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ABSTRACT: Predicting health trajectories and accurately measuring aging processes across the human lifespan
remain profound scientific challenges. Assessing the effectiveness and impact of interventions targeting aging is
even more elusive, largely due to the intricate, multidimensional nature of aging—a process that defies simple
quantification. Traditional biomarkers offer only partial perspectives, capturing limited aspects of the aging
landscape. Yet, over the past decade, groundbreaking advancements have emerged. Epigenetic clocks, derived
from DNA methylation patterns, have established themselves as powerful aging biomarkers, capable of
estimating biological age and assessing aging rates across diverse tissues with remarkable precision. These clocks
provide predictive insights into mortality and age-related disease risks, effectively distinguishing biological age
from chronological age and illuminating enduring questions in gerontology. Despite significant progress in
epigenetic clock development, substantial challenges remain, underscoring the need for continued investigation

to fully unlock their potential in the science of aging.
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1.Introduction

The study of aging extends beyond the pursuit of medical
advancements; it represents a fundamental inquiry driven
by our innate curiosity about life itself. Epigenetic has
emerged as a crucial factor in modulating the aging
process, providing insights beyond traditional genetics
into how environmental factors shape the aging trajectory
[1]. Over the past decade, major breakthroughs in
epigenetic research have reframed our understanding of
aging, positioning DNA—the core blueprint of life—as a
repository of vital information capable of signaling future
physiological states. DNA methylation, a key mechanism
in epigenetic regulation, undergoes significant shifts with
age, establishing it as a reliable indicator of biological
aging [2, 3]. The potential to reverse these epigenetic
alterations offers promising avenues for decelerating
aging and possibly extending lifespan [4].

Epigenetic modifications encompass chemical
changes to DNA or chromatin that influence gene

expression and phenotype without altering the DNA
sequence itself. These changes can be long-lasting and
may even span generations [5]. Epigenetic clocks, which
measure predictable changes in DNA methylation across
the lifespan, have become invaluable tools for assessing
biological aging. DNA methylation levels shift
progressively in specific genomic regions, disrupting
biological states in a predictable manner that exhibits
clock-like behavior. These age-related methylation sites
make up approximately 28% of the human genome [6, 7].
As “historical data” embedded within DNA, epigenetic
clocks have demonstrated substantial predictive
capabilities, offering unique insights into age-related
health risks and enabling a clearer distinction between
biological and chronological age.

Comparative studies have examined various potential
age estimators, including telomere length, transcriptome
profiles, proteomics, metabolomics, and composite
biomarkers, consistently identifying epigenetic clocks as
the most promising tools for biological age estimation [8,
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9]. The advent of these clocks has provided researchers
with objective metrics for evaluating the effectiveness of
anti-aging interventions [10, 11].

Despite considerable progress in the development of
epigenetic clocks, substantial challenges remain. There is
ongoing demand for more robust, precise, and context-
specific models, particularly those attuned to age-related
diseases and underlying drivers of aging. This review
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provides a comprehensive analysis of the development
and applications of various epigenetic clocks, examining
their strengths, limitations, and practical applications. By
examining the strengths and limitations of these models,
we aim to identify essential pathways for future research,
driving novel approaches for early detection of age-
related diseases and advancing tailored interventions in
aging science (Fig. 1.)
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Figure 1. Molecular changes associated with aging often drive observable changes at the macroscopic level, and
epigenetic clocks can reflect these shifts. Various factors may accelerate or decelerate the rate measured by epigenetic clocks,
offering insights into the dynamic progression of aging. The elements and text on the left with a light blue background represent
epigenetic clock deceleration events, while those on the right with a yellow background represent epigenetic clock acceleration

events.
2. Current Status of Epigenetic Clocks

Unlike chronological age, epigenetic clocks are biological
tools based on DNA methylation patterns that estimate an
individual’s biological age, offering deeper insights into
the aging process [12]. In real-world settings, individuals
of the same chronological age can show marked
differences in epigenetic profiles. A younger-than-
expected epigenetic age suggests slower aging, while an
older-than-expected epigenetic age may indicate
accelerated aging influenced by factors such as lifestyle,
environment, and disease [13—17].

The development of epigenetic clocks has relied largely
on large-scale DNA methylation datasets that reveal
dynamic changes with age, especially at certain CpG sites.
By identifying age-related CpG sites through regression
and machine learning algorithms, researchers have
constructed models that serve as accurate markers of
biological age[18]. Epigenetic clocks are broadly
categorized into two generations. The first generation,
often referred to as “epigenetic age estimators,” focuses
on estimating biological age, while the second generation,
known as “phenotypic age,” clocks, incorporates
additional risk factors to enhance predictions of health
status, physiological changes, and aging rate.
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However, the predictive accuracy of epigenetic
clocks is affected by factors such as genetic background,
lifestyle, environmental exposures, and technical
variability [19]. Many existing clocks also have
limitations in forecasting healthspan, assessing disease
risk, and predicting cellular senescence [20-22]. Ongoing
research is focused on optimizing predictive accuracy and
improving the generalizability of these clocks across
different populations and tissues [23]. Emerging
technologies, such as single-cell methylation sequencing
and multi-omics integration, are opening new possibilities
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for creating more precise and comprehensive epigenetic
clocks [24-26].

In summary, epigenetic clocks, as promising
biomarkers of biological age, have gained wide
recognition for their sensitivity to age-related diseases,
underscoring their value as vital tools in aging research.
However, further refinement and integration are essential
to enhance their applicability and reliability across various
contexts, maximizing their potential to advance our
understanding of aging and health [8, 27] (Fig. 2).

Bocklandt's Clock
Hannum’s Clock 2011.11

2012.11

Zhang's Clock

2017.5 ELOVL2 Clock

2012.9

PhenoAge
Tllumina array “// 2018.4
sApIng Skin & Blood Clock
‘ 2018.7
GrimAge
= 2019.2 DNAm-based-age-predictors
2019.8

—) —

Dunedin PoAm
2020.5

Meta-Age
2020.9
Cortical Clock

Dunedin PoAm
2022.1 2020.10
PCAge Clock
2022.7 Y-CpG age
2021.5

DeepMAge
2021.8

AltumAge
2022.4

iCAS-DNAmAge
2024.5

Figure 2. The Development and Evolution of Epigenetic Clocks. The image depicts the construction process of epigenetic clocks
and outlines the approximate chronological evolution of their development. Typically, the construction process involves sample
collection, DNA methylation site analysis using [llumina arrays, and the application of diverse data processing techniques to model

and establish the clock.
3. First-Generation Epigenetic Clocks

The initial models of epigenetic clocks used single-step
regression to estimate biological age, using chronological
age as a baseline for aging predictions. By analyzing
methylation patterns at specific CpG sites, these models
provide insights into biological age, thus often being
referred to as “chronological clocks” [28]. First-
generation epigenetic clocks demonstrated high accuracy
in estimating chronological age, making them valuable

tools for assessing biological aging. Discrepancies
between predicted biological age and actual chronological
age yield insights into the rate of aging, highlighting how
genetic and environmental factors shape an individual’s
physiological state.

3.1 Horvath’s Clock

A landmark model in epigenetic aging research,
Horvath’s clock was the first to achieve cross-tissue age
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prediction by analyzing DNA methylation data from
multiple tissue types. Although not the earliest epigenetic
clock, its ability to use multi-organ, multi-tissue DNA
methylation data marked a major advancement in cross-
tissue aging analysis. Developed using publicly available
datasets from 7,844 samples across 51 tissue and cell
types on the Illumina 27K and Illumina 450K array
platforms, Horvath’s clock employs 353 CpG sites—193
positively and 160 negatively correlated with age—to
estimate epigenetic age [29].

The core strength of the Horvath clock lies in its high
accuracy and broad applicability across diverse tissues
and organs. It has been validated in almost all tissues and
organs, including whole blood, brain, kidney, and liver,
showing minimal age-related variance [14, 16, 30].
Research has also confirmed its effectiveness in aging
[31] and age-related diseases [32], cancer [33], as well as
in predicting lifestyle impacts and mortality rates [34].
Another significant advantage of the Horvath clock is its
versatility; it can be applied not only to aging research in
other mammals but also to in vitro aging analyses,
underscoring its robustness across different tissues and
experimental conditions [35]. Thanks to the Horvath
clock, many previously unresolved scientific questions
now have a relatively objective evaluation method,
making it an invaluable tool for studying aging and related
factors [30, 36]. Furthermore, as a pioneering work in
epigenetic clocks, its significance extends to paving the
way for the development of next-generation epigenetic
clocks [37].

Horvath’s clock, though widely applicable, has
specific limitations. As a “pan-tissue clock,” its predictive
accuracy can vary across tissues, particularly in
hormonally sensitive tissues and high-variability samples
like blood [38]. Compared to newer models such as
GrimAge and PhenoAge, Horvath’s clock demonstrates
lower predictive consistency, potentially due to its capture
of distinct biological pathways that complicate
interpretation [34]. Environmental and genetic influences,
including lifestyle factors like smoking and obesity, also
affect its aging acceleration metrics, introducing
heterogeneity into its predictions [16, 39]. Additionally,
Horvath’s clock often underestimates biological age in
individuals over 60, likely due to limited representation of
older samples in its training dataset [40—42]. The clock
exhibits limited sensitivity to certain diseases, proving
unable to capture significant age acceleration in
conditions like schizophrenia and progeroid syndromes
[43]. Its sensitivity to specific age-related conditions, such
as schizophrenia and progeroid syndromes, also remains
limited. Improving cross-tissue accuracy, predictive
consistency, and disease sensitivity could further enhance
its utility, particularly through integration with other
models [34].

3.2 Hannum’s Clock

Hannum’s clock is among the most prominent first-
generation epigenetic clocks, alongside Horvath’s Clock.
Although it was also developed using the Illumina 450K
methylation array, Hannum’s clock stands out as one of
the earliest epigenetic models specifically tailored to
blood samples. This model was built upon over 450,000
CpG markers derived from whole blood samples of 426
Caucasian and 230 Hispanic adults, aged 19 to 101.
Ultimately, 71 CpG sites with the strongest age-related
changes were selected to estimate biological age [16, 44].
Developed using the Elastic Net algorithm—a technique
that combines the benefits of ridge regression and LASSO
regression—Hannum’s clock demonstrates a high
correlation of 0.96 between biological and chronological
age, with an average absolute error of 3.9 years (slightly
higher than the Horvath clock’s 3.6 years) [44].
Optimized specifically for blood samples, Hannum’s
clock shows greater specificity in studies concerning
blood-based health and disease. Beyond estimating the
gap between biological and chronological age, it boasts a
strong association with clinical markers, making it a
valuable tool for assessing the risk of various age-related
diseases. Research has linked Hannum’s clock to
indicators such as body mass index (BMI), cardiovascular
health, immune function, and chronic conditions [16]. Its
utility extends further to evaluating the impact of clinical
interventions. By tracking changes in biological age
before and after interventions—such as weight loss
programs or exercise therapy—Hannum’s clock offers a
quantitative measure of treatment outcomes, thus aiding
in personalized health management [45, 46]. In addition,
Hannum’s clock has shown sensitivity to psychological
trauma, with studies demonstrating that accelerated aging,
as measured by this clock in patients with post-traumatic
stress disorder, correlates with the severity of their
condition [47, 48].

In contrast, Hannum’s clock is limited in its
applicability to tissues other than blood. Compared to the
Horvath clock, Hannum’s clock exhibits lower sensitivity
to external factors and reduced cross-ethnic adaptability
[49]. Like other first-generation epigenetic clocks, it is
based on static CpG sites and therefore unable to capture
the dynamic aspects of aging, rendering it less effective at
accurately reflecting the rate of aging [35, 37, 50].
Focusing solely on CpG sites also means that first-
generation clocks, including Hannum’s, may overlook
CpG methylation influences specific to certain cell types,
such as neurons, and disregard the effects of various
external factors on CpG methylation levels [51, 52].
Another critical limitation is their inability to account for
epigenetic age acceleration caused by specific diseases,
such as cancer. These shortcomings are expected to be
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addressed in second-generation epigenetic clocks through
the incorporation of new biomarkers and indicators [33,
53].

3.3 Bocklandt Clock

The Bocklandt clock, developed in 2011, was the first
epigenetic clock and introduced the groundbreaking
hypothesis that methylation status at specific DNA sites
changes in a predictable manner with age, showcasing the
potential of DNA methylation for age prediction. Using
the Illumina HumanMethylation27 microarray, this clock
quantified the methylation levels of 27,578 CpG sites at
single-nucleotide resolution in saliva samples from 34
pairs of monozygotic twins aged 21 to 55. Through linear
regression modeling, Bocklandt’s team ultimately
identified 88 CpG sites for age estimation [54]. That same
year, Koch and colleagues aimed to expand the
applicability of age prediction models by introducing an
epigenetic aging signature composed of five CpG sites to
estimate donor age across a broader range of tissues.
However, these models exhibited a considerable margin
of error from actual age, with an average absolute error of
approximately 11 years, highlighting the need for further
research to develop more precise clocks [55].

Although the Bocklandt clock may not enjoy the
same level of recognition as Horvath’s Clock, it made
groundbreaking contributions by first establishing the
viability of using DNA methylation as a means for age
estimation and by introducing an alternative approach to
studying aging. This early development ignited a wave of
research exploring the intricate relationship between
DNA methylation and the aging process, thereby
strengthening the role of epigenetic within aging research
[56]. While its predictive accuracy and tissue specificity
were limited, the Bocklandt clock marked a pivotal initial
step in the evolution of epigenetic clocks [56, 57].
Ultimately, its true significance lies in the innovative
connection it forged between epigenetic and aging, as well
as in providing a novel framework that has guided
subsequent research, driving forward the integration of
aging studies and epigenetic science.

3.4 Skin & Blood Clock

The Skin & Blood clock, developed by Steve Horvath’s
team, was specifically designed to capture the unique
epigenetic characteristics of skin and blood tissues.
Studies have shown that DNA methylation patterns in
tissues such as skin and blood exhibit distinct dynamics
compared to other tissues, making it advantageous to
create dedicated clocks to improve predictive accuracy for
these specific tissues [58, 59]. The construction of the
Skin & Blood clock involved analyzing skin and blood

samples from individuals across a wide age range, using
data obtained from the Illumina 450K methylation array.
Through this analysis, the researchers identified 391 CpG
sites closely associated with age [60].

This extensive dataset, encompassing a broad range
of ages, was chosen to ensure the clock’s applicability
across diverse populations. The primary objective of the
Skin & Blood clock is to enhance predictive precision
within skin and blood tissues, thereby enabling more
accurate assessments related to skin aging, immune
system changes, and associated health conditions. By
tailoring the clock to specific tissues, the Skin & Blood
clock provides a more reliable tool for studying skin
aging, biological age acceleration, and blood health.
Horvath’s team has also developed an online DNA
methylation age calculator for public use, available at
“https://dnamage.genetics.ucla.edu/”.

3.5 DNAm-based-age-predictors

First-generation epigenetic clocks are primarily centered
around age prediction, utilizing the difference between
predicted and actual age as a biomarker of aging to assess
biological aging rates. Nevertheless, these clocks, to
varying degrees, are constrained by their training datasets
and still exhibit some degree of error in age estimation.
To address this, Zhang and colleagues investigated the
theoretical possibility of an ideal DNA methylation-based
age predictor. They collected 14 datasets, including blood
and saliva samples, covering an age range from 2 to 104
years [61]. This clock demonstrated minimal influence
from disease and showed stronger correlations in samples
from blood, saliva, and endometrial tissues, although
correlations were lower in brain samples [61, 62].

4. Second-Generation Epigenetic Clocks

Compared to first-generation epigenetic clocks, second-
generation clocks have a somewhat different focus. While
first-generation clocks primarily aim to predict
chronological age, second-generation clocks place greater
emphasis on integrating assessments of health status,
disease risk, and aging rate. The distinction between these
generations lies in the core objectives of the models, the
number and characteristics of selected CpG sites, the
inclusion of health and physiological factors, and the
incorporation of dynamic aging rates [52].

Thus, second-generation epigenetic clocks are no
longer limited to age-related CpG sites alone; they also
account for an individual’s health status, disease risks,
lifestyle factors, and other variables [63]. This approach
provides a more comprehensive view of an individual’s
biological state, allowing for a nuanced evaluation of age
in relation to health, disease, and lifestyle [37, 64]. That
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said, clocks that incorporate a broader range of biological
information tend to have reduced accuracy in pure age
prediction [18, 65-67].

4.1 PhenoAge

Chronological age alone fails to fully encapsulate an
individual’s health status and aging trajectory. To
overcome the limitations of first-generation epigenetic
clocks, Morgan Levine and colleagues developed an
advanced epigenetic clock aimed at more accurately
predicting health status and mortality risk by integrating
DNA methylation data with diverse physiological
markers [27]. Leveraging data from NHANES III, they
initially selected nine clinical biomarkers to construct the
“Phenotypic Age” model. By correlating Phenotypic Age
with blood DNA methylation profiles, they developed
DNAm PhenoAge, an epigenetic metric based on 513
CpG sites identified through Illumina 27K, 450K, and
850K arrays.

A distinguishing feature of the PhenoAge clock is its
integration of DNA methylation data with nine key
clinical biomarkers: albumin, creatinine, glucose, C-
reactive protein, lymphocyte percentage, mean cell
volume, red cell distribution width, alkaline phosphatase,
and white blood cell count. This combination enhances its
sensitivity to individual variations and refines the
accuracy of biological age estimation [37]. The PhenoAge
clock can capture age-related shifts tied to chronic
diseases (including cardiovascular disease, diabetes, and
cognitive decline) and all-cause mortality, establishing it
as a powerful tool for predicting healthspan [27, 68].
PhenoAge also correlates with lifestyle and demographic
factors, such as educational attainment, physical activity,
income, systolic blood pressure, body mass index, dietary
habits (as indicated by carotenoid levels), and smoking
status[69]. In contrast, DNA methylation age acceleration
derived from multi-tissue clocks shows weaker
associations with lifestyle factors and inflammatory
markers, indicating it may reflect a more genetically
programmed, intrinsic aging process [14, 70].

Recent studies have employed the PhenoAge clock to
assess the impact of targeted treatments, including
pharmacological and lifestyle interventions, on biological
aging. PhenoAge has shown promise in determining
whether specific interventions can effectively decelerate
biological aging, supporting the development of
personalized health management strategies and informing
clinical decision-making [71, 72]. Insights from the
PhenoAge clock reveal that individuals with an
accelerated epigenetic age frequently exhibit heightened
pro-inflammatory and immune responses, as well as
impaired cellular maintenance and repair functions. These
findings underscore the link between epigenetic age

acceleration and fundamental shifts in biological function
[27].

As a second-generation clock, the PhenoAge model
represents a marked advancement, with its inclusion of
clinical biomarkers enhancing both predictive precision
and relevance, underscoring the significance of these
factors in modulating epigenetic age. This approach offers
valuable insights for future clock development,
suggesting that training clocks on an expanded set of
impactful biomarkers could produce even more accurate
aging models [28, 61]. Overall, the PhenoAge clock is a
substantial enhancement over first-generation epigenetic
clocks, offering a multidimensional measure of aging.
However, its complexity poses challenges for large-scale
population studies, and it remains highly responsive to
environmental and individual variability. Further
refinement is essential to reinforce its associations with
specific disease risks [27, 37, 41, 73].

4.2 GrimAge

GrimAge is a comprehensive epigenetic clock developed
in recent years, based on the idea that certain external
factors (such as smoking) and internal protein biomarkers
(such as inflammation-related proteins) have a greater
impact on individual health and mortality risk than
chronological age alone. Similar to other epigenetic
clocks, GrimAge was trained on CpQG sites shared by the
[llumina Infinium 450K and Illumina EPIC methylation
arrays [74]. The final model includes 1,030 CpG sites that
optimally predict composite biomarkers of seven DNA
methylation proteins, as well as annual smoking pack-
years. Its defining feature is the integration of multiple
DNA methylation markers and clinical biomarkers related
to aging, such as smoking status, insulin resistance, and
inflammation markers. Compared to other epigenetic
clocks and biological age estimates, GrimAge provides
more accurate predictions of all-cause mortality and has
thus been referred to as the “death clock™ [41].

To further enhance GrimAge, the team developed an
updated version known as GrimAge version 2, or
AgeAccelGrim [75]. This second version employs two
elastic net regression models to reselect, calibrate, and
adjust the weights of protein biomarkers associated with
health and mortality risk. As a result, AgeAccelGrim
demonstrates greater robustness, outperforming the
original GrimAge in predicting mortality risk, computed
tomography data, cognitive assessments, and lifestyle
factors, and is also applicable to saliva samples.
Compared to other second-generation epigenetic clocks,
GrimAge shows superior correlation with age-related
physical function decline and clinical phenotypes, such as
walking speed, grip strength, Fried frailty, polypharmacy,
the Mini-Mental State Exam (MMSE), and the Montreal
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Cognitive Assessment (MOCA) [37, 76]. AgeAccelGrim
has also demonstrated stronger associations and
predictive power for a range of diseases, such as type 2
diabetes and various cancers, highlighting its potential as
arobust predictor of disease risk [ 77, 78]. Due to its higher
complexity and inclusion of mortality-related biomarkers,
GrimAge is also more sensitive to biological outcomes in
socioeconomically disadvantaged communities [79].
Furthermore, GrimAge acceleration has been observed in
severe depression, supporting its applicability in mental
health research. The association between AgeAccelGrim
and the severity of PTSD further suggests its clinical
utility for tracking the long-term impact of trauma-
induced stress on morbidity and mortality risk [80—82].
GrimAge’s dependence on protein biomarkers suggests
that it might be less sensitive to detecting short-term
health fluctuations and may be vulnerable to interference
from acute inflammation, infections, or other sudden
health events [83].

4.3 DunedinPoAm

Among the epigenetic clocks discussed, capturing a
methylation snapshot of an individual or group at a single
time point remains a commonly employed approach. Yet,
to identify regions where methylation shifts due to aging
or disease—or to predict future changes—a longitudinal
study design is essential [28]. Longitudinal studies of this
nature allow researchers to track methylation trends
within individuals over extended periods, providing a
more accurate view of dynamic epigenetic changes.
Originating from the Dunedin longitudinal study, the
DunedinPoAm (Pace of Aging Methylation, PoAm)
offers insights beyond biological age by quantifying an
individual’s “pace of aging” across defined time intervals
[84]. Given its foundation in longitudinal methylation
data, DunedinPoAm could be regarded as a third-
generation epigenetic clock. This model tracks
longitudinal changes across 18 biomarkers associated
with the functional health of blood and various organ
systems, using Illumina 450K and EPIC array data from
individuals of the same age cohort. Distinct from earlier
DNA methylation clocks, which estimate biological age
retrospectively, DunedinPoAm measures the rate of
aging, providing an immediate indicator of aging velocity
rather than a cumulative aging estimate. Conceived as a
“speedometer,” DunedinPoAm is highly sensitive to
fluctuations in physical function, cognitive performance,
motor skills, and visible markers of aging [84].

Research employing this clock has demonstrated that
children exposed to adverse socioeconomic conditions
early in life generally exhibit higher DunedinPoAm
scores, while older adults with accelerated DunedinPoAm
readings face an elevated risk of disease and mortality [85,

86]. Although these findings are valuable, the
DunedinPoAm model is constructed from biological
changes observed over a relatively short 12-year span,
with data collected at only three time points. This
constrained timeframe and limited sampling restrict its
capacity to capture the complete aging trajectory
throughout adulthood. The sparse data points also
diminish its accuracy in assessing the rate of aging, which
limits its effectiveness in clinical trials aimed at
evaluating individual changes before and after treatment
[87, 88].To address these limitations, DunedinPACE was
introduced as an improved version of DunedinPoAm.
DunedinPACE extends the follow-up period, increases
the number of assessments, and improves data reliability,
resulting in a stronger correlation with health outcomes
[88, 89]. Consequently, DunedinPACE represents a
valuable complementary tool, offering useful advantages
for quantifying biological aging through DNA
methylation.

4.4 Zhang's clocks

Another clock that incorporates longitudinal analysis was
developed by Zhang et al., based on a 14-year cohort
study. This study ultimately selected 10 CpG sites from
whole blood samples using the Illumina 450K array.
These CpG sites are strongly associated with all-cause
mortality, cardiovascular disease, and cancer mortality,
and they differ from those used in other current clocks
[90]. While the Zhang clock demonstrates high predictive
accuracy in mortality due to its specific focus, it is less
effective than more complex clocks at capturing
multidimensional health and aging characteristics or
assessing risk for specific diseases [35, 91].

4.5 Principal component clock

As research advances, we are uncovering not only the
links between epigenetic age, aging processes, and
associated risk factors, but also the capacity of certain
interventions to modulate epigenetic age [16, 92]. Yet, it
is crucial to acknowledge the potential influence of
technical noise in DNA methylation measurements.
Studies have shown that, beyond issues inherent to sample
preparation and hybridization, the presence of unreliable
and poorly reproducible probes introduces substantial
challenges in the accurate measurement of methylation at
numerous CpG sites on methylation arrays—a persistent
issue in both Illumina 450K and EPIC platforms [93-95].
With the continued accumulation of data, this decline in
measurement reliability and reproducibility could
undermine the accuracy of research findings and impede
the construction of precise clocks, particularly in first-
generation models where heterogeneity is notably high
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[87, 96, 97]. The difficulty of disentangling biological
variation from technical noise poses a significant
challenge, as errors in epigenetic clocks may become
progressively magnified. This issue becomes especially
concerning in longitudinal studies assessing intervention
effects, where the repeated amplification of noise could
ultimately compromise the reliability of the findings.

To mitigate these issues, Higgins-Chen et al.
developed a computational solution to enhance the
robustness of epigenetic clocks, utilizing principal
component (PC) analysis to retrain several prior clocks,
including Horvath, Hannum, and GrimAge clocks. This
approach allows for more stable results with smaller
sample sizes and has been shown to be particularly
reliable and effective in tissues such as saliva and brain
[23]. In clock construction, PC analysis is a highly
effective training method; it can address the “curse of
dimensionality” that arises as the number of features in
methylation data expands with sample size, reducing risks
of overfitting and multicollinearity, thereby enhancing
model performance [98].

In this context, Fong et al. identified features that
differentiate healthy and unhealthy aging trajectories,
resulting in the development of the clinical aging clock
PCAge and a simplified aging clock, LinAge. They also
demonstrated a method for customizing clinical clocks for
specific datasets by retraining a tailored clock model [99].
PCA-trained clocks, such as PCAges, increase the
average epigenetic age of samples, aligning them more
closely with chronological age. Furthermore, PCA-based
measurement methods have been shown to better predict
aging-related health outcomes, including mortality,
without altering the original relationships between health
behaviors and outcomes considered in the initial clock
models [62, 93].

5. Other Clocks

Beyond the well-studied classic clocks described above, a
variety of other epigenetic clocks have emerged,
showcasing researchers’ innovative approaches to
bridging gaps in current aging research. While these
clocks have not yet been extensively validated or
rigorously evaluated, their development has greatly
enriched the field, advancing our understanding of
biological aging. Notably, this category encompasses
clocks that fall outside the traditional classifications of
first- and second-generation epigenetic clocks.

5.1 Centenarian Clocks
First-generation epigenetic clocks tend to significantly

underestimate the ages of centenarians due to their
reliance on regression toward the mean. To address this,

Eric Dec and colleagues developed Centenarian clocks,
specifically designed to provide accurate age estimations
for individuals over 100 years old. This innovation is
expected to aid in verifying hypotheses related to
exceptional longevity [100].

5.2 ELOVL2 Clock

The development of aging biomarkers has been a
challenging and protracted process, with the identification
of age-related biological factors remaining a key objective
in aging research. ELOVL2 has emerged as a promising
biomarker of aging due to its consistent increase in
methylation from the earliest stages of life, playing a
significant role in many age-related molecular
mechanisms [101, 102]. Garagnani et al. observed that
methylation levels of ELOVL2 in whole blood DNA
samples showed a striking, almost “on-off” pattern,
increasing from 7% to 91% with age [103]. With an
approximate prediction error of 5.5 years, the ELOVL?2
clock demonstrates considerable accuracy, positioning it
as a promising molecular tool for forensic age estimation
[104, 105]. While this clock shows significant potential,
numerous models centered on ELOVL2 have been
developed, underscoring the need for further validation to
clarify its broader applications in aging research [106].

5.3 Cortical Clock

It is well-known that the aging process contributes to a
range of age-related diseases, among which
neurodegenerative disorders severely impact the quality
of life in later years. DNA methylation changes in the
cortex are closely associated with neurodegenerative
diseases such as Alzheimer’s and Parkinson’s [107, 108].
To address the limitations of earlier clocks—which were
often not rigorously calibrated for specific tissues and
were prone to age-related phenotypic influences leading
to false positives—recent efforts have focused on
developing clocks specifically for the human cerebral
cortex [109, 110]. These cortical clocks weigh the DNA
methylation levels at specific sites, distinguishing
themselves from clocks developed from multi-tissue or
blood samples. They excel in predicting cortical age and
are sensitive to neurodegenerative diseases and common
aging phenotypes [30]. However, like other specialized
clocks, cortical clocks lose their predictive accuracy when
applied to tissues outside their intended target, limiting
their cross-tissue applicability [61].

5.4 Meta-clock

In light of the heterogeneity and overlapping signals
among existing clocks, Liu and colleagues combined
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multi-omics data from various human tissues and cell
types, integrating findings from in vitro experiments
focused on aging markers. This approach provided a
comprehensive view of the shared and contrasting
features captured by 11 existing epigenetic clocks. By
synthesizing the conserved features across these clocks,
they developed a new clock, termed the “Meta-clock.”
This clock aims to combine the best aspects of previous
clocks, demonstrating higher accuracy in mortality
prediction and greater robustness in capturing aging-
related changes both in vivo and in vitro [35].

5.5iCAS-DNAmAge

Variability in clock construction can also arise from
individual inconsistencies, which are further magnified
across different cohorts, potentially impacting results.
Significant differences in epigenetic age have been
observed across racial and ethnic groups [93, 111, 112].
This raises uncertainty as to whether existing epigenetic
clocks can accurately capture aging in cohorts that differ
racially or ethnically from the populations on which these
clocks were trained. To address this issue, Zheng and
colleagues developed a new clock called iCAS-
DNAmAge, along with a multimodal aging predictor
[113]. This clock was built using data from a Chinese
cohort, allowing for more accurate age estimations for
Chinese individuals compared to previous cohort-based
clocks. A major limitation of current epigenetic clock
research is its heavy reliance on data from European
ancestry cohorts, resulting in a lack of representation from
other populations and insufficient consideration of genetic
heterogeneity [22]. Large-scale, longitudinal studies
across diverse populations are essential for expanding the
applicability of epigenetic clocks [114]. The iCAS-
DNAmAge clock contributes to bridging this gap,
enhancing the utility of epigenetic clocks across different
regions and ethnicities.

5.6 Y-CpG Age

Extensive research has demonstrated that women tend to
outlive men, with epigenetic factors emerging as a
potential underlying mechanism for this difference in
lifespan. Epigenetic clocks, which are biomarkers of
biological age, reveal distinct sex-based variations. These
differences encompass a range of epigenetic features,
including methylation patterns on the X chromosome, X-
chromosome inactivation, histone  modifications,
hormonal regulation, and DNA methylation profiles that
are specific to each sex [115-118]. Additionally, the
expression of certain epigenetic regulators on sex
chromosomes appears to play a unique role in modulating
methylation dynamics, influencing how age-related

changes are expressed differently in men and women
[119, 120].

Further studies on age estimators specifically
targeting the Y chromosome have revealed a progressive
increase in hypermethylation of Y-linked CpG sites as
men age[119, 121]. These Y -chromosome-specific
epigenetic clocks exhibit high predictive accuracy,
particularly in individuals over the age of 40, suggesting
their potential utility in forensic and criminological
applications where age estimation may be critical.
Furthermore, the development of sex chromosome-
specific epigenetic clocks holds promise for deepening
our understanding of the interplay between longevity and
gender. Through investigating epigenetic mechanisms
that may contribute to the female longevity advantage,
these specialized clocks hold the potential to reveal
insights into the relationship between longevity and
gender from an epigenetic perspective.

5.7 Neural Network-Based Clocks

Artificial intelligence has shown remarkable advantages
in prediction and diagnosis across various fields [122].
Neural networks, a core component of deep learning, have
been a driving force behind the rapid advancements in
modern Al. Traditional epigenetic clocks mostly rely on
regression methods, whereas DeepMAge was developed
using neural networks with blood samples as the training
set, demonstrating superior performance compared to
conventional clocks [123]. DeepMAge has a median
absolute error of around 2.77 years in age prediction,
though certain diseases can impact its accuracy. This
limitation may stem from a lack of training data from
other tissues and limited longitudinal data.

AltumAge addresses some of these shortcomings.
Trained on samples from 142 different experiments, it
can, like the Horvath clock, be used to estimate pan-tissue
age. Unlike linear clocks, AltumAge excels in accuracy,
applicability, robustness, and resistance to interference,
highlighting the advantages of neural network-based
models over linear approaches [124]. AltumAge is highly
sensitive to various diseases and biologically relevant
conditions, including cancer, type 2 diabetes, HIV,
obesity, anxiety, and smoking [124-126]. AltumAge also
possesses the capability to capture age-related interactions
between CpG sites, with samples from tumors, immune
dysfunction, and mitochondrial dysfunction displaying
elevated predicted ages. In general, this clock outperforms
traditional linear regression models across various
performance metrics, while simultaneously providing
unique biological insights into the mechanisms of aging.
[124, 127].
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5.8 Epigenetic Clocks for Model Organisms

Model organisms are an indispensable part of aging
research. Similar to humans, DNA methylation data has
revealed abundant age-related markers in various model
organisms, leading to the development of species-specific
epigenetic clocks. Some clocks developed for rodents, for
example, exhibit characteristics similar to human
epigenetic aging markers [128, 129]. Lu and colleagues
sought to construct a universal pan-mammalian epigenetic
clock, proposing three pan-mammalian age estimators
that provide both absolute and relative age measurements
with more reliable biological features, thereby improving
accuracy and versatility across species [130]. For
chimpanzees, a species-specific epigenetic clock has
highlighted significant overlap in age-related epigenetic
patterns between chimpanzees and humans, offering new
insights for comparative aging research [131]. Clocks
have also been developed for invertebrates and non-
mammalian species, including fruit flies and nematodes,
thereby enabling aging research across a broader range of

species and in vitro models. These advancements expand
the toolkit available for exploring the intricate
relationship between epigenetic and aging, providing
valuable insights into conserved mechanisms across
diverse biological systems. [132—134].

Beyond the primary epigenetic clocks discussed
above, other models have emerged in recent years. The
development of these emerging clocks demonstrates the
potential applications of epigenetic clocks in diverse
biological and clinical contexts. This includes clocks
developed using new technologies, those tailored to
specific biological aspects, and some that represent
corrections or updates to previous clocks [24, 66, 135].
There are also clocks with unique advantages that are not
included here due to limited information, lack of open-
source data, or insufficiently distinguished performance
characteristics. Further research is needed to explore the
applicability and generalizability of some of these clocks
[21, 136]. A brief summary of the key characteristics of
human epigenetic clocks can be found in Table 1.

Table 1. Summary of Key Characteristics of Human Epigenetic Clocks.
Clock Data Source Final CpG number__ Training Method
First-generation epigenetic clock
, Multi-tissue . .
Horvath's Clock [29] Ilumina 27K / 450K 353 Elastic net regression
, Whole Blood . .
Hannum's Clock [44] Ilumina 450K 71 Elastic net regression
Bocklandt's Clock [54] Saliva 88 Itivariate Ii i
ocklandt's Cloc Illumina 27K multivariate linear regression
. Skin and Blood . .
Skin & Blood Clock [60] Ilumina 450K 391 Elastic net regression
. Whole Blood and Saliva Elastic Net and Best Linear
DNAm-based-age-predictors [61]  yy1;;ying 450K/EPIC S14 Unbiased Prediction
Second-generation epigenetic clock
Whole Blood Cox regression with penalized
PhenoAge [27] Hlumina 27K / 450K S13 elastic net
. Whole Blood . . .
GrimAge [74] Ilumina 450K / EPIC 1030 Cox regression with elastic net
GrimAge v2 Whole Blood 1030 Cox regression with penalized
(AgeAccelGrim) [75] Illumina 450K / EPIC elastic net
. Dunedin Study . .
DunedinPoAm [84] Illumina 450K/EPIC 46 Elastic net regression
. Dunedin Study . .
DunedinPACE [88] Illumina 450K/EPIC 173 Elastic net regression
ESTHER study
Zhang's Clock [90] Whole Blood and Saliva 10 LASSO regression
[llumina 450K
Principal Component Clock Whole Blood . . .
(PCAge) [23] Ilumina 450K/EPIC 78464 PCA with Elastic net regression
Other epigenetic clocks
. Whole Blood and Saliva Elastic net regression and neural
Centenarian Clocks [100] [lumina 450K/EPIC 33495 network models
ELOVL2 Clock Whole Blood 2 Linear regression model
[103, 104] Ilumina 450K &
Cortica Clock Cortical 347 Elastic net regression
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[110] I1lumina 450K
Framingham Heart Study
1[\;I;:;a-clock Multi-tissue 878 Elastic net regression
Illumina 450k
ICAS-DNAmAge Whole Blood 65 Elastic net regression
[113] Illumina EPIC/EPICv2 &
DeepMAge Whole Blood
[123] Illumina 27K / 450K 1000 Deep neural network
I[AllztlignAge Multi-tissue 20318 Deep neural network
Whole Blood and sorted 353 . . .
StocH-clock immune cells based on Elastic ~ met  regression with
[66] Ilumina 450k Horvath’s clock stochastic simulation modeling
Whole Blood and sorted 514 . . .
szl
Illumina 450k Zhang’s clock
StocP-clock Whole Blood and sorted 513 Elastic net regression with
immune cells based on Lo & .
[66] Ilumina 450k PhenoAge clock stochastic simulation modeling
IntrinClock Whole Blood 381 Elastic net regression
[137] Illumina 450K/EPIC &
Y-CpG Age Male Y chromosome . .
[121] Ilumina 450K 75 Linear regression model
CausAge[138] Whole Blood 586
AdaptAge[138] Ilumina 450K 1000 Elastic net regression
DamAge[138] 1090

6. Using the Past to Predict the Present and Future

DNA methylation encapsulates an individual’s formative
experiences and accumulated life history. During
embryogenesis, DNA methylation undergoes a
comprehensive reset, ensuring that the genome of the next
generation begins from a “clean slate.” From that point
forward, each experience—whether dietary, emotional,
environmental, or disease-related—Ileaves distinct,
cumulative marks on this genomic slate. This
accumulation of influences shapes DNA methylation
patterns, enabling it to serve as a partial chronicle of one’s

life history [139]. Unlike histone or RNA methylation,
DNA methylation exhibits notable stability, functioning
as a persistent regulatory mechanism for gene expression,
while also retaining the capacity to respond dynamically
and reversibly to short-term stimuli [140, 141]. These
methylation patterns display remarkable consistency
across diverse tissues, positioning DNA methylation as an
ideal systemic biomarker [59, 142]. This “genomic
memory” effectively archives cellular experiences over
time, which epigenetic clocks strive to decode to infer
current biological states and project future health
outcomes.

Table 2. Summary of Key Characteristics of Human Epigenetic Clocks

Clock Training Dataset Advantages

Limitations Application

First-generation epigenetic clock

High accuracy for age
multiple
tissues; first multi-tissue

prediction in
Based on over 8,000 samples

May  underestimate
biological age in older
adults, lacks sensitivity
to certain diseases, and

Designed to deliver consistent
age predictions across various

Horvath's Clock from 51 healthy tissues, epigenetic clock enabling <hibit riabilitv in tissues by analyzing
[29] including blood, brain, liver, comparisons across .. S vanabiity methylation levels, offering
and skin different  cell  types tissues such as breast insights into age acceleration in
' . . . ; and skeletal muscle. . .
including iPS and . . disease contexts like cancer.
embryonic stem cells Highly sensitive to
Yy ’ environmental factors.
Based on blood samples {:;;T:Zd 10;?& Erlgsosc_l Exhibits strong specificity for
Hamun's Clock 1™ (2 YT T M edieton accuracy for  SIe _adapiabiit, g AET e
[44] . o pn Y pred y static CpG sites fail to L . L
Caucasian and Hispanic age in blood . . associations ~ with  clinical
S capture dynamic aging . . .
individuals. processes biomarkers, incorporating
Aging and Disease * Volume 16, Number 6, December 2025 3530



Liang R., et al.

Epigenetic Clocks in Aging

Bocklandt's
Clock
[54]

Skin & Blood
Clock
[60]

DNAm-based-
age-predictors

Developed from  saliva
samples of 34 identical male
twin pairs (ages 21-55) and
validated on additional 60
independent samples (31
males, 29 females, ages 18-
70).

Trained on data from blood,
skin, and fibroblast samples
using data from Illumina
450K, covering ages from
infancy to elderly samples.

Involves multiple cohorts,
such as LBC1921,
LBC1936, and Generation
Scotland, spanning over
13,000 blood samples and

Offers  accurate  age
predictions from saliva
samples, with potential
forensic applications and
relevance for assessing
age-related health risks.

Accurate age estimation
in skin, blood, and saliva;
ideal for forensic
applications and ex vivo
studies; accurately tracks
age  acceleration in
conditions like
Hutchinson-Gilford

Progeria Syndrome.

High prediction accuracy
with increasing training
size; offers insights on
age-associated  changes

Suffers from large
prediction errors, with
restricted tissue
specificity and limited
accuracy.  Currently
applicable only to
saliva samples.

Predictive  accuracy
declines in non-skin
and non-blood tissues,
with slight variability
observed in fibroblast

measurements,
particularly in very
young samples. Its

applicability is limited
to target tissues.

Performance varies
across tissue types,
showing reduced

effectiveness in smaller
sample sizes and age
variance influenced by

analyses of sex and genetic
variations.

Potential tool for forensic age
estimation; may aid in clinical
assessments by measuring
biological age and associated
health risks.

Useful for biomedical
applications including ex vivo
aging assays for screening anti-
aging compounds and forensic
age estimations in skin and
blood samples.

Promising for refining
biological age prediction in
clinical applications, with
potential to identify health

[61] additional samples from across tissues, enhancing  sample  types (.e £ trajectories  across  diverse
. . biological age Dblood vs. saliva). .
saliva, brain, and . : tissue samples.
endometrium assessment. Correlation is
’ particularly low in
brain tissues.
Second-generation epigenetic clock
Based on whole blood High predictive power for . . .
samples from the National morbidity and mortality, . . Useful for trackmg blologlcal
.. . e Characterized by high health and assessing aging-
Health and Nutrition ~ with stronger associations complexity and  related disease risks
PhenoAge Examination Survey to health-related aging resource demands, outperforming traditional
(NHANES III and IV) and outcomes (e.g., all-cause . . . .
[27] . . . . making it unsuitable clocks by emphasizing
validated across multiple mortality, physical | 1 .
cohorts including  functioning) than for Jati a(rige-scae hea(lit‘hs.p an  and 11f§:spaln
X : population studies. prediction over simple
Framingham " e chronological age.
While accurate in
predicting 12 plasma
proteins, its reliability
. - for other proteins
Trained on data from the Strongly predictive of . .
Framingham Heart Study lifespan and healthspan; remaimns IQW' Further - Valuable for . hfe'span. gnd
. L L validation is needed for  health monitoring in clinical
(FHS) with 2,356 whole- significant associations . . . . .
. - . - Lo ; populations ~ beyond = settings, including human anti-
GrimAge blood samples; validated with mortality risk, time- . . .
. European, African  aging studies and age-related
[74] across over 7,000 samples to-disease events (e.g., . - . .
from independent cohorts coronary heart disease American, and - discase prevention, serving as a
. p Y . ’  Hispanic roups. complementary tool to existin
like WHI, InCHIANTI, and  cancer), and lifestyle p group P Y &
JHS ’ ’ factors ’ Sensitive to acute clinical biomarkers.
' ’ inflammation and
prone to interference
from sudden health
events.
. Strong  predictor  of L . .
Based on Framingham Heart . . Primarily validated in L .
. mortality, chronic . Useful in clinical settings for
Study with 1,833 samples discases  (e. e 2 blood samples; further healthspan monitoring
GrimAge v2 for.tre-umnlg and 711 for diabetes), and conditions researc h nee@ed for offering early detection for
. testing; validated across nine .. effectiveness in non- "
(AgeAccelGrim) cohorts  totalin 13.399 like  coronary  heart blood  tissues  and age-related conditions and
[75] blood  sam lesg S an;lin disease; tracks age-related reater cthnic diversit supporting intervention
pes sb & healthspan decline across grea Y effectiveness in geroscience
European, African, and diverse racial/ethnic outside the current trials
Hispanic populations. groups and biomarkers. sample composition.
DunedinPoAm Based on longitudinal DNA  Assesses biological aging Primarily validated in  Ideal for assessing age-slowing
[84] methylation data from the pace, correlates with European populations, interventions in clinical trials
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Dunedin  Study, tracking
whole-blood samples and
changes in 18 biomarkers
from individuals born in
1972-1973 at ages 26, 32,
and 38.

Expanded the Dunedin
cohort dataset to include 20
years of data, incorporating a
fourth measurement point at
age 45.

DunedinPACE
[88]

Developed using blood
samples from 1,000
participants (ages 50-75) in
the ESTHER study (case-
cohort design) and validated
in the KORA cohort,
spanning a broader age
range (31-82).

Zhang's Clock
[90]

Trained on multiple DNA
methylation datasets from
the Framingham  Heart
Study, Health and
Retirement Study,
InCHIANTI, and various in
vitro and in vivo samples,
covering blood, saliva, and
brain tissues.

Principal
Component
Clock
(PCAge) [23]

physical/cognitive aging,
lifestyle factors, chronic
diseases, and mortality.

Offers longer follow-up,

more assessments, and
higher reliability
compared to

DunedinPoAm.

Strong predictor of all-
cause mortality, with risk
ratios of up to 7.36 times
for participants with high
risk scores (5+);
informative for clinical
risk stratification.

Significantly — improved
reliability with 90% of
replicate agreement
within  1-1.5  years;
effective in longitudinal
and intervention studies
for aging and
personalized medicine.

requiring  additional
testing in non-
European groups and
across diverse tissue
types. Insufficient
longitudinal data points
make it challenging to
capture the full
trajectory of aging
across adulthood.

Limited by training
dataset diversity;
improvements for non-
European populations
and external samples
remain minimal.

Limited to  blood
samples and primarily
validated in European
populations, with
further validation
required in other ethnic
groups. Demonstrates
weaker  associations
with  health traits
compared to more
complex clocks.

Highly dependent on
large datasets for PCA
construction, with
reduced effectiveness
when sample variance
is restricted, or batch
effects occur across
multiple datasets.
Technical noise may
still impact predictions.

and monitoring health span,
especially in  personalized
medicine, by quantifying
biological aging rates instead
of static age.

More reliable than
DunedinPoAm; suitable for
geroscience trials and as a
healthspan indicator in clinical
settings.

Valuable for risk assessment
and  personalized  health
monitoring, with potential for
clinical integration in mortality
risk stratification by focusing
on disease-associated
methylation changes rather
than chronological age.

Provides reliable tracking for
age and health interventions,
enabling reduced sample sizes
in clinical trials; supports use

in aging research across
various tissues and health
contexts.

Other epigenetic clocks

Developed  using
samples from individuals
aged over 40, including
blood and saliva, with a
notable cohort of 184
centenarians, 122  semi-
supercentenarians (105+
years), and 25
supercentenarians (110+
years).

7,039

Centenarian
Clocks
[100]

Initial study used 64 whole
blood samples of various
ages, followed by a larger
validation on 501 samples
aged 9 to 99 years, including
cord blood.

ELOVL2 Clock
[103, 104]

Trained on 1,047 human
cortical tissue samples with
an additional 350 for testing,
spanning ages 1 to 108
years.

Cortica Clock
[110]

Demonstrates high
accuracy in predicting age
in individuals over 80,
particularly ~ well-suited
for extreme ages (100+);
validates  claims  of
exceptional longevity.

High accuracy for
chronological age
prediction, robust in
blood and bloodstain
samples; maintains
stability after weeks of
storage at room
temperature, valuable for
forensic applications.

High prediction accuracy
in cortical tissue;
minimizes error in age

estimation for brain-
specific aging studies,
avoiding biases of

traditional clocks used in
brain tissue.

Limited robustness
when applied to ages
beyond 115; current
model might
underestimate age for
the very oldest-old due
to  regression-to-the-
mean effects.

Limited applicability to

non-blood  samples;
potential
environmental
influence on
methylation  stability
for samples stored
long-term.

Limited applicability to
non-brain tissues;
model accuracy
declines when applied
to non-cortical samples
such as blood.

Useful in validating age claims

for supercentenarians,
supporting studies on longevity
and possibly forensic

investigations involving age
estimation.

A promising tool for forensic
age estimation, particularly
suited for determining the age

of blood samples and
bloodstains, with potential
applications in forensic

sciences and monitoring age-
related health changes.

Suitable for studying age-
related brain conditions like
Alzheimer’s and other
neurodegenerative  diseases,
aiding in research on brain-
specific aging processes.
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Meta-clock
[35]

iCAS-
DNAmAge
[113]

DeepMAge
[123]

AltumAge
[124]

StocH-clock
[66]
StocZ-clock
[66]

StocP-clock
[66]

IntrinClock
[137]

Y-CpG Age
[121]

CausAge [138]

Built on 2,993 samples from
the Framingham Heart Study
(FHS)  across  multiple
tissues, including blood,
brain, and skin.

Based on 1,580 samples
from two  independent
Chinese cohorts (Quzhou
and CAS), covering age
ranges from 20 to 87, all
whole-blood samples.

Derived from 4,930 blood
samples across 17 studies;
verified on 1,293 samples
from 15 studies, all whole-
blood samples.

Trained on 8,999 samples
from various tissues,
enabling accurate cross-
tissue age estimation.

Analyzed in 22,770 samples,
including blood and sorted
immune cell datasets from
25 independent cohorts (e.g.,
MESA, BLUEPRINT) to
model the stochastic
component in aging.

Based on whole blood
samples from the National
Health and Nutrition
Examination Survey
(NHANES III and IV) and

validated across multiple
cohorts, including
InCHIANTI and
Framingham.

Based on blood samples
from 1,057 male individuals
aged 15-87, collected from
six different datasets focused
on healthy individuals.

Developed novel epigenetic
clocks utilizing putative
causal CpG sites identified
through EWMR, trained on a

High predictive accuracy
for mortality (HR = 6.19);
distinguishes tumor vs.
normal tissues and tracks
hallmarks of cellular
aging like senescence and
mitochondrial
dysfunction.

High  accuracy  for
biological age estimation,
particularly adapted for
Chinese populations;
responsive  to  disease
states and inflammation
markers like IL-6.

High accuracy (MedAE =
2.77 years in
verification); disease
sensitivity (e.g.,
inflammatory bowel
disease, multiple

sclerosis); minimal sex
bias in predictions.

Highly  accurate  in
endometrial age
prediction (MAE = 3.6
years), outperforming
some first-generation
epigenetic clock, with
significant relevance to
reproductive health.

Quantifies the stochastic
contribution in epigenetic
aging, demonstrating that

chronological aging
prediction may rely
largely on stochastic
processes; provides

insights into the variance
explained by randomness.
High predictive power for
morbidity and mortality,
with stronger associations
to health-related aging
outcomes (e.g., all-cause

mortality, physical
functioning) than
chronological age
estimators.

Provides the first male-
specific age estimator,
with  applications  in
forensic age estimation
for mixed samples and
study of male-specific
aging.

Built using causally
aging-associated  sites,
this clock delivers more
stable age assessments
compared to correlation-

Limited validation
across different ethnic
groups; some

limitations in capturing
aging signals specific
to non-blood tissues.

Limited  cross-ethnic
validation,  potential
gender bias since initial
testing included
primarily female
samples.

Limited to  blood
samples; not tested in
longitudinal ~ settings;
requires complex data
preprocessing and
model tuning.

Primarily trained on
static samples;
longitudinal stability in
tissues with  cyclic
changes, like the
endometrium, remains
uncertain.

Current models are
primarily based on
blood and immune cell
data, requiring further
validation for other
tissue types and larger
datasets to generalize
findings.

Primarily validated in
blood samples;
additional research
needed for wuse in
diverse tissues and
ethnicities outside the
original cohorts.

Currently limited to
blood data; further
studies are needed to
validate effectiveness
in other tissues and
broader population
samples.

Shows slightly reduced
performance in

High applicability in clinical
aging studies, potential for
healthspan ~ and  lifespan
assessments, and disease risk
monitoring.

Suitable for broad health
monitoring in Chinese
populations, with potential
expansion to track disease
progression and interventions.

A powerful tool for tracking
age-related health changes,
with superior sensitivity to
diseases and improved age
prediction over traditional
clocks like Horvath’s.

Potential tool for tracking age-
related health changes, useful
in assessing disease-related age
acceleration.

StocH achieves R? ~0.66 in
whole blood, StocZ shows
higher stochastic accuracy for
chronological age (~90% of
Zhang's predictive accuracy),
while StocP confirms non-
stochastic  influences  on
PhenoAge’s biological aging.

Usetul for
biological
predicting

monitoring
health and
aging-related
disease risks, making it
suitable for clinical aging
assessments and health
interventions.

Offers potential for forensic
use in age prediction for male
samples, and aids in the
investigation of age-related
changes specific to the Y-
chromosome.

Exhibits higher accuracy and
robustness in age prediction,
forming the foundation for

dataset of 2,664 blood based clocks and is less mortality prediction. ?da}itAge and  DamAge
samples. susceptible to  factors cvelopment.
absent in the training data.
AdaptAge [138] Causal CpG sites were Unlike other clocks, the Displays marginally Significantly inversely
further inferred and sites in this clock are lower predictive  correlated with mortality, it
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categorized into two distinct  either
clocks based on the
magnitude of Mendelian
randomization causal effects
and the direction of age-
related differential

methylation.

acceleration
Comprising
DamAge [138]

damage

other clocks.

protective  or
neutral, with AdaptAge
indicating
enhanced healthspan.

exclusively
damage-associated sites,
this clock demonstrates
higher correlations with
rates
significantly outperforms

capacity in certain better reflects  protective
aspects compared to measures against aging and
some second-  serves as a preferred biomarker
generation clocks. for developmental events
influencing aging traits.
Provides a more robust
representation of age-related
conditions, reliably reflecting
age acceleration across various
and diseases. It is also a preferred
biomarker for developmental
events shaping aging traits.

Aging, in part, follows a stochastic course, with
variability that becomes particularly pronounced among
individuals [143, 144]. Paradoxically, this inherent
stochasticity contributes to enhanced predictive accuracy.
While the system is naturally disordered, the
accumulation of random modifications across numerous
genetic loci and cells leads to an averaged effect. This
culminates in an emergent pattern that reflects a statistical
regularity underlying the process. Consequently, these
cumulative random changes produce a statistically
consistent macro-scale pattern, which resembles a linearly
increasing ‘marker of temporal progression [44, 145].
When stochastic accumulations exceed a certain
threshold, they generate a robust aging signal, enabling
epigenetic clocks to estimate age with remarkable
accuracy, closely reflecting chronological age. This stable
distribution aligns with the principles of entropy, where
the gradual increase in entropy at the macro level follows
a predictable trajectory [18, 146—148]. This phenomenon
underscores the universality of epigenetic clocks,
enabling them to sustain high predictive accuracy across
diverse ages, individuals, and tissue types. The closer a
clock’s estimates align with chronological age, the more
likely it is capturing the aggregated effects of random
DNA methylation alterations rather than specific
biological pathways [66, 149].

In contrast, variations in biological age exhibit less
randomness. DNA methylation changes driven by
environmental and lifestyle factors—such as exposure to
pollutants, socioeconomic status, and smoking—or by
biological processes, including infections and immune
system dynamics, are often governed by distinct
mechanistic pathways rather than random variation [17,
79, 150]. These changes often follow discernible patterns
and depend more on individual circumstances rather than
maintaining a strictly linear correlation with time [66].
Furthermore, current epigenetic clocks are not confined to
linear predictions. Although second-generation clocks
demonstrate proficiency in estimating aging rate,
mortality risk, and related aspects, refining these models
to capture the complexities of aging mechanisms demands
continued investigation. Aging remains a multifaceted
and intricate process to model; while epigenetic clocks

offer valuable insights into future aging trajectories,
ongoing advancements are essential for greater precision.

7. Epigenetic Clocks as Tools for Measuring the
Information Theory of Aging

The integration of epigenetic clocks with aging theories
has unlocked promising avenues for understanding and
measuring biological aging. By decoupling biological
changes from the construct of chronological time,
epigenetic clocks establish a distinct metric for assessing
biological time. These clocks transcend simple age
estimation; they reveal authentic differences in biological
age and health status across individuals. Notably,
epigenetic changes tied to aging are partially reversible—
a dynamic that epigenetic clocks can also capture [151,
152]. Interventions such as lifestyle enhancement, stress
reduction, and physical exercise have been shown to
influence epigenetic age, effectively “rewinding” the
clock and promoting a DNA methylation profile
indicative of a more youthful state [153—155].

In line with the information theory of aging,
biological information within an organism becomes
increasingly disordered with age, reflecting a rise in
entropy—a process seen as an intrinsic aspect of aging.
The degradation and disruption of DNA methylation
patterns exemplify this entropic shift [18, 156].
Rejuvenating the epigenetic age toward a younger state
can be interpreted as a form of entropy reversal. Although
aging generally follows a trajectory of increasing entropy,
biological systems are not closed and isolated, which
renders entropy reversal feasible [157]. Cellular
reprogramming, particularly through the use of OSKM
factors, exemplifies this potential; it enables the resetting
of epigenetic information and extends cellular lifespan,
observable through the reversal of epigenetic age [24, 56,
158, 159]. Thus, with targeted intervention strategies,
biological age may be reset, with epigenetic clocks
providing a concrete metric of this rejuvenation effect [92,
160].

Shannon entropy—originally a measure rooted in
probability theory—has been adapted to analyze DNA
methylation data, capturing the cumulative, age-related
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disorder across CpG sites over time [161]. By quantifying
the probability distribution of methylation levels,
Shannon entropy facilitates the identification of CpG sites
with significant age correlations [18]. Compared to clocks
reliant solely on methylation percentage metrics, entropy-
based clocks may offer a more precise assessment of
methylation age, potentially enhancing the accuracy of
biological age estimation [162, 163].

8. Development and Challenges of Epigenetic Clocks

As tools for assessing epigenetic aging, epigenetic clocks
have garnered increasing attention due to their broad
biological relevance and potential to evaluate the effects
of anti-aging interventions [64]. Most existing epigenetic
clocks have been developed using data from Illumina
methylation arrays, which offer low cost and reduce
confounding factors associated with platform and
technical variability, making these clocks accessible for
computation by others [164, 165]. Calculations for
various clocks based on Illumina data can be performed
through Horvath’s online calculator at https://dnamage.
genetics.ucla.edu/ and the “methylclock” R package
[166].

[llumina array data, while widely used, come with
notable limitations. Beyond issues like technical noise and
low reproducibility due to problematic probes, some
probes can bind to multiple genomic regions, potentially
leading to false-positive results [167]. Furthermore,
because the arrays target predefined CpG regions, they
may overlook other potentially important methylation
sites, such as non-CpG methylation and low-complexity
regions. Microarray analysis measures each CpG site
independently and cannot capture continuous DNA
methylation patterns, which may limit the predictive
accuracy of epigenetic clocks in specific tissues or under
certain conditions [164, 168]. These limitations can lead
to variability in results and reduced reliability [23].

Whole-genome bisulfite sequencing (WGBS), the
gold standard for DNA methylation research, can cover
about 90% of CpG sites, overcoming many limitations of
[llumina arrays and offering superior resolution and
localization accuracy to describe methylation states [169—
171]. WGBS and reduced-representation bisulfite
sequencing (RRBS) enable analysis of continuous
methylation patterns, methylation haplotype blocks, and
methylation heterogeneity. Standardizing sequencing
depth and library preparation can reduce inter-sample
variability [135, 169].

Thus, clocks developed using next-generation
sequencing (NGS) data may have inherent advantages.
Regional blood clocks (RegBCs), trained on RRBS data,
have already demonstrated robust performance across
blood and multiple tissues [98, 129, 135, 172].

Additionally, RRBS-based human blood epigenetic
clocks have been developed, though further research is
needed to substantiate their advantages [173, 174].

WGBS data are vast and intricately detailed,
presenting considerable challenges for both interpretation
and model training. In contrast to Illumina arrays, which
yield an aggregate average of CpG site methylation across
cells, or RRBS, which selectively targets regions with
high CpG density, WGBS lacks this level of simplicity.
The complexity of WGBS, combined with its high costs,
has limited the development of WGBS-based clocks. Yet,
the unparalleled coverage and high resolution afforded by
WGBS can uncover a broader array of age-associated
features, offering significant advantages in the
construction of more refined clocks. Certain approaches
may enable the adaptation of WGBS data for integration
with existing clocks: (i) For clocks originally developed
with Illumina array data, researchers could align base
positions with Illumina probe sites and link these
positions to probe IDs for calculation. This strategy could
potentially be extended to model organism data by
converting genomes to human references, although its
reliability has yet to be systematically validated. (ii) For
RRBS-based clocks, the process is simpler. As
demonstrated by Stubbs et al., base positions and beta
scores can be matched and computed using R packages,
though WGBS and RRBS do not always cover identical
CpG sites, which can result in missing values [129, 175].

The cost of using WGBS and RRBS to build
epigenetic clocks remains prohibitively high. Developing
more economical, standardized, high-throughput methods
would greatly facilitate the construction of epigenetic
clocks. Compared to these sequencing methods, BBA-seq
has demonstrated relatively accurate age prediction,
enabling the development of epigenetic clocks from a
single DNA strand. This approach, though, may be better
suited for targeted epigenetic studies of specific loci or
detailed analysis of small sample sets. [176]. TIME-Seq,
designed specifically for epigenetic clocks, offers a
scalable approach for large studies, reducing costs by over
100-fold compared to traditional Illumina arrays or
RRBS. Griffin et al. used TIME-Seq to develop seven
mouse clocks and one human clock, which demonstrated
high reliability across blood, liver, and skin tissues, with
a median absolute error of 3.39 years in human blood
samples [177].

While clocks constructed from large datasets inspire
confidence in their robustness, the sheer volume of
methylation data presents the challenge known as the
“curse of dimensionality.” The Illumina 450K array spans
over 450,000 sites, and the I1lumina EPIC array (or 850K)
nearly doubles this number. Reduced Representation
Bisulfite Sequencing (RRBS) extends to millions of CpG
sites, whereas Whole-Genome Bisulfite Sequencing
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(WGBS) encompasses almost ten times as many. Training
models on such expansive datasets introduce substantial
amounts of irrelevant data and noise, complicating the
analytical process. Techniques for dimensionality
reduction offer a way to mitigate issues like noise and
overfitting. Despite the extensive evolution of epigenetic
clocks, whether to prioritize comprehensive datasets (e.g.,
WGBS or RRBS) or more streamlined options (e.g.,
[llumina arrays or TIME-Seq) remains an unresolved
question in clock development. We expect that methods
like TIME-Seq will provide fresh insights into refining
epigenetic clock construction. Equally important is the
data processing strategy; by employing advanced
dimensionality reduction techniques and harnessing deep
learning algorithms, researchers may develop clocks that
are exceptionally sensitive to specific aging signatures,
potentially overcoming existing limitations and achieving
greater precision [178].

9. The New Era of Epigenetic Clocks

CpG sites form the cornerstone of epigenetic clock
construction, and the selection of these sites significantly
influences the clock’s characteristics and robustness.
Existing first- and second-generation clocks are
predominantly constructed based on purely correlative
models, targeting CpG sites with the strongest
methylation association with age, regardless of whether
these sites have causal relationships with aging [179—
181]. Consequently, such models often include CpG sites
that are mere bystanders to age-related changes rather
than drivers of the aging process. This lack of causal
insight limits the explanatory power of these clocks
regarding the mechanisms of aging, reducing their
applicability for interventions and therapies [180]. Over
and beyond, correlation-based models struggle to
distinguish causal relationships from confounding factors.
Environmental influences, lifestyle factors, or diseases
that independently affect both DNA methylation and
age—but not aging itself—may be erroneously
incorporated into predictions, undermining the stability
and accuracy of the model under varying health or
environmental conditions[182]. These limitations may
partially explain the shifts observed when applying such
models to datasets outside their training cohorts.

To address these challenges, Ying et al. developed a
causality-enriched epigenetic clock, termed CausAge,
which focuses on CpG sites with causal relationships to
aging. They further refined this approach by identifying
adaptive and deleterious age-related differentially
methylated CpG sites. Through Mendelian randomization
analysis, these causal CpG sites were classified and used
to construct two distinct clocks: AdaptAge and DamAge
[138]. These specialized clocks demonstrated superior

predictive accuracy for aging-related phenotypes,
mortality, and protective adaptations. Notably, DamAge
exhibits higher robustness in capturing the influence of
age-related conditions compared to current first- and
second-generation clocks, emphasizing the value of
separating markers of “damage” and “adaptation” in clock
development [179].

Tailoring epigenetic clocks to specific objectives,
such as predicting biological age, mortality risk, or aging
acceleration factors, may yield more precise results. For
instance, developing clocks sensitive to intervention
effects or focused on evaluating specific outcomes could
benefit from a streamlined selection of CpG sites.
Including extraneous CpG sites not only increases the risk
of overfitting but may also diminish the accuracy of
predictions [178]. Another critical factor is the stochastic
and spontaneous nature of DNA methylation changes
over time [183, 184]. Echoing the principle of ‘horses for
courses,” the development of purpose-driven epigenetic
clocks tailored to specific applications can significantly
enhance their precision and reliability, particularly in
specialized domains and tasks [12]. This highlights the
importance of purpose-driven clock design and the
potential of specialized models to improve precision
[185].

Many existing clocks share overlapping CpG sites.
Still, there has been no systematic analysis of the
functional relevance of these shared sites. A deeper
understanding of their roles and mechanisms may inform
more targeted clock development. Alongside this, while
non-CpG methylation sites (e.g., CHG and CHH) remain
underexplored in animals, emerging research suggests
intriguing  possibilities. In the mouse genome,
approximately 0.32% to 0.68% of CHG and CHH sites
exhibit age-related methylation changes [186, 187]. Given
the vast number of CHG and CHH sites across the
genome, this percentage corresponds to over 2 million
age-associated sites in mice. These findings suggest that
non-CpG methylation may harbor valuable insights,
warranting further exploration. Expanding research into
non-CpG methylation sites could uncover novel
mechanisms and broaden the scope of epigenetic clock
development, opening up significant opportunities for
future investigation [12].

10. Feasibility of Developing Epigenetic Clocks Using
Other Data Types

Epigenetic functions as a molecular chronicle, encoding
an individual’s lifetime experiences, environmental
exposures, and lifestyle influences. Epigenetic clocks,
grounded in theoretical models, have consistently
surpassed traditional biomarkers in predicting risk and
estimating lifespan, displaying remarkable accuracy
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across diverse applications [8, 14]. This reliability has
positioned epigenetic clocks as essential tools for large-
scale population studies, clinical trials, and evaluations of
anti-aging interventions. In studies examining the
interplay between health and aging, epigenetic clocks
provide insights into both lifespan prediction and disease
susceptibility, while also serving as dynamic indicators of
how interventions—such as dietary adjustments and
pharmacological therapies—impact biological age [70,
153, 188]. Although DNA methylation contributes
significantly to this precision, it represents only a part of
the aging process. A deeper understanding of other
transcriptional regulators and epigenetic modifications
will be essential for constructing a more holistic model
that fully captures the intricacies of aging biology.

RNA methylation has emerged as an exceptionally
informative epigenetic marker, significantly shaped by
aging and external environmental factors. Elevated levels
of RNA methylation are particularly pronounced in the
central nervous system, where they exert substantial
influence over pathways implicated in neurodegenerative
diseases, underscoring their potential relevance in the
pathophysiology of these conditions [189-191]. Acting as

Increase

\ in Entropy

Lifespan

a critical intermediary between epigenetic modifications
and post-transcriptional regulatory networks, RNA
methylation orchestrates multiple intricate layers of gene
expression. By modulating processes such as mRNA
stability, splicing, and translation efficiency, it plays an
indispensable role in fine-tuning cellular functions and
developmental pathways. It governs mRNA fate and
cellular differentiation while exerting a dynamic influence
on RNA translation [192-194]. Compared to 5mC, the
predominant marker in DNA methylation, m®A—the
principal marker in RNA methylation—undergoes
modifications at a markedly accelerated rate, allowing it
to capture rapid and dynamic molecular changes reflective
of real-time Dbiological fluctuations. This unique
characteristic not only underscores its capacity to provide
a more immediate snapshot of physiological states but
also reveals its stronger correlations  with
neurodegenerative disorders and metabolic syndromes
[195, 196]. These attributes underscore the potential of
RNA methylation as a foundation for constructing
epigenetic clocks, though several technical and
interpretative challenges must still be addressed.

Senescence K|

eV’

Figure 3. As the lifespan progresses, DNA methylation patterns become increasingly disordered, leading to
gradual cellular aging—an indicator of rising entropy. Epigenetic markers can capture these changes, reflecting
not only accelerated aging beyond chronological age but also rejuvenation effects resulting from targeted
interventions. The gray pins indicate methylation sites, while red represents aging cells.

The detection of m°A remains less advanced
compared to that of 5SmC, complicated by its greater

complexity and highly dynamic nature, with many aspects
of RNA methylation mechanisms yet to be fully
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elucidated [197, 198]. m°A modifications are also
inherently transient, persisting for only a few hours to
days, and are significantly less stable than SmC in DNA
[199]. As detection technologies continue to improve in
resolution and accuracy, there is hope that m°A can soon
be examined at an even finer scale, offering a fresh
perspective on the epigenetic landscape of aging and
opening new avenues for the development of epigenetic
clocks (Fig. 3).

11. Re-evaluating Epigenetic Clocks

The information provided by epigenetic clocks extends
beyond mere markers of chronological age. While the
outputs of current clocks are not inherently difficult to
interpret, understanding how to correctly interpret these
results is crucial for making meaningful predictions.

Beyond the absolute value of epigenetic age,
“epigenetic acceleration” is often used to assess individual
aging. For first-generation clocks, a predicted age that
exceeds chronological age suggests accelerated aging,
while a lower predicted age implies a younger biological
state. Second-generation clocks, which integrate various
health-related indicators and disease risk information,
offer a more comprehensive assessment of health. In this
context, faster epigenetic acceleration indicates a higher
aging rate and potentially greater health risks, with
specific risks depending on the characteristics of the
training data used to build each clock. This acceleration is
measured by the difference between predicted and
chronological age, often referred to as the Age
Acceleration Residual (AAR). From a modeling
perspective, residuals represent an evaluation metric for
“bias-free” prediction; as some studies have suggested,
lower residuals imply a more accurate prediction [28].

In the realm of epigenetic clocks, achieving a zero
AAR may be an impractical goal, given the difficulties in
assembling large, low-heterogeneity datasets for clock
construction and the lack of a universally accepted
standard for “optimal” methylation states at each CpG site
(or other markers) across all age groups [20, 130]. Striving
for zero residuals may also be unnecessary. The primary
function of epigenetic clocks is to quantify the divergence
between biological and chronological age, making the
residual a meaningful component of the clock’s utility.
Similarly, correlation alone does not equate to causation,
nor does it guarantee the clock’s accuracy. The true
predictive strength of an epigenetic clock lies in its
deviation from chronological age. If a clock were to match
chronological age consistently, its value would be
diminished—why calculate biological age if it offers no
additional insights? The capacity of epigenetic clocks to
identify outliers should be a fundamental criterion in
assessing their predictive effectiveness. While traditional

metrics, such as mean absolute error and correlation,
provide valuable insights, an exclusive reliance on these
measures’ risks offering a partial understanding. The
development of an epigenetic clock with precise accuracy
remains a formidable challenge, as there is no universally
recognized benchmark for defining a “normal”
methylation profile. Methylation patterns primarily reflect
the body’s adaptive responses to changing environmental
conditions [182]. Consequently, an ideal epigenetic clock
would inherently show residuals even among healthy
individuals, rather than aiming for a zero-residual
benchmark. Such an objective is ambitious and may, in
fact, pose a greater challenge than creating a “zero-
residual clock.” Perhaps the day we can define
methylation with the same clarity as we define normal
physiological states will mark the true maturation of
epigenetic clocks.
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