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Objective: To predict preoperative microvascular invasion (MVI) risk grade by analyzing
the radiomics signatures of tumors and peritumors on enhanced magnetic resonance
imaging (MRI) images of hepatocellular carcinoma (HCC).

Methods: A total of 501 HCC patients (training cohort n = 402, testing cohort n = 99) who
underwent preoperative Gd-EOB-DTPA-enhanced MRI and curative liver resection within
a month were studied retrospectively. Radiomics signatures were selected using the least
absolute shrinkage and selection operator (Lasso) algorithm. Unimodal radiomics models
based on tumors and peritumors (10mm or 20mm) were established using the Logistic
algorithm, using plain T1WI, arterial phase (AP), portal venous phase (PVP), and
hepatobiliary phase (HBP) images. Multimodal radiomics models based on different
regions of interest (ROIs) were established using a combinatorial modeling approach.
Moreover, we merged radiomics signatures and clinico-radiological features to build
unimodal and multimodal clinical radiomics models.

Results: In the testing cohort, the AUC of the dual-region (tumor & peritumor 20 mm)
radiomics model and single-region (tumor) radiomics model were 0.741 vs 0.694, 0.733
vs 0.725, 0.667 vs 0.710, and 0.559 vs 0.677, respectively, according to AP, PVP, T1WI,
and HBP images. The AUC of the final clinical radiomics model based on tumor and
peritumoral 20mm incorporating radiomics features in AP&PVP&T1WI images for
predicting MVI classification in the training and testing cohorts were 0.962 and
0.852, respectively.

Conclusion: The radiomics signatures of the dual regions for tumor and peritumor on AP
and PVP images are of significance to predict MVI.
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1 INTRODUCTION

Hepatocellular carcinoma (HCC) has a high recurrence rate,
with a five-year recurrence rate of 70% and 35% after liver
resection and liver transplantation, respectively (1). Several
findings suggest that microvascular invasion (MVI) is essential
in the prognosis of HCC patients (2–4). Microvascular invasion
is the formation of nested clusters of cancer cells in the lumen of
endothelium-covered vessels on a microscopic scale (5), and it
can only be detected using pathological diagnostics. In recent
years, MVI has attracted increasing attention from clinicians,
and the more severe the degree of microvascular invasion, the
earlier the recurrence and the shorter the overall survival time of
patients (6, 7). Zhao et al. (8) identified significant differences in
the prognosis of HCC patients with different MVI risk grades.
Furthermore, the cumulative five-year postoperative survival and
tumor-free survival rates in the high-risk MVI group were only
25.4% and 15.8%, respectively, significantly worse than the low-
risk MVI and no-MVI groups. Predicting preoperative MVI risk
grading could help clinicians in providing personalized
treatments to patients with high-risk HCC. Furthermore,
several studies have illustrated that among HCC patients
presenting with MVI, the anatomical liver resection group has
a higher recurrence-free survival rate than the non-anatomical
liver resection group (9, 10). This clearly demonstrates the
importance of preoperative MVI prediction for improved
prognosis of HCC patients.

Several scholars have attempted to predict MVI using
hematologic indicators, such as serum alpha-fetoprotein (AFP)
(11) or imaging features such as peritumoral hypointensity in the
hepatobiliary phase (12, 13), arterial peritumoral enhancement
(14), and nonsmooth tumor margins (12, 14) to find a reliable
and non-invasive method for preoperative diagnosis of MVI.
Although the results showed a correlation between AFP or these
imaging features and MVI, the criteria for determining the AFP
threshold value have not been identified. These imaging features
lacked objectivity and were greatly influenced by the knowledge
base, diagnostic experience, and work status of radiologists.

In recent years, with the advent of radiomics technology,
some scholars have been extracting signatures from CT or MRI
images that are difficult to perceive with human eyes, and
building models to preoperatively predict negative or positive
hepatocellular carcinoma MVI using automatic algorithms.
Their findings demonstrate that radiomics signatures on
radiological images are promising for preoperative prediction
of MVI (15–28). Furthermore, attempts have been made to
predict MVI preoperatively using tumor and peritumor
radiomics signatures. Microvascular invasion is mostly
common in small portal vein branches inside paracancerous
liver tissue (29). However, whether peritumor signatures are
valuable in predicting MVI is controversial.

Feng et al. (15) used Gd-EOB -DTPA-enhanced MRI
radiomics signatures to predict MVI and found that peritumor
signatures are important in MVI prediction. They also realized
that the dual-region (tumor and peritumor; 10 mm) radiomics
model was superior to the tumor radiomics model. In contrast,
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Xu et al. (24) found that the dual-region (tumor and peritumor; 5
mm) radiomics model did not highlight any advantages in
predicting MVI compared to the tumor-based radiomics
model. This discrepancy may be due to inconsistent imaging
methods and peritumor extent. Therefore, to explore the impact
of dual-region radiomics signatures of the tumor and peritumor
on MVI prediction, this study aimed to develop enhanced MRI
radiomics models with different ROIs (including tumor, tumor &
peritumor 10 mm, and tumor & peritumor 20 mm) for
preoperative prediction of MVI risk grades.
2 METHODS

2.1 Patient Data Collection and Follow-Up
2.1.1 Inclusion and Exclusion Criteria
We retrospectively analyzed a total of 501 HCC patients who met
the inclusive criteria from June 2017 to July 2020. All patients
were randomly divided two cohorts (4:1): a training cohort
(n = 402) and a testing cohort (n = 99). The inclusion criteria
included: (i) Gd-EOB-DTPA-enhanced MRI within one month
before surgery; (ii) pathologically confirmed HCC; and (iii)
curative surgical resection or liver transplantation. The
exclusion criteria included: (i) history of recurrent HCC or
HCC combined with other primary tumors; (ii) poor image
quality; (iii) MRI showed large vessel cancer thrombus; and (iv)
history of preoperative anti-cancer treatment. This study was
approved by the ethical review committee of the First Affiliated
Hospital of the Army Medical University. Patients were
exempted from providing informed consent.

2.1.2 Image Acquisition
Pre-scan preparation required the patients to fast and abstain
from food and drinks for over six hours. Breathing training,
which involved breath-holding in a calm state, was provided. A
3.0T MRI (magnetom trio, siemens healthcare, erlangen,
Germany), 12-channel phased-array body coil, and high-
pressure injector were used for image acquisition. The
positioning image, in-phase and opposed-phase T1-weighted
imaging (T1WI), and dynamic three-dimensional volumetric
interpolated breath-hold examination (3D-VIBE) flat scan were
obtained before MRI enhancement. Post-contrast dynamic 3D-
VIBE was performed at the arterial phase (30 s), portal venous
phase (70 s), transitional phase(3 min) and hepatobiliary phase
(15min) after a rapid bolus injection of contrast agent
(Primovist; Bayer Schering Pharma, Berlin, Germany) with a
rate of 1 mL/s, followed by a 20 mL saline flush. T2-weighted
images were obtained with a technique of half-Fourier
acquisition single-shot fast spin-echo sequence. Diffusion-
weighted imaging (DWI) adopts a breathing- triggered
technique at b values of 0, 50, 400, and 800 s/mm2, and the
apparent diffusion coefficient (ADC) was calculated using a
single exponential function with b values of 0 and 800 s/mm2.
Susceptibility weighted imaging (SWI) adopts high-resolution,
3D gradient echo and 3D fully flow-compensated sequence
for scanning.
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2.1.3 Clinical and Imaging Data
Information including gender, age, cirrhosis, hepatitis B surface
antigen (HBS Ag), platelet count (PLT), serum albumin (ALB),
alanine transarninase (ALT), aspertate aminotransferase (AST),
alkaline phosphatase (ALP), serum total bilirubin (TBIL), serum
a-fetoprotein (AFP), activated partial thromboplastin time
(APTT), prothrombin time (PT), international normalized
ratio (INR) and other relevant details were collected from the
electronic medical record system and laboratory tests. Patients
were evaluated and classified according to MRI manifestations
and laboratory tests using liver function grading criteria
(Child-Pugh).

AllMRI image featureswere analyzed jointly by two radiologists
with three and four years of diagnostic abdominal imaging
experience, respectively. Then the results were reviewed by two
senior doctors and cross-reviewed. If there is any dispute, the final
decisionwill bemade after discussion by two doctors. If there is any
dispute, the final decision will be made after discussion by two
doctors. During the image analysis, the four aforementioned
radiologists did not refer to clinical laboratory tests, other
imaging tests, or postoperative pathological diagnoses. The
assessment of imaging features included the number of tumors,
the maximum length of the tumor, satellite noduels, tumor
morphology, tumor envelope integrity, intra-tumor hemorrhage,
intra-tumor fat, arterial peritumor enhancement, and hepatobiliary
peritumor hypointensty. The maximum length of the tumor is
measured in the coronal, sagittal, or axial plane. The capsule is
defined as the portal venous phase or delayed phase, with annular
high enhancement around the lesion (30). The state of the capsule is
divided into two types: intact, incomplete or absent. Satellite
noduels mainly refers to the small tumor focus with a diameter ≤
2cmwithin the rangeof themain tumor≤ 2cm (5). The shape of the
tumor was evaluated as round or irregular. Intratumoral
hemorrhage defined as low signal intensity in SWI phase,
intratumoral fat defined as high signal intensity in the in- phase
and low signal intensity in the opposed-phase. Peritumoral
enhancement in arterial phase defined as obvious crescent or
patchy enhancement in arterial phase, but consistent with hepatic
parenchymaenhancement inportal venousphase (31). Peritumoral
hypointensity in the hepatobiliary phase is defined as patchy
abnormal signal shadow around hepatobiliary tumor, and the
signal intensity is lower than that of normal liver parenchyma (32).

2.1.4 Evaluation of Pathological MVI
Two pathologists assessed the MVI status of all HCC cases by
examining the hematoxylin-eosin (HE) stained sections under a
microscope. The Guidelines for the Standardized Pathological
Diagnosis of Primary Liver Cancer (2015 edition) were used to
gradeMVI risk. The three risk levels of MVI includedM0: noMVI
detected; M1 (low-risk group): 0<the number of MVI ≤ 5 and
MVI occurred in the proximal paracancerous liver(<1cm); M2
(high-risk group): the number of MVI > 5 MVI or MVI occurred
in the distal paracancerous liver tissue area (> 1cm) (29).

2.1.5 Follow-Up Visits
The endpoint of this study, which was December 31, 2020, was
considered the date of recurrence. The time from the first
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postoperative day to tumor recurrence or termination for
follow-up observation was referred to as recurrence-free
survival (RFS). Postoperative recurrence was mainly detected
using CT, MRI, ultrasonography and other imaging
examinations, combining with laboratory examinations, such
as serum AFP at the same time. The time of recurrence was
recorded after the diagnosis of recurrence.

2.2 Enhanced MRI Radiomics Analysis
Radiomics analyses were performed at uAl-Research-Portal
(Shanghai United Imaging Intelligence Co., Ltd), a clinical
research platform written in the Python programming
language (version 3.7.3, https://www.python.org). The widely
used software package Py Radiomics (https://pyradiomics.
readthedocs.io/en/latest/html) is embedded in this platform.
Enhanced MRI radiomics analysis included annotation of
tumor lesions and peritumor extension, extraction and
selection of radiomics signatures, and model building (Figure 1).

2.2.1 Labeling of Tumor Lesions and
Peritumor Extension
Two physicians with three and four years of diagnostic
abdominal MRI experience, respectively, selected plain T1WI,
arterial phase (AP), portal venous phase (PVP), and
hepatobiliary phase (HBP) sequences to label tumor lesions on
a 3D slicer. The annotation results of all tumor lesions were
validated by two radiologists with nine years of experience in
diagnostic abdominal imaging. The annotation of 304 MRI
liver data was completed for T1WI, resulting in a preliminary
version of the automated liver segmentation model for
T1WI. The T1WI liver segmentation was also extended to AP,
PVP, and HBP images using the alignment and fine-tuning.
Furthermore, the original tumor lesions were extended by 10
mm and 20 mm, respectively, in the uAl-Research-Portal
(Shanghai United Imaging Intelligent Medical Technology Co.,
Ltd.). The extension beyond the boundary of the liver was
adjusted by combining the results of the liver segmentation
model (Figure 2).

2.2.2 Extraction and Selection of Radiomics
Signatures
The images were imported into uAl-Research-Portal (Shanghai
United Imaging Intelligent Medical Technology Co., Ltd.) and
preprocessed by resampling all voxels of images to 1 × 1 × 1 mm3

using the 3D nearest neighbor interpolation method. Then, 2,600
radiomics signatures were extracted within the lesion annotation
range, respectively from T1WI of different ROI (tumor edge,
tumor and peritumor 10 mm, and tumor and peritumor 20 mm),
AP, PVP, and HBP modalities. In the training cohort, signatures
were selected using the least absolute shrinkage and selection
operator (Lasso) algorithm. The results of multiple ROI
signatures selection with the same modality were merged to
eliminate the possible influence of distinct radiomics types of
signatures after signatures selection. We selected 85, 185, 178,
and 62 radiomics signatures as the most critical for MVI risk
grading on T1WI, AP, PVP, and HBP, respectively.
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FIGURE 1 | Workflow of radiomics analysis. The radiomics workflow started with labeling of tumor lesions and peritumor extension in MR images. After that,
radiomic features including firstorder, shape, gray-level co-occurrence matrix (GLCM), gray-Level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM),
gray level difference method (GLDM) and neighborhood gray-tone difference matrix (NGTDM) were extracted within the tumor and peritumor dual-region. Next, least
absolute shrinkage and selection operator (LASSO) were used for the radiomic feature selection. Finally, unimodal radiomics models and multimodal radiomics
models based on different regions of interest (ROIs) in the tumor and peritumor was developed.
A B C

D E F

FIGURE 2 | Labeling of tumor lesions and peritumor extension. First, radiologists manually draw the volume(VOI) of the tumor (A, B). On the bases of VOI entire of
the tumor, a region with 10-mm and 20-mm distance to tumor surface were automatically reconstructed (C). 3-dimensional view of the VOI entire, VOI (tumor &
peritumor 10 mm) and VOI (tumor & peritumor 20 mm) respectively were showed in Picture (D–F).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Radiomics Signatures Predict Microvascular Invasion
2.3 Model Building
2.3.1 Building Unimodal Radiomics Models Based
on Different ROIs in the Tumor and Peritumor
Box-Cox transformation was performed on radiomics signatures
after selecting T1WI, AP, PVP, and HBP modal features.
According to above phases, Logistic algorithm was used to
build unimodal radiomics models based on tumor, tumor and
peritumor 10 mm, and tumor and peritumor 20 mm [T1WI (0\
10\20), AP (0\10\20), PVP (0\10\20), HBP (0\10\20)] in the
training cohort. In addition, their ability to predict MVI was
tested in the testing cohort.

2.3.2 Building Multimodal Radiomics Models Based
on Different ROIs in the Tumor and Peritumor
Tumor-based unimodal radiomics models were combined to
create an unexpanded multimodal peritumor radiomics model.
The prediction probabilities of each modality corresponding to
the MVI category were summed to determine the final prediction
sequence. The best tumor-based radiomics model for ROI was
selected based on the AUC. The combination modeling method
described above was then used to create multimodal radiomics
models with different ROIs for tumor and peritumor (10 mm
and 20 mm) accordingly.

2.3.3 Building Clinical Radiomic Model
The radiomic model with the best predictive performance for
MVI risk grading was selected based on the AUC. We combined
the essential clinical and radiological features selected using the
Lasso algorithm with the corresponding unimodal radiomics
signatures in the best radiomics model to build a unimodal
clinical radiomics model. We also established a multimodal
clinical radiomics model using the above-combined
modeling approach.

2.4 Statistical Analysis
Statistical analysis was performed using R software. The rank
sum test, one-way ANOVA, and chi-square test were used to
analyze statistical differences between clinical indicators and
radiological signals in M0, M1, and M2 groups. The ROC
curves of different models were plotted, while AUC values
were calculated using PyCharm software. Survival curves were
plotted using Kaplan-Meier and tested using the two-sided log-
rank test. A two-tailed p value less than 0.05 was considered
statistically significant.
3 RESULTS

3.1 Clinical and Imaging Features
of Patients
A total of 501 patients met the inclusive and exclusive criteria,
with 252 (50.3%) patients were pathologically diagnosed as MVI
negative and 249 (49.70%) patients were pathologically identified
as MVI positive: 207 (41.32%) in group M1 and 42 (8.38%) in
group M2. The three groups were statistically different in INR,
AFP, Child-Pugh, number of nodes, shape, arterial peritumoral
Frontiers in Oncology | www.frontiersin.org 5
enhancement, peritumoral hypointensity in the hepatobiliary
phase, tumor diameter, intratumoral hemorrhage, satellite foci,
and envelope (p < 0.05), but not in the remaining clinical
and radiological indices (Table 1). The differences of
clinicoradiological characteristics in between training and
testing datasets are listed in Table 2. A total of 24 clinical and
radiological signatures were selected using the Lasso algorithm.
Fifteen essential clinical and radiological features, including
serum AFP level, Child-Pugh, cirrhosis, age, PT, PLT, shape,
peritumoral hypointensity in the hepatobiliary phase, intratumoral
hemorrhage, satellite foci, diameter, number of nodes, arterial
peritumoral enhancement, envelope, and tumor diameter, were
finally selected (Figure 3).

3.2 Building Models for Predicting MVI
Risk Grading
3.2.1 Developing Unimodal Radiomics Models Based
on Different ROIs in the Tumor and Peritumor
The prediction results of unimodal radiomics models based on
different ROIs in the tumor and peritumor are shown in Table 3.
According to T1WI and HBP images, the radiomics model with
ROI based on tumor [T1WI (0), HBP (0)] had the best prediction
results. The AUC and ACC in the testing cohort were 0.710 and
0.677 and 0.566 and 0.535, respectively. However, the radiomics
model with ROI based on tumor and peritumor 20mm on AP
and PVP images [AP (20),PVP (20)] performed better in
predicting MVI risk grades in the testing cohort in the
unimodal radiomics models using different ROIs, with AUC of
0.741 and 0.733 and ACC of 0.556 and 0.586, respectively.

3.2.2 Building Multimodal Radiomics Models Based
on Different ROIs in the Tumor and Peritumor
The prediction results of multimodal radiomics models using
different ROIs of the tumor and peritumor are presented in
Table 4. The fusion radiomics model [T1WI (0) & PVP (0) &
AP (0)] performed the best in the ROI-based multimodal
radiomics model with AUC and ACC values of 0.758 and
0.616, respectively, in the testing cohort. In the corresponding
dual-region radiomics model created by combined modeling, the
ROI’s tumor and peritumor (20 mm) based on multimodal
radiomics model [T1WI (20) & PVP (20) & AP (20)]
performed better in predicting MVI risk grading with AUC
and ACC values of 0.778 and 0.636, respectively, in the
testing cohort.

3.2.3 Comparison of Clinical Radiomics Models and
Optimal Radiomics Models
The clinical radiomics model [T1WI (20) & AP (20) & PVP (20)]
was more effective than the corresponding multimodal radiomics
predictive model in the testing cohort (AUCs: 0.852 vs 0.778;
ACCs: 0.747 vs. 0.636) (Figure 4).

3.3 Survival Analysis
As of December 31, 2020, 501 patients had completed tumor
recurrence-free follow-up. The overall recurrence rate was
24.35% (122/501). The median RFS was 38 months for patients
March 2022 | Volume 12 | Article 853336
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in the M0 group, 29 months in the M1 group, and nine months
in the M2 group (log-rank test, p < 0.001). Similar results were
observed in the prediction model: median RFS was 37 months for
patients in M0, 27 months in M1, and eight months in M2 (log-
rank test, p < 0.001) (Figure 5).
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4 DISCUSSION

In this study, we analyzed the radiomics signatures of enhanced
MRI for tumor and peritumor to determine the impact of dual-
region radiomics signatures of tumor and peritumor on different
TABLE 1 | Comparisons of clinicoradiological characteristics in different microvascular invasion grades.

Variable M 0n =252 M1n =207 M2n =42 P-value

Age (years) 52.81 ± 10.56 50.99 ± 11.22 51.12 ± 11.37 0.183
Gender 0.344
male 210 (83.33%) 180 (86.96%) 38 (90.48%)
female 42 (16.67%) 27 (13.04%) 4 (9.52%)
PLT, 10^9/L 150.25 ± 74.36 157.60 ± 71.89 158.79 ± 91.23 0.528
ALT, IU/L 62.15 ± 90.40 63.92 ± 97.84 80.62 ± 110.65 0.507
AST, IU/L 56.57 ± 77.51 63.22 ± 92.43 65.45 ± 47.28 0.625
ALB, g/L 41.80 ± 5.04 41.97 ± 5.02 41.69 ± 8.20 0.922
TBIL, mmol 18.39 ± 20.98 18.08 ± 9.57 18.33 ± 6.67 0.979
ALP, IU/L 113.45 ± 96.19 109.72 ± 67.12 123.58 ± 86.38 0.615
APTT, sec 25.91 ± 19.23 28.09 ± 2.82 28.37 ± 7.00 0.202
PT, sec 13.81 ± 12.57 11.91 ± 5.17 12.15 ± 1.18 0.092
INR 1.01 ± 0.11 1.00 ± 0.08 1.05 ± 0.11 0.02
AFP 0.005
0, normal 112 (45.90%) 70 (34.48%) 10 (23.81%)
1, abnormal 132 (54.10%) 133 (65.52%) 32 (76.19%)
Hbs Ag 0.315
0, Hbs Ag(-) 38 (15.14%) 21 (10.34%) 5 (12.20%)
1, Hbs Ag(+) 213 (84.86%) 182 (89.66%) 36 (87.80%)
Child-Pugh 0.045
0, A 248 (98.41%) 203 (98.54%) 39 (92.86%)
1, B 4 (1.59%) 3 (1.46%) 3 (7.14%)
Cirrhosis 0.977
0, no 68 (26.98%) 56 (27.32%) 12 (28.57%)
1, yes 184 (73.02%) 149 (72.68%) 30 (71.43%)
No. of nodes 0.021
0, 1 242 (96.03%) 190 (91.79%) 36 (85.71%)
1, ≥ 2 10 (3.97%) 17 (8.21%) 6 (14.29%)
Shape <0.001
0, circle 151 (59.92%) 52 (25.12%) 5 (11.90%)
1, irregular 101 (40.08%) 155 (74.88%) 37 (88.10%)
Arterial peritumoral
enhancement

<0.001

0, absent 211 (83.73%) 136 (65.70%) 23 (54.76%)
1, present 41 (16.27%) 71 (34.30%) 19 (45.24%)
Peritumoral hypotensity
on HBP

<0.001

0, absent 219 (86.90%) 145 (70.05%) 16 (38.10%)
1, present 33 (13.10%) 62 (29.95%) 26 (61.90%)
The maximum length <0.001
0, ≤5cm 200 (79.37%) 125 (60.39%) 16 (38.10%)
1, >5cm 52 (20.63%) 82 (39.61%) 26 (61.90%)
Intratumoral hemorrhage <0.001
0, absent 181 (71.83%) 113 (54.59%) 12 (28.57%)
1, present 71 (28.17%) 94 (45.41%) 30 (71.43%)
Intratumoral fat 0.204
0, absent 214 (84.92%) 180 (86.96%) 32 (76.19%)
1, present 38 (15.08%) 27 (13.04%) 10 (23.81%) 　

Satellite nodules <0.001
0, absent 241 (96.02%) 186 (89.86%) 34 (80.95%)
1, present 10 (3.98%) 21 (10.14%) 8 (19.05%)
Capsule <0.001
0, absence or incomplete 71 (28.17%) 136 (65.70%) 31 (73.81%)
1, complete 181 (71.83%) 71 (34.30%) 11 (26.19%)
March 2022 | Volume 12 | Article
Unless otherwise noted, data are shown as number of patients, with the percentage in parentheses. MVI, microvascular invasion.M 0= no MVI; M1=≤ 5 MVI, and occurred in the adjacent
liver tissue area (≤ 1 cm); M2= > 5 MVI, or MVI occurred in the distant paracancerous liver tissue area (> 1cm).
PLT, platelet count; ALT, alanine transarninase; AST, aspertate aminotransferase; ALB, serum albumin; TBIL, serum total bilirubin; ALP, Alkaline phosphatase; APTT, activated partial
thromboplastin time; PT, prothrombin time; INR, international normalized ratio; AFP, serum a-fetoprotein; Hbs Ag, hepatitis B surface antigen; HBP, hepatobiliary phase.
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TABLE 2 | The differences of clinicoradiological characteristics in between training and testing datasets.

Group taining testing P-value

N 402 99
Age (years) 51.66 ± 10.89 52.93 ± 11.03 0.301
PLT, 10^9/L 156.62 ± 77.43 143.45 ± 62.58 0.117
ALT, IU/L 59.16 ± 87.60 85.86 ± 119.67 0.012
AST, IU/L 55.04 ± 73.86 80.45 ± 107.22 0.006
ALB, g/L 41.96 ± 5.11 41.48 ± 6.26 0.422
TBIL, mmol 17.42 ± 8.33 21.64 ± 32.26 0.020
ALP, IU/L 112.84 ± 91.99 112.46 ± 41.64 0.969
APTT, sec 27.61 ± 14.69 24.60 ± 10.11 0.054
PT, sec 13.17 ± 10.65 11.75 ± 1.17 0.186
INR 1.00 ± 0.09 1.04 ± 0.14 <0.001
Gender 0.146
0, male 348 (86.57%) 80 (80.81%)
1, female 54 (13.43%) 19 (19.19%)
AFP 0.761
0, normal 153 (38.93%) 39 (40.62%)
1, abnormal 240 (61.07%) 57 (59.38%)
Hbs Ag 0.912
0, Hbs Ag(-) 51 (12.85%) 13 (13.27%)
1, Hbs Ag(+) 346 (87.15%) 85 (86.73%)
Child-Pugh 0.414
0, A 394 (98.25%) 96 (96.97%)
1, B 7 (1.75%) 3 (3.03%)
Cirrhosis 0.611
0, no 107 (26.75%) 29 (29.29%)
1,yes 293 (73.25%) 70 (70.71%)
No. of nodes 0.254
0, 1 373 (92.79%) 95 (95.96%)
1, ≥ 2 29 (7.21%) 4 (4.04%)
The maximum length 0.739
0,≤5cm 275 (68.41%) 66 (66.67%)
1, >5cm 127 (31.59%) 33 (33.33%)
Shape 0.179
0, circle 161 (40.05%) 47 (47.47%)
1, irregular 241 (59.95%) 52 (52.53%)
Satellite nodules 0.048
0, absent 365 (91.02%) 96 (96.97%)
1, present 36 (8.98%) 3 (3.03%)
Capsule 0.496
0, absence or incomplete 194 (48.26%) 44 (44.44%)
1, complete 208 (51.74%) 55 (55.56%)
Intratumoral hemorrhage 0.137
0, absent 252 (62.69%) 54 (54.55%)
1, present 150 (37.31%) 45 (45.45%)
Intratumoral fat 0.796
0, absent 341 (84.83%) 85 (85.86%)
1, present 61 (15.17%) 14 (14.14%)
Arterial peritumoral enhancement 0.294
0, absent 301 (74.88%) 69 (69.70%)
1, present 101 (25.12%) 30 (30.30%)
Peritumoral hypotensity on HBP 0.034
0, absent 313 (77.86%) 67 (67.68%)
1, present 89 (22.14%) 32 (32.32%)
MVI grade 0.993
0 202 (50.25%) 50 (50.51%)
1 166 (41.29%) 41 (41.41%)
2 34 (8.46%) 8 (8.08%)
Frontiers in Oncology | www.frontiersin.org
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MVI, microvascular invasion; M0: no MVI detected; M1 (low-risk group): 0<the number of MVI ≤ 5 and MVI occurred in the proximal paracancerous liver; M2 (high-risk group): the number
of MVI > 5 MVI or MVI occurred in the distal paracancerous liver tissue area (> 1 cm). PLT, platelet count; ALT, alanine transarninase; AST, aspertate aminotransferase; ALB, serum
albumin; TBIL, serum total bilirubin; ALP, alkaline phosphatase; APTT, activated partial thromboplastin time; PT, prothrombin time; INR, international normalized ratio; AFP, serum
afetoprotein; Hbs Ag, hepatitis B surface antigen; HBP, hepatobiliary phase
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phases ofpredictingMVI risk grading.Wealso explored the efficacy
of a combined model for clinical factors, imaging features, and
radiomics signatures in predicting MVI risk grading. Our results
indicated that the impact of dual-region radiomics signatures for
Frontiers in Oncology | www.frontiersin.org 8
tumor and peritumor on predicting MVI risk grades varied at
different phases. The established clinical multimodal radiomics
model predicted MVI grades with 83.3% and 74.7% accuracy, in
the training and testing cohorts, respectively.
TABLE 4 | Multimodal radiomics models based on different ROIs.

Modality ROI Training group Testing group

AUC ACC AUC ACC

T1WI+AP+PVP Tumor 0.939 0.806 0.758 0.616
Tumor & Margin (10) 0.947 0.818 0.743 0.606
Tumor & Margin (20) 0.953 0.838 0.778 0.636
March 2
022 | Volume 12 | Article 8
FIGURE 3 | Selection of clinicoradiological characteristics. Fifteen necessary clinicoradiological features were finally selected by using least absolute shrinkage and
selection operator (LASSO), including serum AFP level, Child-Pugh, cirrhosis, age et al.
TABLE 3 | Unimodal radiomics models based on different ROIs.

Modality ROI Training group Testing group

AUC ACC AUC ACC

T1WI Tumor 0.796 0.644 0.710 0.566
Tumor & Margin (10) 0.803 0.632 0.604 0.535
Tumor & Margin (20) 0.780 0.617 0.667 0.566

AP Tumor 0.893 0.726 0.694 0.505
Tumor & Margin (10) 0.909 0.776 0.718 0.596
Tumor & Margin (20) 0.927 0.808 0.741 0.556

PVP Tumor 0.907 0.741 0.725 0.545
Tumor & Margin (10) 0.911 0.766 0.726 0.586
Tumor & Margin (20) 0.921 0.769 0.733 0.586

HBP Tumor 0.795 0.657 0.677 0.535
Tumor & Margin (10) 0.781 0.639 0.636 0.505
Tumor & Margin (20) 0.777 0.617 0.559 0.424
53336
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The radiomics model that used tumor and peritumor (10 mm
or 20 mm) was superior to the radiomics model that was based
only on the tumor in predicting MVI risk grades on arterial and
portal images. Nebbia et al. (20) found the similar results. The
dual-region radiomics signatures of the tumor and peritumor in
the late arterial and portal phases were more beneficial in
predicting MVI than single-region radiomics signatures. The
occurrence of MVI is a complex biological process involving
many factors. According to the related studies of Zhou (33)
and Wan (34), the activation of epithelial-mesenchymal
transformation (EMT) transcription may be an important
pathogenic mechanism of MVI in HCC. When EMT
transcription is activated, intercellular adhesion proteins such
Frontiers in Oncology | www.frontiersin.org 9
as E-Cadherin are down-regulated and EMT markers such as N-
Cadherin and vimentin are increased, which may induce HCC
dedifferentiation and increase tumor invasiveness, which leads to
the occurrence of MVI (35). MVI is commonly found in the
portal vein branches of the liver tissue adjacent to the tumor (29),
which is related to the fact that portal vein is the main outflow
vessel of liver cancer. When the tumor embolus invades the tiny
portal vein, it will cause small branch occlusion and reduce the
blood flow of the portal vein around the tumor, giving rise to
compensatory peri-tumor hyperperfusion (30, 36). Peritumoral
hemodynamic changes can lead to different imaging findings,
such as abnormal peritumoral enhancement in arterial phase and
low signal intensity in hepatobiliary phase, which are risk factors
A B

FIGURE 5 | Recurrence-free survival (RFS) between histologic MVI and predicted MVI.RFS (A, B) curves were scaled by histologic MVI status and final model-
predicted MVI risk grades with Kaplan Meier analysis.
A B

FIGURE 4 | Comparison of receiver operating characteristic (ROC) curves for the prediction of microvascular invasion. ROC curves of the radiomics signature
predictive model and the clinical signature predictive model, which combines the fusion radiomics signature and clinicoradiological factors in the training (A) and
testing (B) datasets.
March 2022 | Volume 12 | Article 853336

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Radiomics Signatures Predict Microvascular Invasion
for MVI. These shows that the peritumoral area of HCC plays an
important role in the diagnosis of MVI. This may explain why
the combination of tumor and peritumoral radiomics features on
AP or PVP images are more conducive to the prediction of MVI
risk grade. Feng et al. illustrated that the ROI based on
hepatobiliary-phase radiomics model (tumor and peritumor;
10 mm) outperformed the radiomics model based only on the
tumor in predicting negative or positive MVI in HCC (15).
However, in this study, the ability of the dual-region radiomics
model (ROI based on the tumor and the peritumor; 10 mm and
20 mm) to predict MVI risk grades was not better than that of the
single region radiomics model based on tumor only. This is
because the rate of Gd-EOB-DTPA uptake by hepatocytes is
correlated with liver function. Thus, patients with impaired liver
function should be reasonably delayed in hepatobiliary-phase
scans (37).

This study also found that fusing multimodal radiomics
signatures improved the ability of the radiomics model to
predict MVI risk grades. Ma et al. (19) made similar
conclusions using a multimodal radiomics model, which
combined radiomics signatures from enhanced CT arterial,
portal venous, and delayed phases. The multimodal radiomics
model exhibited better performance than the corresponding
unimodal radiomics model in predicting the presence or
absence of MVI. This indicated that the inclusion of radiomics
signatures from different modalities could improve MVI
predictors for various aspects of the tumor. However, the
predictive efficiency of the model did not always improve with
the incorporation of more radiomics signatures of different
modalities. Therefore, this study demonstrated that the
number of modalities for radiomics analysis and the diagnostic
performance of models are not positively correlated. According
to Zhang et al., the AUC values for their radiomics model, which
incorporated AP, PVP, and DP in the training and validation
cohorts, were 0.784 and 0.82, respectively. However, the
radiomics model fusing six sequences of T1WI, T2WI, DWI,
AP, PVP, and DP had AUC values of 0.778 and 0.803 in the
training and validation cohorts, respectively (26). Merging
radiomics signatures for numerous models may exclude
radiomics signatures that respond to different traits of the
tumor and are meaningful for MVI prediction due to low
correlation in the signature screening. Therefore, the
performance of the model decreased. Accordingly, further
research into the optimal modalities combination for imaging
radiomics analysis in MVI prediction is recommended.

The importance of combining different aspects such as
laboratory tests, imaging features, and radiomics signatures in
predicting MVI was proven in this study. The model that
incorporated clinical and radiological signatures such as serum
AFP level, cirrhosis, PT, shape, hepatobiliary-phase peritumor
hypointensty, and intra-tumoral hemorrhage had higher AUC
values than the radiomics model, which corroborates the results
of Xu’s research. Xu et al. combined AST, AFP, tumor margins,
growth pattern, envelope, peritumor enhancement, and
radiomics score to create a nomogram with AUC values of
0.909 and 0.889 in the training and validation cohorts,
Frontiers in Oncology | www.frontiersin.org 10
respectively. In contrast, the radiomics model had AUC values
of 0.841 and 0.819 in the training and validation cohorts,
respectively (24). Yang et al. also found similar results (25).
This suggests that combining the three aspects can improve the
ability of models to predict MVI.

The final prediction model established in this study could
provide effective prognostic stratification for HCC patients.
Tanaka et al. found significant differences in the prognosis of
HCC patients with different degrees of MVI progression (38).
Therefore, preoperative prediction of MVI grades could more
accurately assess the severity of MVI and prognosis of HCC
patients than the prediction of presence or absence of MVI,
providing clinicians with more beneficial information. In this
study, the recurrence-free survival time predicted by the clinical
multimodal radiomics model was significantly different among
patients with different MVI gradings (p < 0.001). Moreover, HCC
patients in the M2 group had a significantly shorter recurrence-
free survival time than those in the M1 and M0 groups. This
finding suggested that our model could assist clinicians in
assessing the prognosis of HCC patients preoperatively and
providing more personalized treatments.
5 LIMITATIONS

Although, our clinical radiomics model can be used as a
preoperative predictor of MVI risk grading, it has the
following limitations. First, all of the MRI images were
generated by the same machine at the same hospital. Although
this may reduce certain confounding effects, external validation,
which could have generated more data from multiple centers,
was missing. Future research should include multi-center data to
perform independent external validation to confirm the
predictive validity of the model. Second, a lack of consistency
in the clarity of tumor boundaries on different simultaneous
images may have resulted in less accurate tumor ROI
segmentation. Therefore, the MRI scanning technique should
be updated to obtain clearer tumor contours and establish an
automatic segmentation model for HCC to reduce the
segmentation discrepancy of ROI. Lastly, the unbalanced data
volume between M0, M1, and M2 groups may have affected the
predictive performance of the model. Thus, a more considerable
amount of data is required to balance differences between the
various groups.
6 CONCLUSION

In summary, the radiomics signatures of the dual regions for tumor
and peritumor on different phases have diverse effects on the
prediction of MVI risk grades. The radiomics signatures of the
dual regions for tumor and peritumor on AP and PVP images are of
merit to predict MVI. Our final preoperative prediction model can
assist clinicians in the preoperative diagnosis of HCC for MVI risk
grading and prognostic assessment.
March 2022 | Volume 12 | Article 853336

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Radiomics Signatures Predict Microvascular Invasion
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by author JW at wangjian@aifmri.com, with
reasonable request.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The ethical review committee of the First Affiliated
Hospital of the ArmyMedical University.Written informed consent
for participation was not required for this study in accordance with
the national legislation and the institutional requirements.
Frontiers in Oncology | www.frontiersin.org 11
AUTHOR CONTRIBUTIONS

All authors made substantial contributions to the conception and
design of the study, acquisition of data, analysis and
interpretation of data, drafting the article, and revising it
critically for important intellectual content. All authors
contributed to the article and approved the submitted version.
FUNDING

This study was supported by the National Key Research and
Development Program of China (No. 2016YFC0107101).
REFERENCES
1. De Angelis R, Sant M, ColemanMP, Francisci S, Baili P, Pierannunzio D, et al.

Cancer Survival in Europe 1999-2007 by Country and Age: Results of
EUROCA- RE-5-a Population-Based Study. Lancet Oncol (2014) 15:23–34.
doi: 10.1016/s1470-2045(13)70546-1

2. Lim K-C, Chow PK-H, Allen JC, Chia G-S, Lim M, Cheow P-C, et al.
Microvascular Invasion Is a Better Predictor of Tumor Recurrence and
Overall Survival Following Surgical Resection for Hepatocellular Carcinoma
Compared to the Milan Criteria. Ann Surg (2011) 254:108–13. doi: 10.1097/
SLA.0b013e31821ad884

3. Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, et al.
Predicting Survival After Liver Transplantation in Patients With
Hepatocellular Carcinoma Beyond the Milan Criteria: A Retrospective,
Exploratory Analysis. Lancet Oncol (2009) 10:35–43. doi: 10.1056/
nejm199603143341104

4. Rodriguez-Peralvarez M, Luong TV, Andreana L, Meyer T, Dhillon AP,
Burroughs AK. A Systematic Review of Microvascular Invasion in
Hepatocellular Carcinoma: Diagnostic and Prognostic Variability. Ann Surg
Oncol (2013) 20:325–39. doi: 10.1245/s10434-012-2513-1

5. Roayaie S, Blume IN, Thung SN, Guido M, Fiel M-I, Hiotis S, et al. A System
of Classifying Microvascular Invasion to Predict Outcome After Resection in
Patients With Hepatocellular Carcinoma. Gastroenterology (2009) 137:850–5.
doi: 10.1053/j.gastro.2009.06.003

6. Feng LH, Dong H, Lau WY, Yu H, Zhu YY, Zhao Y, et al. Novel
Microvascular Invasion-Based Prognostic Nomograms to Predict Survival
Outcomes in Patients After R0 Resection for Hepatocellular Carcinoma. J
Cancer Res Clin Oncol (2017) 143:293–303. doi: 10.1007/s00432-016-2286-1

7. Sumie S, Nakashima O, Okuda K, Kuromatsu R, Kawaguchi A, Nakano M,
et al. The Significance of Classifying Microvascular Invasion in Patients With
Hepatocellular Carcinoma. Ann Surg Oncol (2014) 21:1002–9. doi: 10.1245/
s10434-013-3376-9

8. Zhao H, Chen J, Yan X, Fu X, Sun S, Qiu Y. Prognostic Value of the Risk
Classification of Microvascular Invasion in Patients With Hepatocellular
Carcinoma. Chin J Hepatobiliary Surg (2019) 25(6):401–5. doi: 10.18632/
oncotarget.12547

9. Cucchetti A, Qiao GL, Cescon M, Li J, Xia Y, Ercolani G, et al. Anatomic
Versus Nonanatomic Resection in Cirrhotic Patients With Early
Hepatocellular Carcinoma. Surgery (2014) 155:512–21. doi: 10.1016/
j.surg.2013.10.009

10. Zhao H, Chen C, Gu S, Yan X, Jia W, Mao L, et al. Anatomical Versus Non-
Anatomical Resection for Solitary Hepatocellular Carcinoma Without
Macroscopic Vascular Invasion: A Propensity Score Matching Analysis.
J Gastroenterol Hepatol (2017) 32:870–8. doi: 10.18632/oncotarget.12547

11. McHugh PP, Gilbert J, Vera S, Koch A, Ranjan D, Gedaly R. Alpha-
Fetoprotein and Tumour Size Are Associated With Microvascular Invasion
in Explanted Livers of Patients Undergoing Transplantation With
Hepatocellular Carcinoma. HPB (Oxf) (2010) 12:56–61. doi: 10.1111/j.1477-
2574.2009.00128.x
12. Lee S, Kim SH, Lee JE, Sinn DH, Park CK. Preoperative Gadoxetic Acid-
Enhanced MRI for Predicting Microvascular Invasion in Patients With Single
Hepatocellular Carcinoma. J Hepatol (2017) 67:526–34. doi: 10.1016/
j.jhep.2017.04.024

13. Kim S, Shin J, Kim D-Y, Choi GH, Kim M-J, Choi J-Y. Radiomics on
Gadoxetic Acid-Enhanced Magnetic Resonance Imaging for Prediction of
Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma.
Clin Cancer Res (2019) 25:3847–55. doi: 10.1158/1078-0432.CCR-18-2861

14. Huang M, Liao B, Xu P, Cai H, Huang K, Dong Z, et al. Prediction of
Microvascular Invasion in Hepatocellular Carcinoma: Preoperative Gd-EOB-
DTPA-Dynamic Enhanced MRI and Histopathological Correlation. Contrast
Media Mol Imaging (2018) 2018:1–9. doi: 10.1155/2018/9674565

15. Feng S-T, Jia Y, Liao B, Huang B, Zhou Q, Li X, et al. Preoperative Prediction
of Microvascular Invasion in Hepatocellular Cancer: A Radiomics Model
Using Gd- EOB-DTPA-Enhanced MRI. Eur Radiol (2019) 29:4648–59.
doi: 10.1007/s00330-018-5935-8

16. Ji GW, Zhu FP, Xu Q, Wang K, Wu MY, Tang WW, et al. Radiomic Features
at Contrast-Enhanced CT Predict Recurrence in Early Stage Hepatocellular
Carcinoma: A Multi-Institutional Study. Radiology (2020) 294:568–79.
doi: 10.1148/radiol.2020191470

17. Jiang YQ, Cao SE, Cao S, Chen JN, Wang GY, Shi WQ, et al. Preoperative
Identification of Microvascular Invasion in Hepatocellular Carcinoma by
XGBoost and Deep Learning. J Cancer Res Clin Oncol (2020) 147(3):821–
33. doi: 10.1007/s00432-020-03366-9

18. Lahan-Martins D, Perales SR, Gallani SK, da Costa LBE, Lago EAD, Boin I,
et al. Microvascular Invasion in Hepatocellular Carcinoma: Is It Predictable
With Quantitative Computed Tomography Parameters? Radiol Bras (2019)
52:287–92. doi: 10.1590/0100-3984.2018.0123

19. Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, et al. Preoperative Radiomics
Nomogram for Microvascular Invasion Prediction in Hepatocellular
Carcinoma Using Contrast-Enhanced CT. Eur Radiol (2019) 29:3595–605.
doi: 10.1007/s00330-018-5985-y

20. Nebbia G, Zhang Q, Arefan D, Zhao X, Wu S. Pre-Operative Microvascular
Invasion Prediction Using Multi-Parametric Liver MRI Radiomics. J Digit
Imaging (2020) 33(6):1376–86. doi: 10.1007/s10278-020-00353-x

21. Ni M, Zhou X, Lv Q, Li Z, Gao Y, Tan Y, et al. Radiomics Models for
Diagnosing Microvascular Invasion in Hepatocellular Carcinoma: Which
Model Is the Best Model? Cancer Imaging (2019) 19:60. doi: 10.1186/
s40644-019-0249-x

22. Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A Radiomics Nomogram for
Preoperative Prediction of Microvascular Invasion Risk in Hepatitis B Virus-
Related Hepatocellular Carcinoma. Diagn Interv Radiol (2018) 24:121–7.
doi: 10.5152/dir.2018.17467

23. Wilson GC, Cannella R, Fiorentini G, Shen C, Borhani A, Furlan A, et al.
Texture Analysis on Preoperative Contrast-Enhanced Magnetic Resonance
Imaging Identifies Microvascular Invasion in Hepatocellular Carcinoma. HPB
(Oxf) (2020) 22(11):1622–30. doi: 10.1016/j.hpb.2020.03.001

24. Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic Analysis
of Contrast-Enhanced CT Predicts Microvascular Invasion and Outcome in
March 2022 | Volume 12 | Article 853336

https://doi.org/10.1016/s1470-2045(13)70546-1
https://doi.org/10.1097/SLA.0b013e31821ad884
https://doi.org/10.1097/SLA.0b013e31821ad884
https://doi.org/10.1056/nejm199603143341104
https://doi.org/10.1056/nejm199603143341104
https://doi.org/10.1245/s10434-012-2513-1
https://doi.org/10.1053/j.gastro.2009.06.003
https://doi.org/10.1007/s00432-016-2286-1
https://doi.org/10.1245/s10434-013-3376-9
https://doi.org/10.1245/s10434-013-3376-9
https://doi.org/10.18632/oncotarget.12547
https://doi.org/10.18632/oncotarget.12547
https://doi.org/10.1016/j.surg.2013.10.009
https://doi.org/10.1016/j.surg.2013.10.009
https://doi.org/10.18632/oncotarget.12547
https://doi.org/10.1111/j.1477-2574.2009.00128.x
https://doi.org/10.1111/j.1477-2574.2009.00128.x
https://doi.org/10.1016/j.jhep.2017.04.024
https://doi.org/10.1016/j.jhep.2017.04.024
https://doi.org/10.1158/1078-0432.CCR-18-2861
https://doi.org/10.1155/2018/9674565
https://doi.org/10.1007/s00330-018-5935-8
https://doi.org/10.1148/radiol.2020191470
https://doi.org/10.1007/s00432-020-03366-9
https://doi.org/10.1590/0100-3984.2018.0123
https://doi.org/10.1007/s00330-018-5985-y
https://doi.org/10.1007/s10278-020-00353-x
https://doi.org/10.1186/s40644-019-0249-x
https://doi.org/10.1186/s40644-019-0249-x
https://doi.org/10.5152/dir.2018.17467
https://doi.org/10.1016/j.hpb.2020.03.001
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Radiomics Signatures Predict Microvascular Invasion
Hepatocellular Carcinoma. J Hepatol (2019) 70:1133–44. doi: 10.1016/
j.jhep.2019.02.023

25. Yang L, Gu D, Wei J, Yang C, Rao S, Wang W, et al. A Radiomics Nomogram
for Preoperative Prediction of Microvascular Invasion in Hepatocellular
Carcinama. Liver Cancer (2019) 8:373–86. doi: 10.1159/000494099

26. Zhang R, Xu L, Wen X, Zhang J, Yang P, Zhang L, et al. A Nomogram Based
on Bi-Regional Radiomics Features From Multimodal Magnetic Resonance
Imaging for Preoperative Prediction of Microvascular Invasion in
Hepatocellular Carcinoma. Quant Imaging Med Surg (2019) 9:1503–15.
doi: 10.21037/qims.2019.09.07

27. Zhang X, Ruan S, Xiao W, Shao J, Tian W, Liu W, et al. Contrast-Enhanced
CT Radiomics for Preoperative Evaluation of Microvascular Invasion in
Hepatocellular Carcinoma: A Two-Center Study. Clin Transl Med (2020) 10
(2):e111. doi: 10.1002/ctm2.111

28. Zhu YJ, Feng B, Wang S, Wang LM,Wu JF, Ma XH, et al. Model-Based Three-
Dimensional Texture Analysis of Contrast-Enhanced Magnetic Resonance
Imaging as A Potential Tool for Preoperative Prediction of Microvascular
Invasion in Hepatoce-Llular Carcinoma. Oncol Lett (2019) 18:720–32.
doi: 10.3892/ol.2019.10378

29. Chinese Society of Liver Cancer (CSLC). Evidence-Based Practice Guidelines
for Standardized Pathological Diagnosis of Primary Liver Cancer in China:
2015. Zhonghua Gan Zang Bing Za Zhi (2015) 23:321–7. doi: 10.13315/
j.cnki.cjcep.2015.03.001

30. Choi JY, Lee JM, Sirlin CB. CT and MR Imaging Diagnosis and Staging of
Hepatocellular Carcinoma: Part II. Extracellular Agents, Hepatobiliary
Agents,and Ancillary Imaging Features. Radiology (2014) 273(1):30–50.
doi: 10.1148/radiol.14132362

31. Kim H, Park MS, Choi JY, Park YN, Kim MJ, Kim KS, et al. Can
Microvesselinvasion of Hepatocellular Carcinoma be Predicted by Pre-
OperativeMRI? Eur Radiol (2009) 19:1744–51. doi: 10.1007/s00330-009-1331-8

32. Kim KA, Kim MJ, Jeon HM, Kim KS, Choi JS, Ahn SH, et al. Prediction of
Microvascular Invasion ofHepatocellularCarcinoma:Usefulness ofPeritu-Moral
Hypointensity Seen on Gadoxetate Disodium-Enhanced Hepatobiliary Phase
Images. J Magn Reson Imaging (2012) 35:629–34. doi: 10.1002/jmri.22876

33. Zhou YM, Cao L, Li B, Zhang RX, Sui CJ, Yin ZF, et al. Clinicopathological
Significance of ZEB1 Protein in Patients With Hepatocellular Carcinoma. Ann
Surg Oncol (2012) 19(5):1700–6. doi: 10.1245/s10434-011-1772-6

34. Wan T, Zhang TW, Si XY, Zhou YM. Overexpression of EMT-Inducing
Transcription Factors as a Potential Poor Prognostic Factor for Hepatocellular
Frontiers in Oncology | www.frontiersin.org 12
Carcinoma in Asian Populations: A Meta-Analysis. Oncotarget (2017) 8
(35):59500–8. doi: 10.18632/oncotarget.18352

35. Erstad Derek J, Tanabe Kenneth K. Prognostic and Therapeutic Implications
of Microvascular Invasion in Hepatocellular Carcinoma. Ann Surg Oncol
(2019) 26(5):1474–93. doi: 10.1245/s10434-019-07227-9

36. Matsui O, Kobayashi S, Sanada J, Kouda W, Ryu Y, Kozaka K, et al.
Hepatocelluar Nodules in Liver Cirrhosis: Hemodynamic Evaluation
(Angiography-Assisted CT) With Special Reference to Multi-Step
Hepatocarcinogenesis. Abdom Imaging (2011) 36(3):264–72. doi: 10.1007/
s00261-011-9685-1

37. Masahiro Okada M, Takamichi Murakami M, Ryohei Kuwatsuru M, Yuko
Nakamura M, Hiroyoshi I, Satoshi G, et al. Biochemical and Clinical
Predictive Approach and Time Point Analysis of Hepatobiliary Phase Liver
Enhancement on Gd- EOB-DTPA–enhanced Mr Images: A Multicenter
Study. Radiology (2016) 281(2):1–10. doi: 10.1148/radiol.2016151061

38. Tanaka S, Mogushi K, Yasen M, Noguchi N, Kudo A, Nakamura N, et al.
Gene- Expression Phenotypes for Vascular Invasiveness of Hepatocellular
Carcinomas. Surgery (2010) 147:405–14. doi: 10.1016/j.surg.2009.09.037

Conflict of Interest: Author ML and Author SL were employed by Shanghai
United Imaging Intelligence Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Hu, Zhang, Li, Liu, Zhang, Li, Liu, Hu andWang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
March 2022 | Volume 12 | Article 853336

https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.1159/000494099
https://doi.org/10.21037/qims.2019.09.07
https://doi.org/10.1002/ctm2.111
https://doi.org/10.3892/ol.2019.10378
https://doi.org/10.13315/j.cnki.cjcep.2015.03.001

https://doi.org/10.13315/j.cnki.cjcep.2015.03.001

https://doi.org/10.1148/radiol.14132362
https://doi.org/10.1007/s00330-009-1331-8
https://doi.org/10.1002/jmri.22876
https://doi.org/10.1245/s10434-011-1772-6
https://doi.org/10.18632/oncotarget.18352
https://doi.org/10.1245/s10434-019-07227-9
https://doi.org/10.1007/s00261-011-9685-1
https://doi.org/10.1007/s00261-011-9685-1
https://doi.org/10.1148/radiol.2016151061
https://doi.org/10.1016/j.surg.2009.09.037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Preoperative Prediction of Microvascular Invasion Risk Grades in Hepatocellular Carcinoma Based on Tumor and Peritumor Dual-Region Radiomics Signatures
	1 Introduction
	2 Methods
	2.1 Patient Data Collection and Follow-Up
	2.1.1 Inclusion and Exclusion Criteria
	2.1.2 Image Acquisition
	2.1.3 Clinical and Imaging Data
	2.1.4 Evaluation of Pathological MVI
	2.1.5 Follow-Up Visits

	2.2 Enhanced MRI Radiomics Analysis
	2.2.1 Labeling of Tumor Lesions and Peritumor Extension
	2.2.2 Extraction and Selection of Radiomics Signatures

	2.3 Model Building
	2.3.1 Building Unimodal Radiomics Models Based on Different ROIs in the Tumor and Peritumor
	2.3.2 Building Multimodal Radiomics Models Based on Different ROIs in the Tumor and Peritumor
	2.3.3 Building Clinical Radiomic Model

	2.4 Statistical Analysis

	3 Results
	3.1 Clinical and Imaging Features of Patients
	3.2 Building Models for Predicting MVI Risk Grading
	3.2.1 Developing Unimodal Radiomics Models Based on Different ROIs in the Tumor and Peritumor
	3.2.2 Building Multimodal Radiomics Models Based on Different ROIs in the Tumor and Peritumor
	3.2.3 Comparison of Clinical Radiomics Models and Optimal Radiomics Models

	3.3 Survival Analysis

	4 Discussion
	5 Limitations
	6 Conclusion
	Data Availability Statement
	Ethics Statement 
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


