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ABSTRACT: Predicting health trajectories and accurately measuring aging processes across the human lifespan 

remain profound scientific challenges. Assessing the effectiveness and impact of interventions targeting aging is 

even more elusive, largely due to the intricate, multidimensional nature of aging—a process that defies simple 

quantification. Traditional biomarkers offer only partial perspectives, capturing limited aspects of the aging 

landscape. Yet, over the past decade, groundbreaking advancements have emerged. Epigenetic clocks, derived 

from DNA methylation patterns, have established themselves as powerful aging biomarkers, capable of 

estimating biological age and assessing aging rates across diverse tissues with remarkable precision. These clocks 

provide predictive insights into mortality and age-related disease risks, effectively distinguishing biological age 

from chronological age and illuminating enduring questions in gerontology. Despite significant progress in 

epigenetic clock development, substantial challenges remain, underscoring the need for continued investigation 

to fully unlock their potential in the science of aging. 
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1.Introduction 

 

The study of aging extends beyond the pursuit of medical 

advancements; it represents a fundamental inquiry driven 

by our innate curiosity about life itself. Epigenetic has 

emerged as a crucial factor in modulating the aging 

process, providing insights beyond traditional genetics 

into how environmental factors shape the aging trajectory 

[1]. Over the past decade, major breakthroughs in 

epigenetic research have reframed our understanding of 

aging, positioning DNA—the core blueprint of life—as a 

repository of vital information capable of signaling future 

physiological states. DNA methylation, a key mechanism 

in epigenetic regulation, undergoes significant shifts with 

age, establishing it as a reliable indicator of biological 

aging [2, 3]. The potential to reverse these epigenetic 

alterations offers promising avenues for decelerating 

aging and possibly extending lifespan [4]. 

Epigenetic modifications encompass chemical 

changes to DNA or chromatin that influence gene 

expression and phenotype without altering the DNA 

sequence itself. These changes can be long-lasting and 

may even span generations [5]. Epigenetic clocks, which 

measure predictable changes in DNA methylation across 

the lifespan, have become invaluable tools for assessing 

biological aging. DNA methylation levels shift 

progressively in specific genomic regions, disrupting 

biological states in a predictable manner that exhibits 

clock-like behavior. These age-related methylation sites 

make up approximately 28% of the human genome [6, 7]. 

As “historical data” embedded within DNA, epigenetic 

clocks have demonstrated substantial predictive 

capabilities, offering unique insights into age-related 

health risks and enabling a clearer distinction between 

biological and chronological age. 

Comparative studies have examined various potential 

age estimators, including telomere length, transcriptome 

profiles, proteomics, metabolomics, and composite 

biomarkers, consistently identifying epigenetic clocks as 

the most promising tools for biological age estimation [8, 
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9]. The advent of these clocks has provided researchers 

with objective metrics for evaluating the effectiveness of 

anti-aging interventions [10, 11]. 

Despite considerable progress in the development of 

epigenetic clocks, substantial challenges remain. There is 

ongoing demand for more robust, precise, and context-

specific models, particularly those attuned to age-related 

diseases and underlying drivers of aging. This review 

provides a comprehensive analysis of the development 

and applications of various epigenetic clocks, examining 

their strengths, limitations, and practical applications. By 

examining the strengths and limitations of these models, 

we aim to identify essential pathways for future research, 

driving novel approaches for early detection of age-

related diseases and advancing tailored interventions in 

aging science (Fig. 1.) 

 
Figure 1. Molecular changes associated with aging often drive observable changes at the macroscopic level, and 

epigenetic clocks can reflect these shifts. Various factors may accelerate or decelerate the rate measured by epigenetic clocks, 

offering insights into the dynamic progression of aging. The elements and text on the left with a light blue background represent 

epigenetic clock deceleration events, while those on the right with a yellow background represent epigenetic clock acceleration 

events. 

2. Current Status of Epigenetic Clocks 

 

Unlike chronological age, epigenetic clocks are biological 

tools based on DNA methylation patterns that estimate an 

individual’s biological age, offering deeper insights into 

the aging process [12]. In real-world settings, individuals 

of the same chronological age can show marked 

differences in epigenetic profiles. A younger-than-

expected epigenetic age suggests slower aging, while an 

older-than-expected epigenetic age may indicate 

accelerated aging influenced by factors such as lifestyle, 

environment, and disease [13–17]. 

 

The development of epigenetic clocks has relied largely 

on large-scale DNA methylation datasets that reveal 

dynamic changes with age, especially at certain CpG sites. 

By identifying age-related CpG sites through regression 

and machine learning algorithms, researchers have 

constructed models that serve as accurate markers of 

biological age[18]. Epigenetic clocks are broadly 

categorized into two generations. The first generation, 

often referred to as “epigenetic age estimators,” focuses 

on estimating biological age, while the second generation, 

known as “phenotypic age,” clocks, incorporates 

additional risk factors to enhance predictions of health 

status, physiological changes, and aging rate. 

 



 Liang R., et al.                                                                         Epigenetic Clocks in Aging   

Aging and Disease • Volume 16, Number 6, December 2025                                                                         3522 

 

However, the predictive accuracy of epigenetic 

clocks is affected by factors such as genetic background, 

lifestyle, environmental exposures, and technical 

variability [19]. Many existing clocks also have 

limitations in forecasting healthspan, assessing disease 

risk, and predicting cellular senescence [20–22]. Ongoing 

research is focused on optimizing predictive accuracy and 

improving the generalizability of these clocks across 

different populations and tissues [23]. Emerging 

technologies, such as single-cell methylation sequencing 

and multi-omics integration, are opening new possibilities 

for creating more precise and comprehensive epigenetic 

clocks [24–26]. 

In summary, epigenetic clocks, as promising 

biomarkers of biological age, have gained wide 

recognition for their sensitivity to age-related diseases, 

underscoring their value as vital tools in aging research. 

However, further refinement and integration are essential 

to enhance their applicability and reliability across various 

contexts, maximizing their potential to advance our 

understanding of aging and health [8, 27] (Fig. 2). 

 
Figure 2. The Development and Evolution of Epigenetic Clocks. The image depicts the construction process of epigenetic clocks 

and outlines the approximate chronological evolution of their development. Typically, the construction process involves sample 

collection, DNA methylation site analysis using Illumina arrays, and the application of diverse data processing techniques to model 

and establish the clock. 

3. First-Generation Epigenetic Clocks 

 

The initial models of epigenetic clocks used single-step 

regression to estimate biological age, using chronological 

age as a baseline for aging predictions. By analyzing 

methylation patterns at specific CpG sites, these models 

provide insights into biological age, thus often being 

referred to as “chronological clocks” [28]. First-

generation epigenetic clocks demonstrated high accuracy 

in estimating chronological age, making them valuable 

tools for assessing biological aging. Discrepancies 

between predicted biological age and actual chronological 

age yield insights into the rate of aging, highlighting how 

genetic and environmental factors shape an individual’s 

physiological state. 

 

3.1 Horvath’s Clock 

 

A landmark model in epigenetic aging research, 

Horvath’s clock was the first to achieve cross-tissue age 
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prediction by analyzing DNA methylation data from 

multiple tissue types. Although not the earliest epigenetic 

clock, its ability to use multi-organ, multi-tissue DNA 

methylation data marked a major advancement in cross-

tissue aging analysis. Developed using publicly available 

datasets from 7,844 samples across 51 tissue and cell 

types on the Illumina 27K and Illumina 450K array 

platforms, Horvath’s clock employs 353 CpG sites—193 

positively and 160 negatively correlated with age—to 

estimate epigenetic age [29]. 

The core strength of the Horvath clock lies in its high 

accuracy and broad applicability across diverse tissues 

and organs. It has been validated in almost all tissues and 

organs, including whole blood, brain, kidney, and liver, 

showing minimal age-related variance [14, 16, 30]. 

Research has also confirmed its effectiveness in aging 

[31] and age-related diseases [32], cancer [33], as well as 

in predicting lifestyle impacts and mortality rates [34]. 

Another significant advantage of the Horvath clock is its 

versatility; it can be applied not only to aging research in 

other mammals but also to in vitro aging analyses, 

underscoring its robustness across different tissues and 

experimental conditions [35]. Thanks to the Horvath 

clock, many previously unresolved scientific questions 

now have a relatively objective evaluation method, 

making it an invaluable tool for studying aging and related 

factors [30, 36]. Furthermore, as a pioneering work in 

epigenetic clocks, its significance extends to paving the 

way for the development of next-generation epigenetic 

clocks [37]. 

Horvath’s clock, though widely applicable, has 

specific limitations. As a “pan-tissue clock,” its predictive 

accuracy can vary across tissues, particularly in 

hormonally sensitive tissues and high-variability samples 

like blood [38]. Compared to newer models such as 

GrimAge and PhenoAge, Horvath’s clock demonstrates 

lower predictive consistency, potentially due to its capture 

of distinct biological pathways that complicate 

interpretation [34]. Environmental and genetic influences, 

including lifestyle factors like smoking and obesity, also 

affect its aging acceleration metrics, introducing 

heterogeneity into its predictions [16, 39]. Additionally, 

Horvath’s clock often underestimates biological age in 

individuals over 60, likely due to limited representation of 

older samples in its training dataset [40–42]. The clock 

exhibits limited sensitivity to certain diseases, proving 

unable to capture significant age acceleration in 

conditions like schizophrenia and progeroid syndromes 

[43]. Its sensitivity to specific age-related conditions, such 

as schizophrenia and progeroid syndromes, also remains 

limited. Improving cross-tissue accuracy, predictive 

consistency, and disease sensitivity could further enhance 

its utility, particularly through integration with other 

models [34]. 

3.2 Hannum’s Clock 

 

Hannum’s clock is among the most prominent first-

generation epigenetic clocks, alongside Horvath’s Clock. 

Although it was also developed using the Illumina 450K 

methylation array, Hannum’s clock stands out as one of 

the earliest epigenetic models specifically tailored to 

blood samples. This model was built upon over 450,000 

CpG markers derived from whole blood samples of 426 

Caucasian and 230 Hispanic adults, aged 19 to 101. 

Ultimately, 71 CpG sites with the strongest age-related 

changes were selected to estimate biological age [16, 44]. 

Developed using the Elastic Net algorithm—a technique 

that combines the benefits of ridge regression and LASSO 

regression—Hannum’s clock demonstrates a high 

correlation of 0.96 between biological and chronological 

age, with an average absolute error of 3.9 years (slightly 

higher than the Horvath clock’s 3.6 years) [44]. 

Optimized specifically for blood samples, Hannum’s 

clock shows greater specificity in studies concerning 

blood-based health and disease. Beyond estimating the 

gap between biological and chronological age, it boasts a 

strong association with clinical markers, making it a 

valuable tool for assessing the risk of various age-related 

diseases. Research has linked Hannum’s clock to 

indicators such as body mass index (BMI), cardiovascular 

health, immune function, and chronic conditions [16]. Its 

utility extends further to evaluating the impact of clinical 

interventions. By tracking changes in biological age 

before and after interventions—such as weight loss 

programs or exercise therapy—Hannum’s clock offers a 

quantitative measure of treatment outcomes, thus aiding 

in personalized health management [45, 46]. In addition, 

Hannum’s clock has shown sensitivity to psychological 

trauma, with studies demonstrating that accelerated aging, 

as measured by this clock in patients with post-traumatic 

stress disorder, correlates with the severity of their 

condition [47, 48]. 

In contrast, Hannum’s clock is limited in its 

applicability to tissues other than blood. Compared to the 

Horvath clock, Hannum’s clock exhibits lower sensitivity 

to external factors and reduced cross-ethnic adaptability 

[49]. Like other first-generation epigenetic clocks, it is 

based on static CpG sites and therefore unable to capture 

the dynamic aspects of aging, rendering it less effective at 

accurately reflecting the rate of aging [35, 37, 50]. 

Focusing solely on CpG sites also means that first-

generation clocks, including Hannum’s, may overlook 

CpG methylation influences specific to certain cell types, 

such as neurons, and disregard the effects of various 

external factors on CpG methylation levels [51, 52]. 

Another critical limitation is their inability to account for 

epigenetic age acceleration caused by specific diseases, 

such as cancer. These shortcomings are expected to be 
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addressed in second-generation epigenetic clocks through 

the incorporation of new biomarkers and indicators [33, 

53]. 

 

3.3 Bocklandt Clock 

 

The Bocklandt clock, developed in 2011, was the first 

epigenetic clock and introduced the groundbreaking 

hypothesis that methylation status at specific DNA sites 

changes in a predictable manner with age, showcasing the 

potential of DNA methylation for age prediction. Using 

the Illumina HumanMethylation27 microarray, this clock 

quantified the methylation levels of 27,578 CpG sites at 

single-nucleotide resolution in saliva samples from 34 

pairs of monozygotic twins aged 21 to 55. Through linear 

regression modeling, Bocklandt’s team ultimately 

identified 88 CpG sites for age estimation [54]. That same 

year, Koch and colleagues aimed to expand the 

applicability of age prediction models by introducing an 

epigenetic aging signature composed of five CpG sites to 

estimate donor age across a broader range of tissues. 

However, these models exhibited a considerable margin 

of error from actual age, with an average absolute error of 

approximately 11 years, highlighting the need for further 

research to develop more precise clocks [55]. 

Although the Bocklandt clock may not enjoy the 

same level of recognition as Horvath’s Clock, it made 

groundbreaking contributions by first establishing the 

viability of using DNA methylation as a means for age 

estimation and by introducing an alternative approach to 

studying aging. This early development ignited a wave of 

research exploring the intricate relationship between 

DNA methylation and the aging process, thereby 

strengthening the role of epigenetic within aging research 

[56]. While its predictive accuracy and tissue specificity 

were limited, the Bocklandt clock marked a pivotal initial 

step in the evolution of epigenetic clocks [56, 57]. 

Ultimately, its true significance lies in the innovative 

connection it forged between epigenetic and aging, as well 

as in providing a novel framework that has guided 

subsequent research, driving forward the integration of 

aging studies and epigenetic science. 

 

3.4 Skin & Blood Clock 

 

The Skin & Blood clock, developed by Steve Horvath’s 

team, was specifically designed to capture the unique 

epigenetic characteristics of skin and blood tissues. 

Studies have shown that DNA methylation patterns in 

tissues such as skin and blood exhibit distinct dynamics 

compared to other tissues, making it advantageous to 

create dedicated clocks to improve predictive accuracy for 

these specific tissues [58, 59]. The construction of the 

Skin & Blood clock involved analyzing skin and blood 

samples from individuals across a wide age range, using 

data obtained from the Illumina 450K methylation array. 

Through this analysis, the researchers identified 391 CpG 

sites closely associated with age [60]. 

This extensive dataset, encompassing a broad range 

of ages, was chosen to ensure the clock’s applicability 

across diverse populations. The primary objective of the 

Skin & Blood clock is to enhance predictive precision 

within skin and blood tissues, thereby enabling more 

accurate assessments related to skin aging, immune 

system changes, and associated health conditions. By 

tailoring the clock to specific tissues, the Skin & Blood 

clock provides a more reliable tool for studying skin 

aging, biological age acceleration, and blood health. 

Horvath’s team has also developed an online DNA 

methylation age calculator for public use, available at 

“https://dnamage.genetics.ucla.edu/”. 

 

3.5 DNAm-based-age-predictors 

 

First-generation epigenetic clocks are primarily centered 

around age prediction, utilizing the difference between 

predicted and actual age as a biomarker of aging to assess 

biological aging rates. Nevertheless, these clocks, to 

varying degrees, are constrained by their training datasets 

and still exhibit some degree of error in age estimation. 

To address this, Zhang and colleagues investigated the 

theoretical possibility of an ideal DNA methylation-based 

age predictor. They collected 14 datasets, including blood 

and saliva samples, covering an age range from 2 to 104 

years [61]. This clock demonstrated minimal influence 

from disease and showed stronger correlations in samples 

from blood, saliva, and endometrial tissues, although 

correlations were lower in brain samples [61, 62]. 

 

4. Second-Generation Epigenetic Clocks 

 

Compared to first-generation epigenetic clocks, second-

generation clocks have a somewhat different focus. While 

first-generation clocks primarily aim to predict 

chronological age, second-generation clocks place greater 

emphasis on integrating assessments of health status, 

disease risk, and aging rate. The distinction between these 

generations lies in the core objectives of the models, the 

number and characteristics of selected CpG sites, the 

inclusion of health and physiological factors, and the 

incorporation of dynamic aging rates [52]. 

Thus, second-generation epigenetic clocks are no 

longer limited to age-related CpG sites alone; they also 

account for an individual’s health status, disease risks, 

lifestyle factors, and other variables [63]. This approach 

provides a more comprehensive view of an individual’s 

biological state, allowing for a nuanced evaluation of age 

in relation to health, disease, and lifestyle [37, 64]. That 

https://dnamage.genetics.ucla.edu/
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said, clocks that incorporate a broader range of biological 

information tend to have reduced accuracy in pure age 

prediction [18, 65–67]. 

 

4.1 PhenoAge 

 

Chronological age alone fails to fully encapsulate an 

individual’s health status and aging trajectory. To 

overcome the limitations of first-generation epigenetic 

clocks, Morgan Levine and colleagues developed an 

advanced epigenetic clock aimed at more accurately 

predicting health status and mortality risk by integrating 

DNA methylation data with diverse physiological 

markers [27]. Leveraging data from NHANES III, they 

initially selected nine clinical biomarkers to construct the 

“Phenotypic Age” model. By correlating Phenotypic Age 

with blood DNA methylation profiles, they developed 

DNAm PhenoAge, an epigenetic metric based on 513 

CpG sites identified through Illumina 27K, 450K, and 

850K arrays. 

A distinguishing feature of the PhenoAge clock is its 

integration of DNA methylation data with nine key 

clinical biomarkers: albumin, creatinine, glucose, C-

reactive protein, lymphocyte percentage, mean cell 

volume, red cell distribution width, alkaline phosphatase, 

and white blood cell count. This combination enhances its 

sensitivity to individual variations and refines the 

accuracy of biological age estimation [37]. The PhenoAge 

clock can capture age-related shifts tied to chronic 

diseases (including cardiovascular disease, diabetes, and 

cognitive decline) and all-cause mortality, establishing it 

as a powerful tool for predicting healthspan [27, 68]. 

PhenoAge also correlates with lifestyle and demographic 

factors, such as educational attainment, physical activity, 

income, systolic blood pressure, body mass index, dietary 

habits (as indicated by carotenoid levels), and smoking 

status[69]. In contrast, DNA methylation age acceleration 

derived from multi-tissue clocks shows weaker 

associations with lifestyle factors and inflammatory 

markers, indicating it may reflect a more genetically 

programmed, intrinsic aging process [14, 70]. 

Recent studies have employed the PhenoAge clock to 

assess the impact of targeted treatments, including 

pharmacological and lifestyle interventions, on biological 

aging. PhenoAge has shown promise in determining 

whether specific interventions can effectively decelerate 

biological aging, supporting the development of 

personalized health management strategies and informing 

clinical decision-making [71, 72]. Insights from the 

PhenoAge clock reveal that individuals with an 

accelerated epigenetic age frequently exhibit heightened 

pro-inflammatory and immune responses, as well as 

impaired cellular maintenance and repair functions. These 

findings underscore the link between epigenetic age 

acceleration and fundamental shifts in biological function 

[27]. 

As a second-generation clock, the PhenoAge model 

represents a marked advancement, with its inclusion of 

clinical biomarkers enhancing both predictive precision 

and relevance, underscoring the significance of these 

factors in modulating epigenetic age. This approach offers 

valuable insights for future clock development, 

suggesting that training clocks on an expanded set of 

impactful biomarkers could produce even more accurate 

aging models [28, 61]. Overall, the PhenoAge clock is a 

substantial enhancement over first-generation epigenetic 

clocks, offering a multidimensional measure of aging. 

However, its complexity poses challenges for large-scale 

population studies, and it remains highly responsive to 

environmental and individual variability. Further 

refinement is essential to reinforce its associations with 

specific disease risks [27, 37, 41, 73]. 

 

4.2 GrimAge 

 

GrimAge is a comprehensive epigenetic clock developed 

in recent years, based on the idea that certain external 

factors (such as smoking) and internal protein biomarkers 

(such as inflammation-related proteins) have a greater 

impact on individual health and mortality risk than 

chronological age alone. Similar to other epigenetic 

clocks, GrimAge was trained on CpG sites shared by the 

Illumina Infinium 450K and Illumina EPIC methylation 

arrays [74]. The final model includes 1,030 CpG sites that 

optimally predict composite biomarkers of seven DNA 

methylation proteins, as well as annual smoking pack-

years. Its defining feature is the integration of multiple 

DNA methylation markers and clinical biomarkers related 

to aging, such as smoking status, insulin resistance, and 

inflammation markers. Compared to other epigenetic 

clocks and biological age estimates, GrimAge provides 

more accurate predictions of all-cause mortality and has 

thus been referred to as the “death clock” [41]. 

To further enhance GrimAge, the team developed an 

updated version known as GrimAge version 2, or 

AgeAccelGrim [75]. This second version employs two 

elastic net regression models to reselect, calibrate, and 

adjust the weights of protein biomarkers associated with 

health and mortality risk. As a result, AgeAccelGrim 

demonstrates greater robustness, outperforming the 

original GrimAge in predicting mortality risk, computed 

tomography data, cognitive assessments, and lifestyle 

factors, and is also applicable to saliva samples. 

Compared to other second-generation epigenetic clocks, 

GrimAge shows superior correlation with age-related 

physical function decline and clinical phenotypes, such as 

walking speed, grip strength, Fried frailty, polypharmacy, 

the Mini-Mental State Exam (MMSE), and the Montreal 
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Cognitive Assessment (MOCA) [37, 76]. AgeAccelGrim 

has also demonstrated stronger associations and 

predictive power for a range of diseases, such as type 2 

diabetes and various cancers, highlighting its potential as 

a robust predictor of disease risk [77, 78]. Due to its higher 

complexity and inclusion of mortality-related biomarkers, 

GrimAge is also more sensitive to biological outcomes in 

socioeconomically disadvantaged communities [79]. 

Furthermore, GrimAge acceleration has been observed in 

severe depression, supporting its applicability in mental 

health research. The association between AgeAccelGrim 

and the severity of PTSD further suggests its clinical 

utility for tracking the long-term impact of trauma-

induced stress on morbidity and mortality risk [80–82]. 

GrimAge’s dependence on protein biomarkers suggests 

that it might be less sensitive to detecting short-term 

health fluctuations and may be vulnerable to interference 

from acute inflammation, infections, or other sudden 

health events [83]. 

 

4.3 DunedinPoAm 

 

Among the epigenetic clocks discussed, capturing a 

methylation snapshot of an individual or group at a single 

time point remains a commonly employed approach. Yet, 

to identify regions where methylation shifts due to aging 

or disease—or to predict future changes—a longitudinal 

study design is essential [28]. Longitudinal studies of this 

nature allow researchers to track methylation trends 

within individuals over extended periods, providing a 

more accurate view of dynamic epigenetic changes. 

Originating from the Dunedin longitudinal study, the 

DunedinPoAm (Pace of Aging Methylation, PoAm) 

offers insights beyond biological age by quantifying an 

individual’s “pace of aging” across defined time intervals 

[84]. Given its foundation in longitudinal methylation 

data, DunedinPoAm could be regarded as a third-

generation epigenetic clock. This model tracks 

longitudinal changes across 18 biomarkers associated 

with the functional health of blood and various organ 

systems, using Illumina 450K and EPIC array data from 

individuals of the same age cohort. Distinct from earlier 

DNA methylation clocks, which estimate biological age 

retrospectively, DunedinPoAm measures the rate of 

aging, providing an immediate indicator of aging velocity 

rather than a cumulative aging estimate. Conceived as a 

“speedometer,” DunedinPoAm is highly sensitive to 

fluctuations in physical function, cognitive performance, 

motor skills, and visible markers of aging [84]. 

Research employing this clock has demonstrated that 

children exposed to adverse socioeconomic conditions 

early in life generally exhibit higher DunedinPoAm 

scores, while older adults with accelerated DunedinPoAm 

readings face an elevated risk of disease and mortality [85, 

86]. Although these findings are valuable, the 

DunedinPoAm model is constructed from biological 

changes observed over a relatively short 12-year span, 

with data collected at only three time points. This 

constrained timeframe and limited sampling restrict its 

capacity to capture the complete aging trajectory 

throughout adulthood. The sparse data points also 

diminish its accuracy in assessing the rate of aging, which 

limits its effectiveness in clinical trials aimed at 

evaluating individual changes before and after treatment 

[87, 88].To address these limitations, DunedinPACE was 

introduced as an improved version of DunedinPoAm. 

DunedinPACE extends the follow-up period, increases 

the number of assessments, and improves data reliability, 

resulting in a stronger correlation with health outcomes 

[88, 89]. Consequently, DunedinPACE represents a 

valuable complementary tool, offering useful advantages 

for quantifying biological aging through DNA 

methylation. 

 

4.4 Zhang's clocks 

 

Another clock that incorporates longitudinal analysis was 

developed by Zhang et al., based on a 14-year cohort 

study. This study ultimately selected 10 CpG sites from 

whole blood samples using the Illumina 450K array. 

These CpG sites are strongly associated with all-cause 

mortality, cardiovascular disease, and cancer mortality, 

and they differ from those used in other current clocks 

[90]. While the Zhang clock demonstrates high predictive 

accuracy in mortality due to its specific focus, it is less 

effective than more complex clocks at capturing 

multidimensional health and aging characteristics or 

assessing risk for specific diseases [35, 91]. 

 

4.5 Principal component clock 

 

As research advances, we are uncovering not only the 

links between epigenetic age, aging processes, and 

associated risk factors, but also the capacity of certain 

interventions to modulate epigenetic age [16, 92]. Yet, it 

is crucial to acknowledge the potential influence of 

technical noise in DNA methylation measurements. 

Studies have shown that, beyond issues inherent to sample 

preparation and hybridization, the presence of unreliable 

and poorly reproducible probes introduces substantial 

challenges in the accurate measurement of methylation at 

numerous CpG sites on methylation arrays—a persistent 

issue in both Illumina 450K and EPIC platforms [93–95]. 

With the continued accumulation of data, this decline in 

measurement reliability and reproducibility could 

undermine the accuracy of research findings and impede 

the construction of precise clocks, particularly in first-

generation models where heterogeneity is notably high 
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[87, 96, 97]. The difficulty of disentangling biological 

variation from technical noise poses a significant 

challenge, as errors in epigenetic clocks may become 

progressively magnified. This issue becomes especially 

concerning in longitudinal studies assessing intervention 

effects, where the repeated amplification of noise could 

ultimately compromise the reliability of the findings. 

To mitigate these issues, Higgins-Chen et al. 

developed a computational solution to enhance the 

robustness of epigenetic clocks, utilizing principal 

component (PC) analysis to retrain several prior clocks, 

including Horvath, Hannum, and GrimAge clocks. This 

approach allows for more stable results with smaller 

sample sizes and has been shown to be particularly 

reliable and effective in tissues such as saliva and brain 

[23]. In clock construction, PC analysis is a highly 

effective training method; it can address the “curse of 

dimensionality” that arises as the number of features in 

methylation data expands with sample size, reducing risks 

of overfitting and multicollinearity, thereby enhancing 

model performance [98]. 

In this context, Fong et al. identified features that 

differentiate healthy and unhealthy aging trajectories, 

resulting in the development of the clinical aging clock 

PCAge and a simplified aging clock, LinAge. They also 

demonstrated a method for customizing clinical clocks for 

specific datasets by retraining a tailored clock model [99]. 

PCA-trained clocks, such as PCAges, increase the 

average epigenetic age of samples, aligning them more 

closely with chronological age. Furthermore, PCA-based 

measurement methods have been shown to better predict 

aging-related health outcomes, including mortality, 

without altering the original relationships between health 

behaviors and outcomes considered in the initial clock 

models [62, 93]. 

 

5. Other Clocks 

 

Beyond the well-studied classic clocks described above, a 

variety of other epigenetic clocks have emerged, 

showcasing researchers’ innovative approaches to 

bridging gaps in current aging research. While these 

clocks have not yet been extensively validated or 

rigorously evaluated, their development has greatly 

enriched the field, advancing our understanding of 

biological aging. Notably, this category encompasses 

clocks that fall outside the traditional classifications of 

first- and second-generation epigenetic clocks. 

 

5.1 Centenarian Clocks 

 

First-generation epigenetic clocks tend to significantly 

underestimate the ages of centenarians due to their 

reliance on regression toward the mean. To address this, 

Eric Dec and colleagues developed Centenarian clocks, 

specifically designed to provide accurate age estimations 

for individuals over 100 years old. This innovation is 

expected to aid in verifying hypotheses related to 

exceptional longevity [100]. 

 

5.2 ELOVL2 Clock 

 

The development of aging biomarkers has been a 

challenging and protracted process, with the identification 

of age-related biological factors remaining a key objective 

in aging research. ELOVL2 has emerged as a promising 

biomarker of aging due to its consistent increase in 

methylation from the earliest stages of life, playing a 

significant role in many age-related molecular 

mechanisms [101, 102]. Garagnani et al. observed that 

methylation levels of ELOVL2 in whole blood DNA 

samples showed a striking, almost “on-off” pattern, 

increasing from 7% to 91% with age [103]. With an 

approximate prediction error of 5.5 years, the ELOVL2 

clock demonstrates considerable accuracy, positioning it 

as a promising molecular tool for forensic age estimation 

[104, 105]. While this clock shows significant potential, 

numerous models centered on ELOVL2 have been 

developed, underscoring the need for further validation to 

clarify its broader applications in aging research [106]. 

 

5.3 Cortical Clock 

 

It is well-known that the aging process contributes to a 

range of age-related diseases, among which 

neurodegenerative disorders severely impact the quality 

of life in later years. DNA methylation changes in the 

cortex are closely associated with neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s [107, 108]. 

To address the limitations of earlier clocks—which were 

often not rigorously calibrated for specific tissues and 

were prone to age-related phenotypic influences leading 

to false positives—recent efforts have focused on 

developing clocks specifically for the human cerebral 

cortex [109, 110]. These cortical clocks weigh the DNA 

methylation levels at specific sites, distinguishing 

themselves from clocks developed from multi-tissue or 

blood samples. They excel in predicting cortical age and 

are sensitive to neurodegenerative diseases and common 

aging phenotypes [30]. However, like other specialized 

clocks, cortical clocks lose their predictive accuracy when 

applied to tissues outside their intended target, limiting 

their cross-tissue applicability [61]. 

 

5.4 Meta-clock 

 

In light of the heterogeneity and overlapping signals 

among existing clocks, Liu and colleagues combined 
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multi-omics data from various human tissues and cell 

types, integrating findings from in vitro experiments 

focused on aging markers. This approach provided a 

comprehensive view of the shared and contrasting 

features captured by 11 existing epigenetic clocks. By 

synthesizing the conserved features across these clocks, 

they developed a new clock, termed the “Meta-clock.” 

This clock aims to combine the best aspects of previous 

clocks, demonstrating higher accuracy in mortality 

prediction and greater robustness in capturing aging-

related changes both in vivo and in vitro [35]. 

 

5.5 iCAS-DNAmAge 

 

Variability in clock construction can also arise from 

individual inconsistencies, which are further magnified 

across different cohorts, potentially impacting results. 

Significant differences in epigenetic age have been 

observed across racial and ethnic groups [93, 111, 112]. 

This raises uncertainty as to whether existing epigenetic 

clocks can accurately capture aging in cohorts that differ 

racially or ethnically from the populations on which these 

clocks were trained. To address this issue, Zheng and 

colleagues developed a new clock called iCAS-

DNAmAge, along with a multimodal aging predictor 

[113]. This clock was built using data from a Chinese 

cohort, allowing for more accurate age estimations for 

Chinese individuals compared to previous cohort-based 

clocks. A major limitation of current epigenetic clock 

research is its heavy reliance on data from European 

ancestry cohorts, resulting in a lack of representation from 

other populations and insufficient consideration of genetic 

heterogeneity [22]. Large-scale, longitudinal studies 

across diverse populations are essential for expanding the 

applicability of epigenetic clocks [114]. The iCAS-

DNAmAge clock contributes to bridging this gap, 

enhancing the utility of epigenetic clocks across different 

regions and ethnicities.  

 

5.6 Y-CpG Age 

 

Extensive research has demonstrated that women tend to 

outlive men, with epigenetic factors emerging as a 

potential underlying mechanism for this difference in 

lifespan. Epigenetic clocks, which are biomarkers of 

biological age, reveal distinct sex-based variations. These 

differences encompass a range of epigenetic features, 

including methylation patterns on the X chromosome, X-

chromosome inactivation, histone modifications, 

hormonal regulation, and DNA methylation profiles that 

are specific to each sex [115–118]. Additionally, the 

expression of certain epigenetic regulators on sex 

chromosomes appears to play a unique role in modulating 

methylation dynamics, influencing how age-related 

changes are expressed differently in men and women 

[119, 120]. 

Further studies on age estimators specifically 

targeting the Y chromosome have revealed a progressive 

increase in hypermethylation of Y-linked CpG sites as 

men age[119, 121]. These Y chromosome-specific 

epigenetic clocks exhibit high predictive accuracy, 

particularly in individuals over the age of 40, suggesting 

their potential utility in forensic and criminological 

applications where age estimation may be critical. 

Furthermore, the development of sex chromosome-

specific epigenetic clocks holds promise for deepening 

our understanding of the interplay between longevity and 

gender. Through investigating epigenetic mechanisms 

that may contribute to the female longevity advantage, 

these specialized clocks hold the potential to reveal 

insights into the relationship between longevity and 

gender from an epigenetic perspective. 

 

5.7 Neural Network-Based Clocks 

 

Artificial intelligence has shown remarkable advantages 

in prediction and diagnosis across various fields [122]. 

Neural networks, a core component of deep learning, have 

been a driving force behind the rapid advancements in 

modern AI. Traditional epigenetic clocks mostly rely on 

regression methods, whereas DeepMAge was developed 

using neural networks with blood samples as the training 

set, demonstrating superior performance compared to 

conventional clocks [123]. DeepMAge has a median 

absolute error of around 2.77 years in age prediction, 

though certain diseases can impact its accuracy. This 

limitation may stem from a lack of training data from 

other tissues and limited longitudinal data. 

AltumAge addresses some of these shortcomings. 

Trained on samples from 142 different experiments, it 

can, like the Horvath clock, be used to estimate pan-tissue 

age. Unlike linear clocks, AltumAge excels in accuracy, 

applicability, robustness, and resistance to interference, 

highlighting the advantages of neural network-based 

models over linear approaches [124]. AltumAge is highly 

sensitive to various diseases and biologically relevant 

conditions, including cancer, type 2 diabetes, HIV, 

obesity, anxiety, and smoking [124–126]. AltumAge also 

possesses the capability to capture age-related interactions 

between CpG sites, with samples from tumors, immune 

dysfunction, and mitochondrial dysfunction displaying 

elevated predicted ages. In general, this clock outperforms 

traditional linear regression models across various 

performance metrics, while simultaneously providing 

unique biological insights into the mechanisms of aging. 

[124, 127]. 
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5.8 Epigenetic Clocks for Model Organisms 

 

Model organisms are an indispensable part of aging 

research. Similar to humans, DNA methylation data has 

revealed abundant age-related markers in various model 

organisms, leading to the development of species-specific 

epigenetic clocks. Some clocks developed for rodents, for 

example, exhibit characteristics similar to human 

epigenetic aging markers [128, 129]. Lu and colleagues 

sought to construct a universal pan-mammalian epigenetic 

clock, proposing three pan-mammalian age estimators 

that provide both absolute and relative age measurements 

with more reliable biological features, thereby improving 

accuracy and versatility across species [130]. For 

chimpanzees, a species-specific epigenetic clock has 

highlighted significant overlap in age-related epigenetic 

patterns between chimpanzees and humans, offering new 

insights for comparative aging research [131]. Clocks 

have also been developed for invertebrates and non-

mammalian species, including fruit flies and nematodes, 

thereby enabling aging research across a broader range of 

species and in vitro models. These advancements expand 

the toolkit available for exploring the intricate 

relationship between epigenetic and aging, providing 

valuable insights into conserved mechanisms across 

diverse biological systems. [132–134]. 

Beyond the primary epigenetic clocks discussed 

above, other models have emerged in recent years. The 

development of these emerging clocks demonstrates the 

potential applications of epigenetic clocks in diverse 

biological and clinical contexts. This includes clocks 

developed using new technologies, those tailored to 

specific biological aspects, and some that represent 

corrections or updates to previous clocks [24, 66, 135]. 

There are also clocks with unique advantages that are not 

included here due to limited information, lack of open-

source data, or insufficiently distinguished performance 

characteristics. Further research is needed to explore the 

applicability and generalizability of some of these clocks 

[21, 136]. A brief summary of the key characteristics of 

human epigenetic clocks can be found in Table 1. 

 

Table 1. Summary of Key Characteristics of Human Epigenetic Clocks. 

 

Clock Data Source Final CpG number Training Method 

First-generation epigenetic clock    

Horvath's Clock [29] 
Multi-tissue 

Illumina 27K / 450K 
353 Elastic net regression 

Hannum's Clock [44] 
Whole Blood 

Illumina 450K 
71 Elastic net regression 

Bocklandt's Clock [54] 
Saliva 

Illumina 27K 
88 multivariate linear regression 

Skin & Blood Clock [60] 
Skin and Blood 

Illumina 450K 
391 Elastic net regression 

DNAm-based-age-predictors [61] 
Whole Blood and Saliva 

Illumina 450K/EPIC 
514 

Elastic Net and Best Linear 

Unbiased Prediction 

Second-generation epigenetic clock   

PhenoAge [27] 
Whole Blood 

Illumina 27K / 450K 
513 

Cox regression with penalized 

elastic net 

GrimAge [74] 
Whole Blood 

Illumina 450K / EPIC 
1030 Cox regression with elastic net 

GrimAge v2 

(AgeAccelGrim) [75] 

Whole Blood 

Illumina 450K / EPIC 
1030 

Cox regression with penalized 

elastic net 

DunedinPoAm [84] 
Dunedin Study 

Illumina 450K/EPIC 
46 Elastic net regression 

DunedinPACE [88] 
Dunedin Study 

Illumina 450K/EPIC 
173 Elastic net regression 

Zhang's Clock [90] 

ESTHER study 

Whole Blood and Saliva 

Illumina 450K 

10 LASSO regression 

Principal Component Clock 

(PCAge) [23] 

Whole Blood 

Illumina 450K/EPIC 
78464 PCA with Elastic net regression 

Other epigenetic clocks    

Centenarian Clocks [100] 
Whole Blood and Saliva 

Illumina 450K/EPIC 
33495 

Elastic net regression and neural 

network models 

ELOVL2 Clock 

[103, 104] 

Whole Blood 

Illumina 450K 
2 Linear regression model 

Cortica Clock Cortical 347 Elastic net regression 
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[110] Illumina 450K 

Meta-clock 

[35] 

Framingham Heart Study 

Multi-tissue 

Illumina 450k 

878 Elastic net regression 

iCAS-DNAmAge 

[113] 

Whole Blood 

Illumina EPIC/EPICv2 
65 Elastic net regression 

DeepMAge 

[123] 

Whole Blood 

Illumina 27K / 450K 
1000 Deep neural network 

AltumAge 

[124] 
Multi-tissue 20318 Deep neural network 

StocH-clock 

[66] 

Whole Blood and sorted 

immune cells 

Illumina 450k 

353 

based on 

Horvath’s clock 

Elastic net regression with 

stochastic simulation modeling 

StocZ-clock 

[66] 

Whole Blood and sorted 

immune cells 

Illumina 450k 

514 

based on 

Zhang’s clock 

Elastic net regression with 

stochastic simulation modeling 

StocP-clock 

[66] 

Whole Blood and sorted 

immune cells 

Illumina 450k 

513 

based on 

PhenoAge clock 

Elastic net regression with 

stochastic simulation modeling 

IntrinClock 

[137] 

Whole Blood 

Illumina 450K/EPIC 
381 Elastic net regression 

Y-CpG Age 

[121] 

Male Y chromosome 

Illumina 450K 
75 Linear regression model 

CausAge[138] 
Whole Blood 

Illumina 450K 

586 

Elastic net regression AdaptAge[138] 1000 

DamAge[138] 1090 
 

 

6. Using the Past to Predict the Present and Future 

 

DNA methylation encapsulates an individual’s formative 

experiences and accumulated life history. During 

embryogenesis, DNA methylation undergoes a 

comprehensive reset, ensuring that the genome of the next 

generation begins from a “clean slate.” From that point 

forward, each experience—whether dietary, emotional, 

environmental, or disease-related—leaves distinct, 

cumulative marks on this genomic slate. This 

accumulation of influences shapes DNA methylation 

patterns, enabling it to serve as a partial chronicle of one’s 

life history [139]. Unlike histone or RNA methylation, 

DNA methylation exhibits notable stability, functioning 

as a persistent regulatory mechanism for gene expression, 

while also retaining the capacity to respond dynamically 

and reversibly to short-term stimuli [140, 141]. These 

methylation patterns display remarkable consistency 

across diverse tissues, positioning DNA methylation as an 

ideal systemic biomarker [59, 142]. This “genomic 

memory” effectively archives cellular experiences over 

time, which epigenetic clocks strive to decode to infer 

current biological states and project future health 

outcomes. 

 

 

Table 2. Summary of Key Characteristics of Human Epigenetic Clocks 

 
Clock Training Dataset Advantages Limitations Application 

First-generation epigenetic clock 

Horvath's Clock 

[29] 

Based on over 8,000 samples 

from 51 healthy tissues, 

including blood, brain, liver, 

and skin. 

High accuracy for age 

prediction in multiple 

tissues; first multi-tissue 

epigenetic clock enabling 

comparisons across 

different cell types, 

including iPS and 

embryonic stem cells. 

May underestimate 

biological age in older 

adults, lacks sensitivity 

to certain diseases, and 

exhibits variability in 

tissues such as breast 

and skeletal muscle. 

Highly sensitive to 

environmental factors. 

Designed to deliver consistent 

age predictions across various 

tissues by analyzing 

methylation levels, offering 

insights into age acceleration in 

disease contexts like cancer. 

Hannum's Clock 

[44] 

Based on blood samples 

from 656 individuals aged 

19 to 101; primarily 

Caucasian and Hispanic 

individuals. 

Demonstrates high 

prediction accuracy for 

age in blood 

Limited to blood 

tissues; lower cross-

ethnic adaptability; 

static CpG sites fail to 

capture dynamic aging 

processes. 

Exhibits strong specificity for 

blood-related studies and 

demonstrates robust 

associations with clinical 

biomarkers, incorporating 



 Liang R., et al.                                                                         Epigenetic Clocks in Aging   

Aging and Disease • Volume 16, Number 6, December 2025                                                                         3531 

 

analyses of sex and genetic 

variations. 

Bocklandt's 

Clock 

[54] 

Developed from saliva 

samples of 34 identical male 

twin pairs (ages 21-55) and 

validated on additional 60 

independent samples (31 

males, 29 females, ages 18-

70). 

Offers accurate age 

predictions from saliva 

samples, with potential 

forensic applications and 

relevance for assessing 

age-related health risks. 

Suffers from large 

prediction errors, with 

restricted tissue 

specificity and limited 

accuracy. Currently 

applicable only to 

saliva samples. 

Potential tool for forensic age 

estimation; may aid in clinical 

assessments by measuring 

biological age and associated 

health risks. 

Skin & Blood 

Clock 

[60] 

Trained on data from blood, 

skin, and fibroblast samples 

using data from Illumina 

450K, covering ages from 

infancy to elderly samples. 

Accurate age estimation 

in skin, blood, and saliva; 

ideal for forensic 

applications and ex vivo 

studies; accurately tracks 

age acceleration in 

conditions like 

Hutchinson-Gilford 

Progeria Syndrome. 

Predictive accuracy 

declines in non-skin 

and non-blood tissues, 

with slight variability 

observed in fibroblast 

measurements, 

particularly in very 

young samples. Its 

applicability is limited 

to target tissues. 

Useful for biomedical 

applications including ex vivo 

aging assays for screening anti-

aging compounds and forensic 

age estimations in skin and 

blood samples. 

DNAm-based-

age-predictors 

[61] 

Involves multiple cohorts, 

such as LBC1921, 

LBC1936, and Generation 

Scotland, spanning over 

13,000 blood samples and 

additional samples from 

saliva, brain, and 

endometrium. 

High prediction accuracy 

with increasing training 

size; offers insights on 

age-associated changes 

across tissues, enhancing 

biological age 

assessment. 

Performance varies 

across tissue types, 

showing reduced 

effectiveness in smaller 

sample sizes and age 

variance influenced by 

sample types (e.g., 

blood vs. saliva). 

Correlation is 

particularly low in 

brain tissues. 

Promising for refining 

biological age prediction in 

clinical applications, with 

potential to identify health 

trajectories across diverse 

tissue samples. 

Second-generation epigenetic clock    

PhenoAge 

[27] 

Based on whole blood 

samples from the National 

Health and Nutrition 

Examination Survey 

(NHANES III and IV) and 

validated across multiple 

cohorts, including 

InCHIANTI and 

Framingham. 

High predictive power for 

morbidity and mortality, 

with stronger associations 

to health-related aging 

outcomes (e.g., all-cause 

mortality, physical 

functioning) than 

chronological age 

estimators. 

Characterized by high 

complexity and 

resource demands, 

making it unsuitable 

for large-scale 

population studies. 

Useful for tracking biological 

health and assessing aging-

related disease risks, 

outperforming traditional 

clocks by emphasizing 

healthspan and lifespan 

prediction over simple 

chronological age. 

GrimAge 

[74] 

Trained on data from the 

Framingham Heart Study 

(FHS) with 2,356 whole-

blood samples; validated 

across over 7,000 samples 

from independent cohorts 

like WHI, InCHIANTI, and 

JHS. 

Strongly predictive of 

lifespan and healthspan; 

significant associations 

with mortality risk, time-

to-disease events (e.g., 

coronary heart disease, 

cancer), and lifestyle 

factors. 

While accurate in 

predicting 12 plasma 

proteins, its reliability 

for other proteins 

remains low. Further 

validation is needed for 

populations beyond 

European, African 

American, and 

Hispanic groups. 

Sensitive to acute 

inflammation and 

prone to interference 

from sudden health 

events. 

Valuable for lifespan and 

health monitoring in clinical 

settings, including human anti-

aging studies and age-related 

disease prevention, serving as a 

complementary tool to existing 

clinical biomarkers. 

GrimAge v2 

(AgeAccelGrim) 

[75] 

Based on Framingham Heart 

Study with 1,833 samples 

for training and 711 for 

testing; validated across nine 

cohorts totaling 13,399 

blood samples spanning 

European, African, and 

Hispanic populations. 

Strong predictor of 

mortality, chronic 

diseases (e.g., type 2 

diabetes), and conditions 

like coronary heart 

disease; tracks age-related 

healthspan decline across 

diverse racial/ethnic 

groups and biomarkers. 

Primarily validated in 

blood samples; further 

research needed for 

effectiveness in non-

blood tissues and 

greater ethnic diversity 

outside the current 

sample composition. 

Useful in clinical settings for 

healthspan monitoring, 

offering early detection for 

age-related conditions and 

supporting intervention 

effectiveness in geroscience 

trials. 

DunedinPoAm 

[84] 

Based on longitudinal DNA 

methylation data from the 

Assesses biological aging 

pace, correlates with 

Primarily validated in 

European populations, 

Ideal for assessing age-slowing 

interventions in clinical trials 
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Dunedin Study, tracking 

whole-blood samples and 

changes in 18 biomarkers 

from individuals born in 

1972–1973 at ages 26, 32, 

and 38. 

physical/cognitive aging, 

lifestyle factors, chronic 

diseases, and mortality. 

requiring additional 

testing in non-

European groups and 

across diverse tissue 

types. Insufficient 

longitudinal data points 

make it challenging to 

capture the full 

trajectory of aging 

across adulthood. 

and monitoring health span, 

especially in personalized 

medicine, by quantifying 

biological aging rates instead 

of static age. 

DunedinPACE 

[88] 

Expanded the Dunedin 

cohort dataset to include 20 

years of data, incorporating a 

fourth measurement point at 

age 45. 

Offers longer follow-up, 

more assessments, and 

higher reliability 

compared to 

DunedinPoAm. 

Limited by training 

dataset diversity; 

improvements for non-

European populations 

and external samples 

remain minimal. 

More reliable than 

DunedinPoAm; suitable for 

geroscience trials and as a 

healthspan indicator in clinical 

settings. 

Zhang's Clock 

[90] 

Developed using blood 

samples from 1,000 

participants (ages 50-75) in 

the ESTHER study (case-

cohort design) and validated 

in the KORA cohort, 

spanning a broader age 

range (31-82). 

Strong predictor of all-

cause mortality, with risk 

ratios of up to 7.36 times 

for participants with high 

risk scores (5+); 

informative for clinical 

risk stratification. 

Limited to blood 

samples and primarily 

validated in European 

populations, with 

further validation 

required in other ethnic 

groups. Demonstrates 

weaker associations 

with health traits 

compared to more 

complex clocks. 

Valuable for risk assessment 

and personalized health 

monitoring, with potential for 

clinical integration in mortality 

risk stratification by focusing 

on disease-associated 

methylation changes rather 

than chronological age. 

Principal 

Component 

Clock 

(PCAge) [23] 

Trained on multiple DNA 

methylation datasets from 

the Framingham Heart 

Study, Health and 

Retirement Study, 

InCHIANTI, and various in 

vitro and in vivo samples, 

covering blood, saliva, and 

brain tissues. 

Significantly improved 

reliability with 90% of 

replicate agreement 

within 1–1.5 years; 

effective in longitudinal 

and intervention studies 

for aging and 

personalized medicine. 

Highly dependent on 

large datasets for PCA 

construction, with 

reduced effectiveness 

when sample variance 

is restricted, or batch 

effects occur across 

multiple datasets. 

Technical noise may 

still impact predictions. 

Provides reliable tracking for 

age and health interventions, 

enabling reduced sample sizes 

in clinical trials; supports use 

in aging research across 

various tissues and health 

contexts. 

Other epigenetic clocks     

Centenarian 

Clocks 

[100] 

Developed using 7,039 

samples from individuals 

aged over 40, including 

blood and saliva, with a 

notable cohort of 184 

centenarians, 122 semi-

supercentenarians (105+ 

years), and 25 

supercentenarians (110+ 

years). 

Demonstrates high 

accuracy in predicting age 

in individuals over 80, 

particularly well-suited 

for extreme ages (100+); 

validates claims of 

exceptional longevity. 

Limited robustness 

when applied to ages 

beyond 115; current 

model might 

underestimate age for 

the very oldest-old due 

to regression-to-the-

mean effects. 

Useful in validating age claims 

for supercentenarians, 

supporting studies on longevity 

and possibly forensic 

investigations involving age 

estimation. 

ELOVL2 Clock 

[103, 104] 

Initial study used 64 whole 

blood samples of various 

ages, followed by a larger 

validation on 501 samples 

aged 9 to 99 years, including 

cord blood. 

High accuracy for 

chronological age 

prediction, robust in 

blood and bloodstain 

samples; maintains 

stability after weeks of 

storage at room 

temperature, valuable for 

forensic applications. 

Limited applicability to 

non-blood samples; 

potential 

environmental 

influence on 

methylation stability 

for samples stored 

long-term. 

A promising tool for forensic 

age estimation, particularly 

suited for determining the age 

of blood samples and 

bloodstains, with potential 

applications in forensic 

sciences and monitoring age-

related health changes. 

Cortica Clock 

[110] 

Trained on 1,047 human 

cortical tissue samples with 

an additional 350 for testing, 

spanning ages 1 to 108 

years. 

High prediction accuracy 

in cortical tissue; 

minimizes error in age 

estimation for brain-

specific aging studies, 

avoiding biases of 

traditional clocks used in 

brain tissue. 

Limited applicability to 

non-brain tissues; 

model accuracy 

declines when applied 

to non-cortical samples 

such as blood. 

Suitable for studying age-

related brain conditions like 

Alzheimer’s and other 

neurodegenerative diseases, 

aiding in research on brain-

specific aging processes. 
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Meta-clock 

[35] 

Built on 2,993 samples from 

the Framingham Heart Study 

(FHS) across multiple 

tissues, including blood, 

brain, and skin. 

High predictive accuracy 

for mortality (HR = 6.19); 

distinguishes tumor vs. 

normal tissues and tracks 

hallmarks of cellular 

aging like senescence and 

mitochondrial 

dysfunction. 

Limited validation 

across different ethnic 

groups; some 

limitations in capturing 

aging signals specific 

to non-blood tissues. 

High applicability in clinical 

aging studies, potential for 

healthspan and lifespan 

assessments, and disease risk 

monitoring. 

iCAS-

DNAmAge 

[113] 

Based on 1,580 samples 

from two independent 

Chinese cohorts (Quzhou 

and CAS), covering age 

ranges from 20 to 87, all 

whole-blood samples. 

High accuracy for 

biological age estimation, 

particularly adapted for 

Chinese populations; 

responsive to disease 

states and inflammation 

markers like IL-6. 

Limited cross-ethnic 

validation, potential 

gender bias since initial 

testing included 

primarily female 

samples. 

Suitable for broad health 

monitoring in Chinese 

populations, with potential 

expansion to track disease 

progression and interventions. 

DeepMAge 

[123] 

Derived from 4,930 blood 

samples across 17 studies; 

verified on 1,293 samples 

from 15 studies, all whole-

blood samples. 

High accuracy (MedAE = 

2.77 years in 

verification); disease 

sensitivity (e.g., 

inflammatory bowel 

disease, multiple 

sclerosis); minimal sex 

bias in predictions. 

Limited to blood 

samples; not tested in 

longitudinal settings; 

requires complex data 

preprocessing and 

model tuning. 

A powerful tool for tracking 

age-related health changes, 

with superior sensitivity to 

diseases and improved age 

prediction over traditional 

clocks like Horvath’s. 

AltumAge 

[124] 

Trained on 8,999 samples 

from various tissues, 

enabling accurate cross-

tissue age estimation. 

Highly accurate in 

endometrial age 

prediction (MAE = 3.6 

years), outperforming 

some first-generation 

epigenetic clock, with 

significant relevance to 

reproductive health. 

Primarily trained on 

static samples; 

longitudinal stability in 

tissues with cyclic 

changes, like the 

endometrium, remains 

uncertain. 

Potential tool for tracking age-

related health changes，useful 

in assessing disease-related age 

acceleration. 

 

StocH-clock 

[66] Analyzed in 22,770 samples, 

including blood and sorted 

immune cell datasets from 

25 independent cohorts (e.g., 

MESA, BLUEPRINT) to 

model the stochastic 

component in aging. 

Quantifies the stochastic 

contribution in epigenetic 

aging, demonstrating that 

chronological aging 

prediction may rely 

largely on stochastic 

processes; provides 

insights into the variance 

explained by randomness.  

Current models are 

primarily based on 

blood and immune cell 

data, requiring further 

validation for other 

tissue types and larger 

datasets to generalize 

findings. 

StocH achieves R² ~0.66 in 

whole blood, StocZ shows 

higher stochastic accuracy for 

chronological age (~90% of 

Zhang's predictive accuracy), 

while StocP confirms non-

stochastic influences on 

PhenoAge’s biological aging. 

StocZ-clock 

[66] 

StocP-clock 

[66] 

IntrinClock 

[137] 

Based on whole blood 

samples from the National 

Health and Nutrition 

Examination Survey 

(NHANES III and IV) and 

validated across multiple 

cohorts, including 

InCHIANTI and 

Framingham. 

High predictive power for 

morbidity and mortality, 

with stronger associations 

to health-related aging 

outcomes (e.g., all-cause 

mortality, physical 

functioning) than 

chronological age 

estimators. 

Primarily validated in 

blood samples; 

additional research 

needed for use in 

diverse tissues and 

ethnicities outside the 

original cohorts. 

Useful for monitoring 

biological health and 

predicting aging-related 

disease risks, making it 

suitable for clinical aging 

assessments and health 

interventions. 

Y-CpG Age 

[121] 

Based on blood samples 

from 1,057 male individuals 

aged 15-87, collected from 

six different datasets focused 

on healthy individuals. 

Provides the first male-

specific age estimator, 

with applications in 

forensic age estimation 

for mixed samples and 

study of male-specific 

aging. 

Currently limited to 

blood data; further 

studies are needed to 

validate effectiveness 

in other tissues and 

broader population 

samples. 

Offers potential for forensic 

use in age prediction for male 

samples, and aids in the 

investigation of age-related 

changes specific to the Y-

chromosome. 

CausAge [138] 

Developed novel epigenetic 

clocks utilizing putative 

causal CpG sites identified 

through EWMR, trained on a 

dataset of 2,664 blood 

samples. 

Built using causally 

aging-associated sites, 

this clock delivers more 

stable age assessments 

compared to correlation-

based clocks and is less 

susceptible to factors 

absent in the training data. 

Shows slightly reduced 

performance in 

mortality prediction. 

Exhibits higher accuracy and 

robustness in age prediction, 

forming the foundation for 

AdaptAge and DamAge 

development. 

AdaptAge [138] 
Causal CpG sites were 

further inferred and 

Unlike other clocks, the 

sites in this clock are 

Displays marginally 

lower predictive 

Significantly inversely 

correlated with mortality, it 
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categorized into two distinct 

clocks based on the 

magnitude of Mendelian 

randomization causal effects 

and the direction of age-

related differential 

methylation. 

either protective or 

neutral, with AdaptAge 

acceleration indicating 

enhanced healthspan. 

capacity in certain 

aspects compared to 

some second-

generation clocks. 

better reflects protective 

measures against aging and 

serves as a preferred biomarker 

for developmental events 

influencing aging traits. 

DamAge [138] 

Comprising exclusively 

damage-associated sites, 

this clock demonstrates 

higher correlations with 

damage rates and 

significantly outperforms 

other clocks. 

Provides a more robust 

representation of age-related 

conditions, reliably reflecting 

age acceleration across various 

diseases. It is also a preferred 

biomarker for developmental 

events shaping aging traits. 
 

Aging, in part, follows a stochastic course, with 

variability that becomes particularly pronounced among 

individuals [143, 144]. Paradoxically, this inherent 

stochasticity contributes to enhanced predictive accuracy. 

While the system is naturally disordered, the 

accumulation of random modifications across numerous 

genetic loci and cells leads to an averaged effect. This 

culminates in an emergent pattern that reflects a statistical 

regularity underlying the process. Consequently, these 

cumulative random changes produce a statistically 

consistent macro-scale pattern, which resembles a linearly 

increasing ‘marker of temporal progression [44, 145]. 

When stochastic accumulations exceed a certain 

threshold, they generate a robust aging signal, enabling 

epigenetic clocks to estimate age with remarkable 

accuracy, closely reflecting chronological age. This stable 

distribution aligns with the principles of entropy, where 

the gradual increase in entropy at the macro level follows 

a predictable trajectory [18, 146–148]. This phenomenon 

underscores the universality of epigenetic clocks, 

enabling them to sustain high predictive accuracy across 

diverse ages, individuals, and tissue types. The closer a 

clock’s estimates align with chronological age, the more 

likely it is capturing the aggregated effects of random 

DNA methylation alterations rather than specific 

biological pathways [66, 149]. 

In contrast, variations in biological age exhibit less 

randomness. DNA methylation changes driven by 

environmental and lifestyle factors—such as exposure to 

pollutants, socioeconomic status, and smoking—or by 

biological processes, including infections and immune 

system dynamics, are often governed by distinct 

mechanistic pathways rather than random variation [17, 

79, 150]. These changes often follow discernible patterns 

and depend more on individual circumstances rather than 

maintaining a strictly linear correlation with time [66]. 

Furthermore, current epigenetic clocks are not confined to 

linear predictions. Although second-generation clocks 

demonstrate proficiency in estimating aging rate, 

mortality risk, and related aspects, refining these models 

to capture the complexities of aging mechanisms demands 

continued investigation. Aging remains a multifaceted 

and intricate process to model; while epigenetic clocks 

offer valuable insights into future aging trajectories, 

ongoing advancements are essential for greater precision. 

 

7. Epigenetic Clocks as Tools for Measuring the 

Information Theory of Aging 

 

The integration of epigenetic clocks with aging theories 

has unlocked promising avenues for understanding and 

measuring biological aging. By decoupling biological 

changes from the construct of chronological time, 

epigenetic clocks establish a distinct metric for assessing 

biological time. These clocks transcend simple age 

estimation; they reveal authentic differences in biological 

age and health status across individuals. Notably, 

epigenetic changes tied to aging are partially reversible—

a dynamic that epigenetic clocks can also capture [151, 

152]. Interventions such as lifestyle enhancement, stress 

reduction, and physical exercise have been shown to 

influence epigenetic age, effectively “rewinding” the 

clock and promoting a DNA methylation profile 

indicative of a more youthful state [153–155]. 

In line with the information theory of aging, 

biological information within an organism becomes 

increasingly disordered with age, reflecting a rise in 

entropy—a process seen as an intrinsic aspect of aging. 

The degradation and disruption of DNA methylation 

patterns exemplify this entropic shift [18, 156]. 

Rejuvenating the epigenetic age toward a younger state 

can be interpreted as a form of entropy reversal. Although 

aging generally follows a trajectory of increasing entropy, 

biological systems are not closed and isolated, which 

renders entropy reversal feasible [157]. Cellular 

reprogramming, particularly through the use of OSKM 

factors, exemplifies this potential; it enables the resetting 

of epigenetic information and extends cellular lifespan, 

observable through the reversal of epigenetic age [24, 56, 

158, 159]. Thus, with targeted intervention strategies, 

biological age may be reset, with epigenetic clocks 

providing a concrete metric of this rejuvenation effect [92, 

160]. 

Shannon entropy—originally a measure rooted in 

probability theory—has been adapted to analyze DNA 

methylation data, capturing the cumulative, age-related 
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disorder across CpG sites over time [161]. By quantifying 

the probability distribution of methylation levels, 

Shannon entropy facilitates the identification of CpG sites 

with significant age correlations [18]. Compared to clocks 

reliant solely on methylation percentage metrics, entropy-

based clocks may offer a more precise assessment of 

methylation age, potentially enhancing the accuracy of 

biological age estimation [162, 163]. 

 

8. Development and Challenges of Epigenetic Clocks 

 

As tools for assessing epigenetic aging, epigenetic clocks 

have garnered increasing attention due to their broad 

biological relevance and potential to evaluate the effects 

of anti-aging interventions [64]. Most existing epigenetic 

clocks have been developed using data from Illumina 

methylation arrays, which offer low cost and reduce 

confounding factors associated with platform and 

technical variability, making these clocks accessible for 

computation by others [164, 165]. Calculations for 

various clocks based on Illumina data can be performed 

through Horvath’s online calculator at https://dnamage. 

genetics.ucla.edu/ and the “methylclock” R package 

[166]. 

Illumina array data, while widely used, come with 

notable limitations. Beyond issues like technical noise and 

low reproducibility due to problematic probes, some 

probes can bind to multiple genomic regions, potentially 

leading to false-positive results [167]. Furthermore, 

because the arrays target predefined CpG regions, they 

may overlook other potentially important methylation 

sites, such as non-CpG methylation and low-complexity 

regions. Microarray analysis measures each CpG site 

independently and cannot capture continuous DNA 

methylation patterns, which may limit the predictive 

accuracy of epigenetic clocks in specific tissues or under 

certain conditions [164, 168]. These limitations can lead 

to variability in results and reduced reliability [23]. 

Whole-genome bisulfite sequencing (WGBS), the 

gold standard for DNA methylation research, can cover 

about 90% of CpG sites, overcoming many limitations of 

Illumina arrays and offering superior resolution and 

localization accuracy to describe methylation states [169–

171]. WGBS and reduced-representation bisulfite 

sequencing (RRBS) enable analysis of continuous 

methylation patterns, methylation haplotype blocks, and 

methylation heterogeneity. Standardizing sequencing 

depth and library preparation can reduce inter-sample 

variability [135, 169]. 

Thus, clocks developed using next-generation 

sequencing (NGS) data may have inherent advantages. 

Regional blood clocks (RegBCs), trained on RRBS data, 

have already demonstrated robust performance across 

blood and multiple tissues [98, 129, 135, 172]. 

Additionally, RRBS-based human blood epigenetic 

clocks have been developed, though further research is 

needed to substantiate their advantages [173, 174]. 

WGBS data are vast and intricately detailed, 

presenting considerable challenges for both interpretation 

and model training. In contrast to Illumina arrays, which 

yield an aggregate average of CpG site methylation across 

cells, or RRBS, which selectively targets regions with 

high CpG density, WGBS lacks this level of simplicity. 

The complexity of WGBS, combined with its high costs, 

has limited the development of WGBS-based clocks. Yet, 

the unparalleled coverage and high resolution afforded by 

WGBS can uncover a broader array of age-associated 

features, offering significant advantages in the 

construction of more refined clocks. Certain approaches 

may enable the adaptation of WGBS data for integration 

with existing clocks: (i) For clocks originally developed 

with Illumina array data, researchers could align base 

positions with Illumina probe sites and link these 

positions to probe IDs for calculation. This strategy could 

potentially be extended to model organism data by 

converting genomes to human references, although its 

reliability has yet to be systematically validated. (ii) For 

RRBS-based clocks, the process is simpler. As 

demonstrated by Stubbs et al., base positions and beta 

scores can be matched and computed using R packages, 

though WGBS and RRBS do not always cover identical 

CpG sites, which can result in missing values [129, 175]. 

The cost of using WGBS and RRBS to build 

epigenetic clocks remains prohibitively high. Developing 

more economical, standardized, high-throughput methods 

would greatly facilitate the construction of epigenetic 

clocks. Compared to these sequencing methods, BBA-seq 

has demonstrated relatively accurate age prediction, 

enabling the development of epigenetic clocks from a 

single DNA strand. This approach, though, may be better 

suited for targeted epigenetic studies of specific loci or 

detailed analysis of small sample sets. [176]. TIME-Seq, 

designed specifically for epigenetic clocks, offers a 

scalable approach for large studies, reducing costs by over 

100-fold compared to traditional Illumina arrays or 

RRBS. Griffin et al. used TIME-Seq to develop seven 

mouse clocks and one human clock, which demonstrated 

high reliability across blood, liver, and skin tissues, with 

a median absolute error of 3.39 years in human blood 

samples [177]. 

While clocks constructed from large datasets inspire 

confidence in their robustness, the sheer volume of 

methylation data presents the challenge known as the 

“curse of dimensionality.” The Illumina 450K array spans 

over 450,000 sites, and the Illumina EPIC array (or 850K) 

nearly doubles this number. Reduced Representation 

Bisulfite Sequencing (RRBS) extends to millions of CpG 

sites, whereas Whole-Genome Bisulfite Sequencing 

https://dnamage/
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(WGBS) encompasses almost ten times as many. Training 

models on such expansive datasets introduce substantial 

amounts of irrelevant data and noise, complicating the 

analytical process. Techniques for dimensionality 

reduction offer a way to mitigate issues like noise and 

overfitting. Despite the extensive evolution of epigenetic 

clocks, whether to prioritize comprehensive datasets (e.g., 

WGBS or RRBS) or more streamlined options (e.g., 

Illumina arrays or TIME-Seq) remains an unresolved 

question in clock development. We expect that methods 

like TIME-Seq will provide fresh insights into refining 

epigenetic clock construction. Equally important is the 

data processing strategy; by employing advanced 

dimensionality reduction techniques and harnessing deep 

learning algorithms, researchers may develop clocks that 

are exceptionally sensitive to specific aging signatures, 

potentially overcoming existing limitations and achieving 

greater precision [178]. 

 

9. The New Era of Epigenetic Clocks 

 

CpG sites form the cornerstone of epigenetic clock 

construction, and the selection of these sites significantly 

influences the clock’s characteristics and robustness. 

Existing first- and second-generation clocks are 

predominantly constructed based on purely correlative 

models, targeting CpG sites with the strongest 

methylation association with age, regardless of whether 

these sites have causal relationships with aging [179–

181]. Consequently, such models often include CpG sites 

that are mere bystanders to age-related changes rather 

than drivers of the aging process. This lack of causal 

insight limits the explanatory power of these clocks 

regarding the mechanisms of aging, reducing their 

applicability for interventions and therapies [180]. Over 

and beyond, correlation-based models struggle to 

distinguish causal relationships from confounding factors. 

Environmental influences, lifestyle factors, or diseases 

that independently affect both DNA methylation and 

age—but not aging itself—may be erroneously 

incorporated into predictions, undermining the stability 

and accuracy of the model under varying health or 

environmental conditions[182]. These limitations may 

partially explain the shifts observed when applying such 

models to datasets outside their training cohorts. 

To address these challenges, Ying et al. developed a 

causality-enriched epigenetic clock, termed CausAge, 

which focuses on CpG sites with causal relationships to 

aging. They further refined this approach by identifying 

adaptive and deleterious age-related differentially 

methylated CpG sites. Through Mendelian randomization 

analysis, these causal CpG sites were classified and used 

to construct two distinct clocks: AdaptAge and DamAge 

[138]. These specialized clocks demonstrated superior 

predictive accuracy for aging-related phenotypes, 

mortality, and protective adaptations. Notably, DamAge 

exhibits higher robustness in capturing the influence of 

age-related conditions compared to current first- and 

second-generation clocks, emphasizing the value of 

separating markers of “damage” and “adaptation” in clock 

development [179]. 

Tailoring epigenetic clocks to specific objectives, 

such as predicting biological age, mortality risk, or aging 

acceleration factors, may yield more precise results. For 

instance, developing clocks sensitive to intervention 

effects or focused on evaluating specific outcomes could 

benefit from a streamlined selection of CpG sites. 

Including extraneous CpG sites not only increases the risk 

of overfitting but may also diminish the accuracy of 

predictions [178]. Another critical factor is the stochastic 

and spontaneous nature of DNA methylation changes 

over time [183, 184]. Echoing the principle of ‘horses for 

courses,’ the development of purpose-driven epigenetic 

clocks tailored to specific applications can significantly 

enhance their precision and reliability, particularly in 

specialized domains and tasks [12]. This highlights the 

importance of purpose-driven clock design and the 

potential of specialized models to improve precision 

[185]. 

Many existing clocks share overlapping CpG sites. 

Still, there has been no systematic analysis of the 

functional relevance of these shared sites. A deeper 

understanding of their roles and mechanisms may inform 

more targeted clock development. Alongside this, while 

non-CpG methylation sites (e.g., CHG and CHH) remain 

underexplored in animals, emerging research suggests 

intriguing possibilities. In the mouse genome, 

approximately 0.32% to 0.68% of CHG and CHH sites 

exhibit age-related methylation changes [186, 187]. Given 

the vast number of CHG and CHH sites across the 

genome, this percentage corresponds to over 2 million 

age-associated sites in mice. These findings suggest that 

non-CpG methylation may harbor valuable insights, 

warranting further exploration. Expanding research into 

non-CpG methylation sites could uncover novel 

mechanisms and broaden the scope of epigenetic clock 

development, opening up significant opportunities for 

future investigation [12]. 

 

10. Feasibility of Developing Epigenetic Clocks Using 

Other Data Types 

 

Epigenetic functions as a molecular chronicle, encoding 

an individual’s lifetime experiences, environmental 

exposures, and lifestyle influences. Epigenetic clocks, 

grounded in theoretical models, have consistently 

surpassed traditional biomarkers in predicting risk and 

estimating lifespan, displaying remarkable accuracy 
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across diverse applications [8, 14]. This reliability has 

positioned epigenetic clocks as essential tools for large-

scale population studies, clinical trials, and evaluations of 

anti-aging interventions. In studies examining the 

interplay between health and aging, epigenetic clocks 

provide insights into both lifespan prediction and disease 

susceptibility, while also serving as dynamic indicators of 

how interventions—such as dietary adjustments and 

pharmacological therapies—impact biological age [70, 

153, 188]. Although DNA methylation contributes 

significantly to this precision, it represents only a part of 

the aging process. A deeper understanding of other 

transcriptional regulators and epigenetic modifications 

will be essential for constructing a more holistic model 

that fully captures the intricacies of aging biology. 

RNA methylation has emerged as an exceptionally 

informative epigenetic marker, significantly shaped by 

aging and external environmental factors. Elevated levels 

of RNA methylation are particularly pronounced in the 

central nervous system, where they exert substantial 

influence over pathways implicated in neurodegenerative 

diseases, underscoring their potential relevance in the 

pathophysiology of these conditions [189–191]. Acting as 

a critical intermediary between epigenetic modifications 

and post-transcriptional regulatory networks, RNA 

methylation orchestrates multiple intricate layers of gene 

expression. By modulating processes such as mRNA 

stability, splicing, and translation efficiency, it plays an 

indispensable role in fine-tuning cellular functions and 

developmental pathways. It governs mRNA fate and 

cellular differentiation while exerting a dynamic influence 

on RNA translation [192–194]. Compared to 5mC, the 

predominant marker in DNA methylation, m⁶A—the 

principal marker in RNA methylation—undergoes 

modifications at a markedly accelerated rate, allowing it 

to capture rapid and dynamic molecular changes reflective 

of real-time biological fluctuations. This unique 

characteristic not only underscores its capacity to provide 

a more immediate snapshot of physiological states but 

also reveals its stronger correlations with 

neurodegenerative disorders and metabolic syndromes 

[195, 196]. These attributes underscore the potential of 

RNA methylation as a foundation for constructing 

epigenetic clocks, though several technical and 

interpretative challenges must still be addressed. 

 
Figure 3. As the lifespan progresses, DNA methylation patterns become increasingly disordered, leading to 

gradual cellular aging—an indicator of rising entropy. Epigenetic markers can capture these changes, reflecting 

not only accelerated aging beyond chronological age but also rejuvenation effects resulting from targeted 

interventions. The gray pins indicate methylation sites, while red represents aging cells. 

The detection of m⁶A remains less advanced 

compared to that of 5mC, complicated by its greater 

complexity and highly dynamic nature, with many aspects 

of RNA methylation mechanisms yet to be fully 



 Liang R., et al.                                                                         Epigenetic Clocks in Aging   

Aging and Disease • Volume 16, Number 6, December 2025                                                                         3538 

 

elucidated [197, 198]. m⁶A modifications are also 

inherently transient, persisting for only a few hours to 

days, and are significantly less stable than 5mC in DNA 

[199]. As detection technologies continue to improve in 

resolution and accuracy, there is hope that m⁶A can soon 

be examined at an even finer scale, offering a fresh 

perspective on the epigenetic landscape of aging and 

opening new avenues for the development of epigenetic 

clocks (Fig.  3). 

 

11. Re-evaluating Epigenetic Clocks 

 

The information provided by epigenetic clocks extends 

beyond mere markers of chronological age. While the 

outputs of current clocks are not inherently difficult to 

interpret, understanding how to correctly interpret these 

results is crucial for making meaningful predictions. 

Beyond the absolute value of epigenetic age, 

“epigenetic acceleration” is often used to assess individual 

aging. For first-generation clocks, a predicted age that 

exceeds chronological age suggests accelerated aging, 

while a lower predicted age implies a younger biological 

state. Second-generation clocks, which integrate various 

health-related indicators and disease risk information, 

offer a more comprehensive assessment of health. In this 

context, faster epigenetic acceleration indicates a higher 

aging rate and potentially greater health risks, with 

specific risks depending on the characteristics of the 

training data used to build each clock. This acceleration is 

measured by the difference between predicted and 

chronological age, often referred to as the Age 

Acceleration Residual (AAR). From a modeling 

perspective, residuals represent an evaluation metric for 

“bias-free” prediction; as some studies have suggested, 

lower residuals imply a more accurate prediction [28]. 

In the realm of epigenetic clocks, achieving a zero 

AAR may be an impractical goal, given the difficulties in 

assembling large, low-heterogeneity datasets for clock 

construction and the lack of a universally accepted 

standard for “optimal” methylation states at each CpG site 

(or other markers) across all age groups [20, 130]. Striving 

for zero residuals may also be unnecessary. The primary 

function of epigenetic clocks is to quantify the divergence 

between biological and chronological age, making the 

residual a meaningful component of the clock’s utility. 

Similarly, correlation alone does not equate to causation, 

nor does it guarantee the clock’s accuracy. The true 

predictive strength of an epigenetic clock lies in its 

deviation from chronological age. If a clock were to match 

chronological age consistently, its value would be 

diminished—why calculate biological age if it offers no 

additional insights? The capacity of epigenetic clocks to 

identify outliers should be a fundamental criterion in 

assessing their predictive effectiveness. While traditional 

metrics, such as mean absolute error and correlation, 

provide valuable insights, an exclusive reliance on these 

measures’ risks offering a partial understanding. The 

development of an epigenetic clock with precise accuracy 

remains a formidable challenge, as there is no universally 

recognized benchmark for defining a “normal” 

methylation profile. Methylation patterns primarily reflect 

the body’s adaptive responses to changing environmental 

conditions [182]. Consequently, an ideal epigenetic clock 

would inherently show residuals even among healthy 

individuals, rather than aiming for a zero-residual 

benchmark. Such an objective is ambitious and may, in 

fact, pose a greater challenge than creating a “zero-

residual clock.” Perhaps the day we can define 

methylation with the same clarity as we define normal 

physiological states will mark the true maturation of 

epigenetic clocks. 
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