally sampled 𝑀 ∗ 𝑁 image that has gray function
𝑓(𝑥, 𝑦) (𝑥 = 1, 2, . . . ,𝑀, 𝑦 = 1, 2, . . . , 𝑁) are given as

𝑀
𝑝,𝑞
=

𝑀

∑

𝑥=1

𝑁

∑

𝑦=1

𝑥
𝑝
𝑦
𝑞
𝑓 (𝑥, 𝑦) 𝑝, 𝑞 = 1, 2, 3, . . . . (10)

The moments 𝑓(𝑥, 𝑦) translated by an amount (𝑎, 𝑏) are
defined as

𝑥 =
𝑚
10

𝑚
00

,

𝑦 =
𝑚
01

𝑚
00

𝜇
𝑝,𝑞
=

𝑀

∑

𝑥=1

𝑁

∑

𝑦=1

(𝑥 − 𝑥)
𝑝
(𝑦 − 𝑦)

𝑞
𝑓 (𝑥, 𝑦)

𝑝, 𝑞 = 1, 2, 3, . . . .

(11)
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When a scaling normalization is applied, the central
moments change as

𝜂
𝑝,𝑞
=

𝜇
𝑝,𝑞

𝜇
𝛾

00

, 𝛾 = (
(𝑝 + 𝑞)

2
) + 1. (12)

In terms of the central moments, the seven moments are
given as

𝐶
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(13)

Hu 7-moment invariants varywidely, in order to compare,
using logarithmic function to compress data, and hence the
actual invariants moment features are 𝐶󸀠

𝐾
:

𝐶
𝐾
=
󵄨󵄨󵄨󵄨󵄨
log
10

󵄨󵄨󵄨󵄨󵄨
𝐶
󸀠

𝐾

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐾 = 1, 2, . . . , 7. (14)

The amended moment invariant features possess transla-
tion invariance, rotational invariance, and scale invariance.

2.1.3. TextureCharacteristics. Tamura texture features, Tamura
texture based on human visual perception in psychological
research, are proposed by Tamura in 1978. Six components of
Tamura texture feature correspond with 6 properties in psy-
chology, three of themare coarseness, contrast, anddirection-
ality, which have the good application value in the texture
synthesis, image recognition, and so on.

Texture is the gray distribution which appears repeatedly
in the space position, so there are some relationships between
two pixels at some distance from each other in image space,
called gray spatial correlation properties in gray image.
GLCM is a common method by studying the relevant rela-
tionship of gray image.

2.1.4. Intensity Features. Gray statistical feature is a quantita-
tivemethod to describe the basic features of two-dimensional
image region; it is called intensity feature from three-dimen-
sional perspective [16]. In this paper, the extracted com-
ponents of intensity features include the mean intensity,

intensity variance, maximum and minimum intensity dif-
ference, skewness, kurtosis, intensity gradient (from inside
to outside), Laplace Divergence Mean (LDM), and Laplace
Divergence Distance (LDD).

(1) Intensity Gradient (from Inside to Outside). For ROI 𝐴
𝑖

with the voxel 𝑆
𝑖
volume greater than 0, morphological

erosion processing is performed continuously and the ratio of
the mean of the excluded area of each erosion processing to
the mean of the last operation (initial value is 0) is calculated
until the ratio is zero. Consider the following equation where
𝑛 is the number of operations.

𝐸
4
(𝐴
𝑖
) =

𝐾

𝑛
. (15)

(2) Laplace Divergence Mean (LDM). According to the
Laplacian convolution results with the original CT image,
it is found that the nodule surrounding area with smaller
gray value difference has a significant different divergence.
Therefore, calculation of Laplace divergence is helpful to
distinguish pulmonary nodules from interfering impurities.

𝐸
5
(𝐴
𝑖
) = mean (𝐴

𝑖
× La) . (16)

(3) Laplace Divergence Distance (LDD). The difference
between the maximum and minimum values of the Laplace
divergence values is used to describe the range of regional
divergence.

𝐸
6
(𝐴
𝑖
) = max (𝐴

𝑖
× La) −min (𝐴

𝑖
× La) . (17)

Table 1 shows the feature set of 42 features based on the
above feature description of ROI. To facilitate subsequent
tests, features are numbered in the order as showed in
Table 1; that is, the shape features are numbered fs1–fs18, the
intensity features are numbered fi1–fi8, and texture features
are numbered ft1–ft16, respectively.

2.2. Rough Set and Attribute Reduction. Rough set theory
(RST), proposed by Pawlak in 1982, is one of the effective
mathematical tools for processing fuzzy and uncertainty
knowledge. Nowadays, RST has been applied to a variety
of fields such as artificial intelligence, data mining, pattern
recognition, and knowledge discovery. Rough set is founded
on the assumption that with every object of the universe
of discourse some knowledge is associated. Objects char-
acterized by the same information are similar in view of
the available information about them. The indiscernibility
relation generated in this way is the mathematical basis of
rough set theory. Any set of all indiscernible objects are called
an elementary set and form a basic granule of knowledge
about the universe. Any union of some elementary sets is
referred to as a crisp set, otherwise the set is rough set.

Definition 1. An information system 𝑆 is a quadruple 𝑆 =
(𝑈, 𝐴, 𝑉, 𝑓), where 𝑈 is a nonempty and finite set of objects,
𝐴 is a nonempty and finite set of attributes, 𝑉 fl ⋃𝑉

𝑎
with

𝑉
𝑎
being the domain of attribute 𝑎, and 𝑓 is an information
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Table 1: ROI feature set.

Feature type Feature vectors Dimensionality

Shape
features (fs)

Perimeter, area, volume,
roundness, rectangularity, length,
Euler’s number, ESV, SCDSTD,
ERCLD, Hu moment

18

Intensity
features (fi)

Mean intensity, intensity
standard variance,
maximum-minimum intensity
difference value of variance,
skewness, kurtosis, intensity
gradient (from inside to outside),
LDM, LDD

8

Texture
features (ft)

Tamura texture features
(contrast, direction, roughness),
GLCM (angular second moment,
moment of inertia, torque deficit,
sum mean, variance, sum
variance, difference variance,
entropy, sum entropy, differential
entropy, information measure,
correlation coefficient, maximum
correlation coefficient)

16

function such that𝑓(𝑥, 𝑎) ∈ 𝑉
𝑎
for every 𝑥 ∈ 𝑈 and every 𝑎 ∈

𝐴. A decision system is an information system (𝑈, 𝐶∪𝐷,𝑉, 𝑓)
with𝐶∩𝐷 = B, where𝐶 and𝐷 are called the conditional and
decision attribute sets, respectively.

For a subset 𝑃 of 𝐴, let us define the corresponding
equivalence relation as

IND (𝑃) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | 𝑓 (𝑥, 𝑎)

= 𝑓 (𝑦, 𝑎) for any 𝑎 ∈ 𝑃}
(18)

and denote the equivalence class of IND(𝑃) which contains
the object 𝑥 ∈ 𝑈 by [𝑥]

𝑃
; that is,

[𝑥]𝑃 = {𝑦 ∈ 𝑈 | (𝑥, 𝑦) ∈ IND (𝑃)} . (19)

The factor set of all equivalence classes of IND(𝑃) is
denoted by 𝑈/𝑃; that is, 𝑈/𝑃 = {[𝑥]

𝑃
| 𝑥 ∈ 𝑈}.

As well known, attribute reduction is one of the key
issues in RST. It is performed in information systems by
means of the notion of a reduct based on a specialization
of the notion of independence due to Marczewski. Up to
now, much attention has been paid to this issue and many
different methods of attribute reduction have been proposed
for decision systems. For example, the reduction approaches
are, respectively, based on partition, discernibility matrix,
conditional information entropy, positive region, and ant
colony optimization approach.

Definition 2. Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information system
and 𝑃 ⊆ 𝐴. For a subset𝑋 of 𝑈, 𝑅

𝑃
(𝑋) = {𝑥 ∈ 𝑈 | [𝑥]

𝑃
⊆ 𝑋}

and 𝑅𝑃(𝑋) = {𝑥 ∈ 𝑈 | [𝑥]
𝑃
∩ 𝑋 ̸= B} are called 𝑃-lower and

𝑃-upper approximations of𝑋, respectively.

H1

H2

H

r

r

Figure 2: Optimal hyper plane.

Definition 3. Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information system
and let 𝑃 and 𝑄 be two subsets of 𝐴. Then, POS

𝑃
(𝑄) =

⋃
𝑋∈𝑈/𝑄

𝑅
𝑃
(𝑋) is called 𝑃-positive region of 𝑄, where 𝑅

𝑃
(𝑋)

is the 𝑃-lower approximation of 𝑋.

Definition 4. Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be a decision system, 𝑎 ∈ 𝐶,
and 𝑃 ⊆ 𝐶. If POS

𝐶
(𝑄) = POS

𝐶\{𝑎}
(𝑄), 𝑎 is said to be 𝐷-

dispensable in 𝐶; otherwise, 𝑎 is said to be 𝐷-indispensable
in𝐶. The set of all the𝐷-indispensable attributes is called the
core of 𝑆 and denoted by Core(𝑆). Furthermore, if POS

𝑃
(𝑄) =

POS
𝐶
(𝑄) and each of the attributes of 𝑃 is 𝐷-indispensable,

then 𝑃 is called a reduct of 𝑆.

2.3. SVM and Its Optimization. SVM is a pattern recognition
method developed from statistical learning theory based on
the idea of structural risk minimization principle. In the case
of ensuring classification accuracy, SVM can improve the
generalization ability of the learning machine by maximizing
the classification interval. The biggest advantage of SVM
is that it overcomes the overlearning and high dimension
both of which lead to computational complexity and local
extremum problems. A reliable classification model based
on SVM is urgently needed for the study of hospitalization
expenses of patients with gastric cancer.

SVM deals with linearly separable data (Figure 2); the
assumption is that there are data sets 𝑆 = {𝑥

1
, . . . , 𝑥

𝑛
} and data

marker 𝐺 = {𝑦
1
, . . . , 𝑦

𝑛
}, where 𝑥

𝑖
is the input space vector of

the data sample and 𝑦
𝑖
records the category of the sample.

The aim of SVM is to find an optimal hyper plane 𝐻 to
separate these two samples andmake the largest interval.The
optimal hyper plane𝐻 is expressed as

𝑤
𝑇
𝑥 + 𝑏 = 0, (20)

where 𝑤 is the weight vector and 𝑏 is the threshold.
This problem is transformed into the optimal problem of

𝑤 and 𝑏:

min
𝑤,𝑏

𝑟 (𝑤) =
1

2
‖𝑤‖

𝑦
𝑖 ((𝑤 ⋅ 𝑥) + 𝑏) ≥ 1, 𝑖 = 1, . . . , 𝑛.

(21)
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In order to simplify the formula, the Lagrange dual is
introduced to meet the requirements of KKT (Karush-Kuhn-
Tucker). The objective function is transformed into

min
𝛼

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑦
𝑖
𝑦
𝑗
𝛼
𝑖
𝛼
𝑗
(𝑥
𝑖
⋅ 𝑥
𝑗
) −

𝑛

∑

𝑗=1

𝛼
𝑗

s.t.
𝑛

∑

𝑖=1

𝑦
𝑖
𝛼
𝑖
= 0, 𝛼

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(22)

As for the linearly inseparable data, the penalty parameter
𝐶 and relaxation variable 𝜉 are introduced in the constraint
condition, thus the generalization ability of SVM is increased,
and the function is transformed into

min
𝛼

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑦
𝑖
𝑦
𝑗
𝛼
𝑖
𝛼
𝑗
(𝑥
𝑖
⋅ 𝑥
𝑗
) −

𝑛

∑

𝑗=1

𝛼
𝑗

s.t.
𝑛

∑

𝑖=1

𝑦
𝑖
𝛼
𝑖
= 0, 0 ≤ 𝛼

𝑖
≤ 𝐶,

(23)

where 𝐶 is the artificial setting parameter. According to the
practical experience, the bigger 𝐶, the greater separation
interval. At the same time, it will increase the risk of
generalization.

The final classification function is

𝑓 (𝑥) = sgn{(
𝑛

∑

𝑖=1

𝑎
∗

𝑖
𝑦
𝑖
(𝑥
𝑖
⋅ 𝑥)) + 𝑏

∗
} . (24)

For nonlinear classification data, SVM transforms them
into linearly separable data in a high-dimensional space via
nonlinear mapping of kernel function, and the optimal hyper
plane is found in high-dimensional space. The kernel func-
tion which meets the mercer kernel condition corresponding
to the transvection of a spatial transformation is used to
realize the nonlinear transformation of linear classification.

The corresponding kernel function is defined as

𝐾(𝑥
𝑖
, 𝑥) = (𝜑 (𝑥

𝑖
) , 𝜑 (𝑥)) . (25)

At this point the final classification function is

𝑓 (𝑥) = sgn{(
𝑛

∑

𝑖=1

𝑎
𝑖
𝑦
𝑖
𝐾(𝑥
𝑖
⋅ 𝑥)) + 𝑏} . (26)

Penalty factor 𝐶 and parameter 𝑔 of the kernel function
play an extremely important role in the performance of SVM
classification. In order to obtain the optimal classification
results, grid optimization model is used for optimization in
this paper. In grid optimization model, the parameters to be
searched are expressed in the form of grids in a certain space,
and the optimal parameters are selected by traversing all the
grids. Therefore, grid optimization model has the advantages
of simplicity, convenience, good stability, and easiness to get
the global optimal solution [24]. In the learning process of
SVM, 10-fold cross-validation is used to calculate the kernel

function parameters and penalty coefficient with the optimal
classification performance, which are then applied to the
SVM classifier for recognition and detection of pulmonary
nodules. Finally, sensitivity, specificity, accuracy, and pro-
cessing time are used as indexes to evaluate the detection of
relevant experiments.

3. Pulmonary Nodule Detection Model

In this paper, CT images of 70 cases of patients with pul-
monary nodules are used. The images are firstly segmented
[7] to three different types of pulmonary nodules (solitary
pulmonary nodules or SPN, vascular adhesion pulmonary
nodules or VAPN, and pleural adhesion pulmonary nodules
or PAPN), which are marked by radiologists, as well as a
large number of nonnodular areas, including blood vessels,
bones, and alveoli. Forty-two feature components charac-
terizing ROI are extracted from the 2-dimensional and 3-
dimensional perspectives, including six new 3-dimensional
features proposed in this paper. They are composed of 18
shape features, 8 intensity features, and 16 texture features.
The extracted feature set (identified as the FS) is discretized
and normalized. Feature-level fusion of the improved feature
data is performed for five times using rough set model (since
the reduction of rough set feature subset is not unique, in this
paper, the extracted feature sets are reduced for five times
and are identified as RS1, RS2, RS3, RS4, and RS5). Feature
subset RS1 is used for comparative experiment. Finally, SVM
parameters are optimized using grid optimization model,
and the improved SVM is used in the following four sets
of comparative experiments: comparative analysis of the
effectiveness and stability of classification before and after
rough set reduction of features; comparative analysis of the
recognition performance before and after feature-level fusion
based on rough set or PCA; comparative analysis of the
recognition performance of our proposed method and other
methods. Based on the above views, we present a flow chart
of pulmonary nodule detection model as shown in Figure 3.

4. Results and Discussion

4.1. Experimental Environments. In this paper, the hardware
and software environments are as follows.

Software Environments. Windows 7 OS, the Matlab R2014b,
ImageJ 1.48 u, and LibSVM.

Hardware Environments. Intel Core i5 4670-3.4GHz, 8.0GB
of memory, and 500GB hard disk.

Experimental Data. CT images of 70 cases of patients with
pulmonary nodules are collected as experimental samples,
which are marked by radiologists, with a size of 512 × 512
and a thickness of 2mm. They are composed of 2232 CT
images from 38 cases of patients with solitary pulmonary
nodules (SPN), 17 cases of patients with vascular adhesion
pulmonary nodules (VAPN), and 15 cases of patients with
pleural adhesion pulmonary nodules (PAPN), respectively.
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Figure 3: Flow chart of pulmonary nodule detection model.

Figure 4 shows the representatives of each type of pulmonary
nodules and the corresponding segmentation results.

In this paper, 42-dimensional features of 70 marked
pulmonary nodular areas and 70 randomly selected nonn-
odular areas are extracted. Table 2 shows the 42-dimensional
feature values of the lung nodular and nonnodular areas.
shape features are identified as the fs, intensity features are
identified as the fi, and texture features are identified as the ft.
In order to intuitively understand the distribution of different
feature values and the discrimination comparison, external
sphere volume (ESV) ratio and the standard deviation of

surface-center distance (SCD) are calculated and plotted as
box diagram as shown in Figure 5.

4.2. Feature-Level Fusion Based on Rough Set. In order to
avoid the attribute value of small range of values dominated
by that of large range of values and reduce the complexity
of the statistical computation process, the extracted feature
sets are firstly preprocessed by normalizing data with bigger
difference and linearly mapping the data to [0, 1]. The
preprocessed feature data are then fused for five times using
rough set model. The fusion results are shown in Table 3.
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(a) Original image of SPN (b) Segment result of SPN (c) Original image of VAPN

(d) Segment result of VAPN (e) Original image of PAPN (f) Segment result of PAPN

Figure 4: Pulmonary nodule segmentation results.

Table 2: Feature values of pulmonary nodular areas and nonnodular areas.

Shape features (fs) Intensity features (fi) Texture features (ft)
Nodular areas Nonnodular areas Nodular areas Nonnodular areas Nodular areas Nonnodular areas
95 78 59.06 91.0987 8.3104 5.4016
159 128 14.06 4.4872 12.041 12.5216
284 178 0.5956 −0.39568 0.4303 0.0067
0.6517 0.211 2.7348 1.8669 0.7709 0.7275
0.6961 2.1587 55.1865 14.3481 0.7169 0.9865
0.3529 0.7778 0.5 1 0.8059 5.3894
0 1 13.9598 20.6044 0.1942 0.0487
0.3186 1.0295 729.905 354.6389 0.7708 0.7273
0.0686 1.0197 0.8059 5.3498
0.0042 0.0458 3.5042 5.0971
0.0021 0.0295 0.6514 0.8453
0.0013 0.0268 0.0971 0.6143
0.0005 0.0011 4.4033 82.1862
0 1 0.0691 5.0061
14 9 −0.5785 −0.4245
0.5356 0.5571 2.307 3.2239
0.3072 0.501788
0.1738 0.207122
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Figure 5: Pulmonary nodule area and the pulmonary nodules boxplot. “+” refers to upper and lower bounders of ESV value and SCDSTD
value.

Table 3: Feature reduction based on rough sets.

Feature
subset Reduction results Dimensionality

RS1
fs4, fs16, fs17, fs18, fi2, fi4, fi6, fi7,
fi8, ft2, ft4, ft5, ft6, ft7, ft8, ft9,
ft10, ft11, ft13, ft14, ft15, ft16

21

RS2
fs4, fs9, fs16, fs18, fi1, fi2, fi5, ft2,
ft5, ft6, ft8, ft9, ft10, ft11, ft12, ft13,

ft15
17

RS3
fs9, fs17, fs18, fi1, fi2, fi5, fi7, fi8,
ft2, ft6, ft7, ft8, ft9, ft10, ft11, ft12,

ft14, ft15, ft16
19

RS4
fs9, fs16, fs18, fi1, fi2, fi5, fi7, fi8,
ft5, ft6, ft7, ft8, ft9, ft10, ft11, ft12,

ft14, ft15, ft16
19

RS5
fs9, fs16, fs17, fs18, fi1, fi2, fi4, fi5,
fi7, fi8, ft2, ft5, ft6, ft7, ft8, ft9, ft10,

ft12, ft15, ft16
20

4.3. Pulmonary Nodule Detection with
SVM Based on Grid Optimization

4.3.1. The Model Effectiveness Experiment. Tenfold cross-
validation is used to calculate the accuracy, sensitivity, speci-
ficity, and processing time of classification before and after
rough set reduction (RS1(70 × 21) obtained from experiment
one is used as the data set after reduction), and the recogni-
tion performance of classifier is compared before and after
reduction. The results are shown in Table 4.

Experimental results show that pulmonary nodule
detection accuracy is increased significantly after feature-
level fusion, with a decrease in the missed diagnosis rate,
reflected by the increased sensitivity, and the misdiagnosis
rate, reflected by the increased specificity. The processing
time is also shorter after reduction. These results indicate
that the feature-level fusion of the extracted feature set with

42 dimensionalities based on rough set model is effective,
which not only improves the compactness of the feature set
(to eliminate redundancy and low degree of differentiation
features component), but also corrects the abnormal data of
the feature set, thereby further improving the performance of
pulmonary nodule detection. Table 5 shows the effectiveness
of the five rough set reduction subsets.

4.3.2. The Model Stability Experiment. The feature data of
pulmonary nodules are tested with RS1(70∗21) as the dataset
for classification for five rounds with a different ratio of
training set over testing set of 50/20, 40/30, 35/35, 35/35, or
20/50. Each round of test is carried out with a randomly
selected ratio of training set over testing set and themeanof 10
test results is used as the corresponding accuracy, sensitivity,
specificity, and running time of the model. The results are
shown in Table 6.

The experimental results show that, with the decrease
in the ratio of training set over testing set, the decrease in
the classification accuracy of feature subset after rough set
reduction is not obvious, whereas that of feature set before
rough set reduction is fluctuating to certain extent (Figure 6
is more intuitive).These results indicate that the classification
stability of the feature level fusion model based on rough set
is higher and is less susceptible to the interference of sample
data. Table 7 shows the stability of 5 groups feature subset after
rough set reduction.

4.3.3. The Superiority of Feature-Level Fusion Model Based
on Rough Set. Since PCA is a well-developed model, char-
acterized by simple calculation and easy programming, it
has become the preferred dimension reduction method for
most of the feature-level fusion model in order to analyze
comparatively two types of feature-level fusions. In this paper,
PCA-based feature-level fusion of the extracted feature sets is
performed at the same time, and the tenfold cross-validation
results are shown in Table 8. Figure 7 shows the classification
performance of the two types of feature-level fusion methods
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Table 4: Statistics of effectiveness before and after rough set reduction.

Serial number Accuracy (%) Sensibility (%) Specificity (%) Processing time (s)

Before reduction

1 96.42 92.86 100 1.0610
2 91.96 83.93 100 0.6170
3 95.54 100 91.07 0.5490
4 89.28 100 78.57 0.5630
5 95.54 91.07 100 0.5470
6 98.21 96.43 100 0.5460
7 94.64 89.29 100 0.5460
8 95.53 91.07 100 0.5460
9 91.96 83.93 100 0.5460
10 97.32 100 96.64 0.5300

Mean 94.64 92.86 96.43 0.6051

After reduction (Rs1)

1 100 100 100 0.9370
2 100 100 100 0.4360
3 100 100 100 0.3870
4 100 100 100 0.4210
5 100 100 100 0.4210
6 100 100 100 0.3900
7 100 100 100 0.4060
8 91.67 100 83.33 0.4060
9 100 100 100 0.3740
10 100 100 100 0.3930

Mean 99.17 100 98.33 0.4571
Increase after reduction 4.53 7.14 1.9 0.148

Table 5: Effectiveness of rough set reduction subsets.

Subset Average
accuracy (%)

Average
sensitivity (%)

Average
specificity (%)

Processing
time (s)

RS1 99.17 100 98.33 0.4571
RS2 97.5 96.67 98.33 0.4650
RS3 99.17 100 98.33 0.4656
RS4 100 100 100 0.4731
RS5 98.33 98.33 98.33 0.4850
Mean 98.83 99 98.66 0.4672

(feature subset RS1 fromTable 3 is used, and the running time
is 100 × actual time).

Experimental results show that various performance
indicators of the feature-level fusion model based on rough
set are better than those based on PCA, indicating that the
rough set is more suitable than PCA to eliminate redundant
information.

4.3.4. Comparison with Other Pulmonary Nodule Detection
Methods. Pulmonary nodule detection accuracy and False
Positives per scan (FP/s) are used as the evaluation indexes
of pulmonary nodule detection methods to compare and
analyze the method proposed in this paper and other five

92
93
94
95
96
97
98
99

100
101

50/20 40/30 35/35 30/40 20/50

Before reduction
After reduction

Figure 6: Comparative results of feature subsets before and after
rough set reduction.

detectionmethods of pulmonary nodules (the optimal detec-
tion accuracy is used for all detection methods). The results
are shown in Table 9 (Pr: private database; L: LIDC).

Experimental results show that the proposed method is
superior to the other pulmonary nodule detection methods
to a certain extent, indicating that this method not only
improves the comprehensiveness and accuracy of the feature
description of ROI by supplementing and improving the
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Table 6: Stability statistics of rough set reduction subsets.

Training
set/testing set Accuracy (%) Sensitivity (%) Specificity (%) Running time (s)

Before fusion

50/20 97.35 94.71 100 0.4873
40/30 96.53 93.08 98.32 0.3846
35/35 95.83 92.39 97.79 0.4254
30/40 96.16 95.58 96.74 0.3560
20/50 94.88 94.63 95.86 0.4236
Mean 96.15 94.08 97.742 0.4154

After fusion (Rs1)

50/20 99.71 99.41 100 0.2684
40/30 98.96 99.58 98.46 0.2568
35/35 98.65 99.23 98.08 0.2382
30/40 98.37 98.60 98.14 0.2646
20/50 98.25 97.67 98.84 0.2636
Mean 98.79 98.84 98.70 0.2583

Table 7: Classification performance of rough set reduction subset.

Subset
Average
accuracy

(%)

Average
sensitivity

(%)

Average
specificity

(%)

Running
time (s)

RS1 99.17 100 98.33 0.2583
RS2 97.5 96.67 98.33 0.2870
RS3 99.17 100 98.33 0.2560
RS4 100 100 100 0.2531
RS5 98.33 98.33 98.33 0.2656
Mean 98.834 99 98.66 0.2620

Table 8: Classification performance of feature reduction based on
PCA.

Serial
number

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

10 ×
running
time (s)

1 91.67 83.33 100 0.9970
2 96.74 93.48 100 0.4830
3 96.74 93.48 100 0.4880
4 98.91 100 97.83 0.4950
5 93.48 86.96 100 0.4950
6 96.74 100 93.48 0.5140
7 96.74 100 93.48 0.5120
8 94.57 89.13 100 0.4890
9 97.83 95.65 100 0.4990
10 95.65 93.48 97.83 0.5180
Mean 95.91 93.55 98.26 0.5490

feature components, but also improves the firmness of the
feature set by integrating the concept of feature-level fusion
based on rough set to exclude the redundant features and data
with irregular information, thereby improving the overall
pulmonary nodule detection performance.

Table 9: Comparison of the performance of different lung nodule
detection methods.

Author Database Nodule
numbers

Accuracy
(%) FP/s

Santos et al.
[11] L 260 88.4 1.17

Magalhães
Barros Netto
et al. [12]

L 48 90.65 0.138

Ye et al. [13] Pr 220 90.2 8.2
Tan et al. [14] L 172 87.5 4
Cascio et al.
[16] L 148 97 6.1

Our method Pr 70 99.17 0.47

Rough set

Accuracy Sensitivity Specificity Running time

PCA

0
20
40
60
80

100
120

Figure 7: Comparison of two feature-level fusion models.

5. Conclusions

In this paper the research status quo of pulmonary nodule
detection methods is analyzed and a pulmonary nodule
detection model is proposed based on rough set based
feature-level fusion. To address the issues that the feature
description is insufficient and the characterization is inac-
curate in the process of feature extraction, six new 3D
features, in combination with other 2D and 3D features, are
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proposed to extract and quantify the feature information of
ROI in this model. A rough set based feature-level fusion
is employed to reduce the dimensionality of the feature sets
since there is redundant information in the extracted high-
dimensional features. In addition, a grid optimization model
is adopted to optimize the SVM kernel function, which
is used as the classifier for detection and recognition of
pulmonary nodule. Finally, the pulmonary nodule detection
performance of the proposed method is verified with four
groups of comparative experiments.The experimental results
show that the proposed pulmonary nodule detectionmethod
based on rough set based feature-level fusion is effective, with
the classification accuracy that can basicallymeet the require-
ments of medical imaging for the detection of pulmonary
nodules and therefore is of great value for the detection of
pulmonary nodules and auxiliary diagnosis of lung cancer.
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