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Abstract

Background: The Bacillus cereus sensu lato group consists of six species (B. anthracis, B. cereus, B. mycoides, B.
pseudomycoides, B. thuringiensis, and B. weihenstephanensis). While classical microbial taxonomy proposed these
organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that
these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the
Bc species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It
has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the
bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the
sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors;
sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition
for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine
both regulatory sequences and transcriptional networks important for divergence. We began this examination by
comparison to the sigma factor gene set of B. subtilis.

Results: Phylogenetic analysis of the Bc species-group utilizing 157 single-copy genes of the family Bacillaceae
suggests that several taxonomic revisions of the genus Bacillus should be considered. Within the Bc species-group
there is little indication that the currently recognized species form related sub-groupings, suggesting that they are
members of the same species. The sigma factor gene family encoded by the Bc species-group appears to be the
result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true
heterogeneity of the sigma factor content in the Bc species-group.

Conclusions: Expansion of the sigma factor gene family appears to have preferentially occurred within the
extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in
general, highly conserved with those found in B. subtilis. Divergence of the sigma-controlled transcriptional
regulons among various members of the Bc species-group likely has a major role in explaining the diversity of
phenotypic characteristics seen in members of the Bc species-group.

Background
The genus Bacillus consists of a heterogeneous group of
Gram-positive heterotrophic aerobic or facultative anae-
robic bacilli with the ability to form environmentally
resistant, metabolically inert spores [1]. These soil-borne
organisms are ubiquitous throughout the world, and
occupy surprisingly diverse environments [2,3]. Within
this large genus, the B. cereus sensu lato group consists

of six species [B. anthracis (Ba), B. cereus (Bc), B.
mycoides, B. pseudomycoides, B. thuringiensis (Bt), and
B. weihenstephanensis], based on classical microbial tax-
onomy [4]. However, newer molecular phylogenies and
comparative genome sequencing suggests that these
organisms should be classified as a single species [5].
On the surface, this conclusion seems difficult to recon-
cile with the varied biological characteristics of these
organisms. Some Bc strains are thermophiles [6], while
B. weihenstephanensis is psychrophilic [7]. By contrast,
many members of this group are mesophiles, and can be
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found in a variety of locales including soil, on plant sur-
faces and in the mammalian gastrointestinal microflora
[8]. Some members of this group appear to be non-
pathogenic, while others cause diverse diseases including
gastroenteritis, food poisoning [8], endophthalmitis [9],
tissue abscesses [10,11], and anthrax [2]. Bt strains have
the capacity to cause disease in insects [12,13] and pos-
sibly nematodes [14-16], while some evidence suggests
that Bc strains are part of the normal insect gut flora
[8,17]. Nevertheless, whole genome comparisons
between these organisms reveal a surprising similarity in
gene content, and Han et al. [18] have concluded “that
differential regulation [of gene content] modulates viru-
lence rather than simple acquisition of virulence factor
genes”, a conclusion confirmed by other studies [19].
Consequently, we will refer to these organisms as the Bc
species-group, to reflect the extremely close phyloge-
netic relationships between these organisms.
How do we account for the underlying genomic simi-

larity of these phenotypically diverse microbes? It has
been established for some time that the most rapidly
evolving and evolutionarily flexible portions of the bac-
terial genome are regulatory sequences and transcrip-
tional networks [20-22]. Thus, it is no surprise that
major differences between Bc species-group organisms
reside in the regulation of gene expression rather than
gene content. A prime example of this divergence is the
PlcR-PapR quorum-sensing operon, present in all Bc
species-group organisms, but harboring point mutations
that differentiate group members from one another
[23,24]. The papR locus encodes a quorum-sensing sig-
nal (a secreted peptide) that is internalized and binds to
PlcR, a transcriptional activator that controls gene
expression and is important for Bc virulence. There are
four distinct phylogenetic groups of the PapR peptide,
each with point mutations that result in a unique
quorum-sensing ‘pherotype’ [23]. The PlcR sensor in
each pherotype has co-evolved to exclusively bind only
its cognate PapR peptide, and each PlcR pherotype is
consequently ‘blind’ to the quorum sensing signals
secreted by other Bc pherotypes. Ba strains (and a low
percentage of Bc strains) [24] have taken PlcR-PapR
divergence a step further. These organisms carry a
unique nonsense mutation in PlcR that inactivates the
quorum-sensing function entirely. Since PlcR and the
global virulence regulator AtxA on the virulence plas-
mid pXO1 appear to antagonize one another [24], PlcR
inactivation after Ba acquired pXO1 appears necessary
for full virulence of Ba.
This is not to say that horizontal gene transfer and

genome reduction have not been important in remodel-
ing genomes within the Bc species-group. For instance,
the virulence plasmids pXO1 and pXO2 in Ba appear to
have been acquired by horizontal gene transfer [25], and

represent 52% of the unique coding capacity found in
the Ba genome. Although these genes have a significant
impact on the Ba pathogenic phenotype, this plasmid
gene content comprises only 176 genes, representing a
small fraction of the total coding capacity of the Ba gen-
ome. Genome reduction has played a modest role in
divergence of the Bc species-group [26], likely being
responsible for the reduced genome size of Bc NVH391-
98. However, genome reduction is probably more
important for speciation events; e.g., the M. leprae gen-
ome is fully 26% smaller than that of M. tuberculosis,
and carries over 1100 pseudogenes with functional
orthologs in M. tuberculosis. GR has essentially elimi-
nated 50% of the coding capacity of the M. leprae gen-
ome [27]. Thus, subtler genome alterations within the
Bc species-group, such as gene duplication, divergence
and point mutations probably have contributed as much
or more than horizontal gene transfer and genome
reduction to the unique niche adaptations of individuals
within the Bc species-group.
Anderson et al. [28] first noted that the genomes of

Bc species-group organisms appeared to harbor an over-
abundance of sigma factors, compared to B. subtilis
strain 168. Bacterial sigma factors bind RNA polymerase
and allow the holoenzyme to recognize promoter
sequences 5’ to the site of initiation of transcription
[29]. Typically, bacteria encode several different sigma
factors, each of which is responsible for controlling a
suite of genes by activating transcription at a unique set
of sigma factor specific promoter sequences. Sigma fac-
tors generally belong to two primary categories, the
sigma54 and the sigma70 families [29]. The sigma54 pro-
teins encoded by the Bc species-group are very highly
conserved, and ubiquitously present as a single copy
gene. Therefore, a phylogenetic analysis of these pro-
teins in the Bc species-group was not particularly reveal-
ing (data not shown). We consequently focused further
efforts on the sigma70 proteins. Sigma70 proteins can be
further differentiated into primary alternative (PA)
sigma factors and extracytoplasmic function sigma fac-
tors (ECF) [30]. In general, PA sigma factors control
expression of many housekeeping functions of the cell
(e.g., B. subtilis SigA), and allow the organism to
respond to specific environmental stimuli such as heat-
shock (e.g., SigB) [31,32]; in B. subtilis, several PA sigma
factors are integral to the sporulation developmental
pathway [33,34]. ECF sigma factors typically activate
gene expression in response to extracellular signals such
as the availability of specific iron sources [35,36] and
commonly are essential for disease pathogenesis [37-39].
The activity of a PA or (more commonly) an ECF sigma
is often controlled by an anti-sigma factor that renders
the sigma factor in a state unable to bind RNA polymer-
ase. Activation of the sigma factor for RNA polymerase
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binding and transcription initiation is triggered by a sig-
nal (ligand binding, covalent modification or proteolysis)
that inactivates the anti-sigma factor [40].
Thus, sigma factors activate transcription in response

to environmental or developmental signals, and selec-
tively activate transcription by recognizing different con-
sensus promoter sequences to tailor gene expression to
those signals [41]. This suggested to us that many of the
phenotypic differences between members of the Bc spe-
cies-group organisms might be a consequence of the
sigma factor gene expansion [28], accompanied by diver-
gence among the sigma factor regulons of these organ-
isms. Consequently, we began to explore the phylogeny
of the sigma factors found in various Bc species-group
members, by comparison to the experimentally well-
understood model organism B. subtilis. To place these
studies in context, we began by constructing a phylo-
geny of the Bacillaceae using whole-genome single copy
genes. This phylogeny suggested that the current taxo-
nomic affiliation of many members of the Bacillaceae
should be reconsidered. Using this phylogeny as a basis,
we then examined the phylogenetic relationships of the
sigma factors encoded by members of the Bc species-
group. We find that the overabundance of sigma factors
encoded by the Bc species-group organisms is specifi-
cally in the ECF sigma factors, rather than in the sigma
factor group as a whole. The sigma factor gene family
encoded by the Bc species-group is the end-product of a
dynamic gene-duplication and gene-loss process that
has, until now, underestimated the true heterogeneity of
ECF sigma factor content in the Bc species-group.
Further, the sigma factor content carried by any given
member of the Bc species-group suggests that both
shared and unique gene expression patterns have
evolved during the divergence of this group of organ-
isms from a common ancestor.

Results and Discussion
Whole-genome single copy-gene phylogeny of the
family Bacillaceae
Phylogenetic analysis of 157 single copy genes (Addi-

tional file 1) of 41 Bacillaceae genomes (Table 1), using
Paenibacillus and Brevibacillus as outgroups, indicate
that there are five main lineages and suggest four modi-
fications to the taxonomy of the family (Figure 1). The
initial divergence within the Bacillaceae was between
Exiguobacterium, an aerobic, asporogenous, and irregu-
larly shaped Gram-positive bacterium recently linked to
bacteraemia [42], and the bulk of the family. Subsequent
to this, B. halodurans, B. clausii, B. selenitireducens, and
B. pseudofirmus (the B. halodurans group) diverged
from the rest of the family, followed by the divergence
of Oceanobacillus and Lysinibacillus. Within the
remaining Bacillus genera, there is a multichotomous

split between the B. subtilis group (including B. subtilis,
B. amyloliquefaciens, B. licheniformis, and B. pumilus),
the Bc species-group, B. megaterium, and a group that
includes strains of Geobacillus and Anoxybacillus (G.
kaustophilus, G. thermodenitrificans, Geobacillus WCH-
70, and Anoxybacillus flavithermus). Although results
from the maximum likelihood analysis indicate a lack of
resolution between these four groups, the inclusion of
Geobacillus and Anoxybacillus within Bacillus has
strong support (particularly relative to the B. halodurans
group). This indicates that Oceanobacillus, Lysinibacil-
lus, Geobacillus, and Anoxybacillus are more closely
related to some Bacillus spp. than are members of the
B. halodurans group, and that, if one wishes the taxon-
omy of the group to reflect evolutionary history, should
be subsumed within Bacillus.
These relationships are significantly different than
those deduced by most other strategies, until recently.
The family Bacillaceae, including the genus Bacillus, is
a heterogeneous collection of gram-positive rod-shaped
bacteria within the Firmicutes and includes both free-
living and pathogenic species with a world-wide distri-
bution. Their heterogeneity is reflected in a highly
variable GC content ranging between 33 and 78% G
+C. To date, the most commonly utilized phylogenetic
strategy for examining these phylogenetic relationships
has utilized rDNA sequences. Xu and Cote [43], for
example, identified 10 groups within Bacillaceae on
the basis of 16S-23S internal transcribed spacer
sequences. Seven of those groups included members of
the genus Bacillus. The ribosomal database project
(RDB) [44] currently includes 13,359 sequences for
members of Bacillaceae (as of 10/01/2010). However,
recent study of relationships of members of Bacillus
has begun to look beyond 16S rDNA sequences and
has benefitted from the many whole-genome sequences
becoming available. For example, Alcaraz et al. [45]
examined twenty Bacillus genomes and, utilizing a
core-genome conceptual data analysis, determined the
phylogeny of known Bacillus spp. included in their
study and identified four main lineages. Although their
study employed different outgroups, methods, and gen-
omes sampled, their conclusions were similar to ours
and consistent with the idea that the taxonomic affilia-
tion of these organisms needs to be reconsidered, in
the light of whole-genome analyses. This is not to sug-
gest that phylogenetic analyses based on 16S rDNA
sequence should be supplanted by whole genome ana-
lyses, due to the obvious practical limitations of requir-
ing the entire genome sequence of an isolate prior to
phylogenetic analysis. However, whole genome phylo-
genetic methods such as that presented here, and by
other groups such as Alcaraz et al. [45] indicate that
the resolution of 16S phylogenies should be viewed
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with caution. Our results also are consistent with the
conclusions of Tourasse et al. [46], who have recently
described an extremely robust analysis of this group of
organisms using a combination of MSLT, AFLP and
MLEE genotyping. Again, these methodologies have
the advantage of not requiring whole genome sequence
for analysis. Nevertheless, the comprehensive nature of
using whole genome sequences for phylogenetic

comparisons is attractive due to the power of the tech-
nique, when the data is available.
Within the Bc species-group (Figure 2), Bc subsp. cyto-

toxis NVH 391-98 is the most distantly related of the Bc
species-group, followed by B. weihenstephanensis. The
remaining Bc strains form a paraphyletic assemblage
that excludes B. thuringiensis and B. anthracis. While
both the gene content and extent of divergence suggest

Table 1 Genome sequences used in this study

Organism Locus tag Size (bp) Source of isolation Accession

Anoxybacillus flavithermus WK1 Aflv 2846746 Geothermal waste-water drain NC_011567

Exiguobacterium AT1b EAT1B 2999895 Yellowstone Nat’l Park NC_012673

Exiguobacterium sibiricum 255-15 Exig 3040786 Siberian permafrost NC_010556

Geobacillus WCH70 GWCH70 3508804 Wood chip composter heap NC_012793

Bacillus selenitireducens MLS10 Bsel 3592487 Axonic lake mud NC_014219

Geobacillus kaustophilus HTA426 GK 3592666 Deep-sea sediment NC_006510

Geobacillus thermodenitrificans NG80-2 GTNG 3608012 Deep oil reservoir NC_009328

Oceanobacillus iheyensis HTE831 OB 3630528 Deep-sea sediment NC_004193

Geobacillus C56-T3 GC56T3 3650813 Hot spring NC_014206

Geobacillus Y412MC61 GYMC61 3667901 Hot spring NC_013411

Bacillus pumilus SAFR-032 BPUM 3704465 JPL spacecraft assembly facility NC_009848

Bacillus amyloliquefaciens FZB42 RBAM 3918589 soil NC_009725

Bacillus cereus cytotoxis NVH 391-98 Bcer98 4094159 Food poisoning outbreak NC_009674

Bacillus halodurans C-125 BH 4202352 Deep-sea sediment NC_002570

Bacillus subtilis 168 BSU 4215606 Model organism NC_000964

Bacillus licheniformis ATCC-14580 BL 4222597 soil NC_006270

Bacillus licheniformis DSM-13 Bli 4222645 soil NC_006322

Bacillus pseudofirmus OF4 BpOF4 4249248 soil NC_013791

Bacillus clausii KSM-K16 ABC 4303871 soil NC_006582

Lysinibacillus sphaericus C3-41 Bsph 4817463 soil NC_010382

Bacillus megaterium DSM319 BMD 5097447 soil NC_014103

Bacillus anthracis Ames BA 5227293 Bovine carcass NC_003997

Bacillus cereus 03BB102 BCA 5228663 Human blood isolate NC_012472

Bacillus thuringiensis Al-Hakam BALH 5313030 Iraq bioweapons facility NC_008600

Bacillus thuringiensis konkukian BT 5314794 Human tissue necrosis NC_005957

Bacillus cereus biovar anthracis CI BACI 5419036 Chimpanzee carcass NC_014335

Bacillus cereus B4264 BCB 5427083 Bloodstream isolate from pneumonia patient NC_011725

Bacillus cereus ATCC14579 BC 5432652 Dairy product NC_004722

Bacillus cereus AH187 BCAH187 5449308 Food poisoning isolate NC_011658

Bacillus anthracis str Sterne BAS 5486649 Vaccine strain NC_005945

Bacillus anthracis A0248 BAA 5503926 Human disease NC_012659

Bacillus anthracis Ames-0581 GBAA 5503926 Bovine carcass NC_007530

Bacillus cereus Q1 BCQ 5506207 Deep oil reservoir NC_011969

Bacillus anthracis CDC 684 BAMEG 5506763 NA* NC_012581

Bacillus megaterium QM-B1551 BMQ 5523192 soil NC_014019

Bacillus cereus ATCC-10987 BCE 5588834 Cheese spoilage NC_003909

Bacillus cereus AH820 BCAH820 5599857 Human periodontitis NC_011773

Bacillus thuringiensis BMB171 BMB 5643051 soil NC_014171

Bacillus cereus G9842 BCG 5736823 Stool sample from food poisoning outbreak NC_011772

Bacillus cereus ZK BCZK 5843235 Zebra carcass NC_006274

Bacillus weihenstephanensis KBAB4 KBAB 5872743 soil NC_010184

* NA: not available
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that Bc subsp. cytotoxis and perhaps B. weihenstepha-
nensis may warrant specific recognition, other organisms
within the Bc species-group do not. For example, the
three Bt strains did not group together. Bt Konkukian is
most closely related to Ba, while the other two Bt
strains are more distantly related. The closest relative of
Bt Al Hakam is Bc 03BB102, while Bt strain BMB171 is
mostly nearly related to Bc strain ATCC14579. Preli-
minary results for two other Bt strains, kurstaki

T03a001 and HD1, also fall within this region of the
phylogeny (data not shown). Ba strains form a mono-
phyletic lineage and could be a sub-species of Bc. While
subsuming Ba and Bt within Bc may be problematic,
there are definitively Bc strains (e.g. Bc AH820) that are
significantly more closely related to Ba or Bt than they
are to other strains of Bc. Thus, our phylogenetic assess-
ment is consistent with other recent suggestions that the
Bc group exhibits sufficiently high genetic similarity that

GC56T3 |Geobacillus sp. C56-T3

GYMC61 |Geobacillus sp. Y412MC61

GK|Geobacillus kaustophilus HTA426

GTNG |Geobacillus thermodenitrificans NG80-2

GWCH70 |Geobacillus sp. WCH70

Aflv |Anoxybacillus flavithermus WK1

BMQ |Bacillus megaterium QM B1551

BMD |Bacillus megaterium DSM 319

BC|Bacillus cereus ATCC 14579

RBAM |Bacillus amyloliquefaciens FZB42

BSU|Bacillus subtilis subsp. subtilis str. 168

BLi|Bacillus licheniformis ATCC 14580

BL|Bacillus licheniformis ATCC 14580

BPUM |Bacillus pumilus SAFR-032

Bsph |Lysinibacillus sphaericus C3-41

OB|Oceanobacillus iheyensis HTE831

BH|Bacillus halodurans C-125

BpOF4 |Bacillus pseudofirmus OF4

ABC|Bacillus clausii KSM-K16

Bsel |Bacillus selenitireducens MLS10

Exig |Exiguobacterium sibiricum 255-15

EAT1b |Exiguobacterium sp. AT1b

BBR47 |Brevibacillus brevis NBRC 100599

Pjdr2 |Paenibacillus sp. JDR-2
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Figure 1 Whole genome single-copy gene phylogeny of the family Bacillaceae and the Bc species-group. Relationships among members
of the family Bacillaceae based on the results obtained from a maximum-likelihood analysis of 157 single-copy genes found in each of the 43
genomes included in the analysis, using the genomes of Paenibacillus JDR-2 and Brevibacillus brevis NBRC-100599 to root the analysis. Numbers
along the internodes are the number of times that node was supported in 100 bootstrap replicates. This is a phylogram that displays the
relationships of all of the Bacillaceae; the legend denotes substitutions per nucleotide.
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these organisms could be members of a single species
([5,47-49]).

Expansion of the sigma factor gene family in the Bc
species-group of the Bacillaceae
Initial dataset containing the Bc species-group sigma
factors
Iterative BLAST searches initiated from 18 B. subtilis
sigma factors initially identified 515 potential sigma fac-
tors within the 20 strains of Bc species-group genomes
(see Additional file 2). A total of 16 genes identified in
the iterative BLAST searches were excluded from the
final analysis due to either their short length (in some
cases producing non-overlapping genes when aligned
with all other sigma factor homologs), and/or lack of
evidence from the Multiple Expectation Maximization
for Motif Elicitation (MEME) analysis warranting their
inclusion as a sigma factor (see below). TBLASTN
searches to the nucleotide sequences of the Bc species-
group identified 3 additional non-annotated sigma fac-
tors that are orthologs of BSU13450 (SigI - present in
the BCAH187 B. cereus genome), and BAS5102 and

BAS1035 (both present in the B. thuringiensis Al-
Hakam genome), respectively.
The seven most informative motifs from MEME ana-

lysis proved useful in segregating functional sigma fac-
tors from sequences that bore superficial similarity to
sigma factors (false positives), and allowed us to differ-
entiate PA sigma factors from ECF sigma factors (Tables
2 and 3, also see Additional file 3 for the complete
MEME results). Comparing these MEME motifs to pre-
viously identified regions of sequence conservation
among sigma factors [50] also was informative. Motifs 1
and 5, which are located near or slightly to the N-term-
inal side of the -35 and -10 promoter binding sites
(sigma factor regions 4 and 2), respectively, were present
in most sigma factors. MEME motifs 2 and 7 also were
identified within region 2 (the -10 binding site), and dif-
ferentiate PA from ECF sigma factors. MEME motifs 3
and 6 are at the -35 binding site and are also represen-
tative of PA and ECF sigma factors, respectively. MEME
motif 4, lying to the N-terminal region of the -10 bind-
ing site, is largely restricted to PA sigma factors but is
also present in 2 ECF sigma factor paralogs. Aside from

BA |Bacillus anthracis str. Ames

GBAA |Bacillus anthracis str. 'Ames Ancestor'

BAS|Bacillus anthracis str. Sterne

BAA |Bacillus anthracis str. A0248

BAMEG |Bacillus anthracis str. CDC 684

BCAH820 |Bacillus cereus AH820

BT9727 |Bacillus thuringiensis serovar konkukian str. 97-27

BCA |Bacillus cereus 03BB102

BALH |Bacillus thuringiensis str. Al Hakam

BACI |Bacillus anthracis CI

BCZK|Bacillus cereus E33L

BCQ |Bacillus cereus Q1

BCAH187 |Bacillus cereus AH187

BCE |Bacillus cereus ATCC 10987

BC|Bacillus cereus ATCC 14579

BMB171 |Bacillus thuringiensis BMB171

BCB4264 |Bacillus cereus B4264

BCG9842 |Bacillus cereus G9842

BcerKBAB4 |Bacillus weihenstephanensis KBAB4

Bcer98 |Bacillus cereus subsp. cytotoxis NVH 391-98

Pjdr2 |Paenibacillus sp. JDR-2
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Figure 2 Whole-genome single-copy gene phylogeny of the Bc-species group. This analysis was performed as for Figure. 1, except that as
the relationships between members of the Bc species-group were not resolved by this maximum iikelihood analysis (data not shown), Figure 2
is a cladogram that more clearly delineates the relationships within the Bc species-group.
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the well-documented differences in size between ECF
and PA sigma factors, these data suggest that the princi-
ple functional difference between the two is directly
associated with the binding of the protein to DNA
recognition sites.
Sigma factor genes in the Bacillaceae
Taken as a whole, the number of PA sigma factor genes
found within the genomes of the Bacillaceae was
roughly independent of the genome sizes of these organ-
isms (Figure 3). By contrast, the numbers of ECF sigma
factor genes found in the Bacillaceae increased in direct
proportion to genome size. Thus, the overabundance of
sigma factor genes earlier observed in the Bc species-
group organisms [28] resulted from a preferential
expansion in the ECF sigma factors, compared to the
PA sigma factor genes. This might indicate that mem-
bers of the Bc species-group have evolved a more
sophisticated ability to sense and respond transcription-
ally to extracellular signals, compared to other members
of the Bacillaceae with smaller genomes and a relative
paucity of ECF sigma factor genes. Alternatively, this
may indicate that other regulatory regimes (e.g., two-
component regulators) are preferentially used by mem-
bers of the Bacillaceae with smaller genomes, for coor-
dinating transcription with extracellular signals. Further
work is necessary to differentiate between these
possibilities.
Phylogenetic analysis of the Bc species-group sigma factors
Within the Bc species-group, phylogenetic analysis of
the sigma factors of the Bc species-group identified 41
paralogous sigma factor genes in these organisms
(Tables 4, 5, and 6, Additional files 2 and 4). Any one

genome contained at most 27 sigma factor genes, hint-
ing at an extensive history of gene duplication and loss
in these lineages. Of these 41 genes, 14 were PA sigma
factors and 27 were ECF sigma factors. Four of the PA
sigma factors genes and 21 ECF sigma factor genes were
unique to the Bc species-group, indicating that the
majority of sigma factor gene expansion within the Bc
species-group is concentrated on the ECF sigma factor
genes, as noted above. By comparison, 18 sigma factor
genes were found for B. subtilis, 10 of which were PA
sigma factors. The Bc species-group harbors 9 PA sigma
factors that are orthologous to the more extensively stu-
died sigma factors of B. subtilis and appear to be the
most evolutionarily conserved. (Six of these PA sigma
factors appear to be very highly conserved as they were

Table 2 MEME motifs found in PA sigma factors

PA Locus Tag 1 2 3 4 5 6 7 Orthologous BSU locus tag

BAS4194 + + + + + BSU25200 (SigA)

BAS0928 + + + + + BSU04730 (SigB)

+ + + + BSU16470 (SigD)

BAS3755 + + + + + BSU15320 (SigE)

BAS3983 + + + + + BSU23450 (SigF)

BAS3754 + + + + + BSU15330 (SigG)

BAS0093 + + BSU00980 (SigH)

BAS3231 + + BSU13450(SigI)

BAS4236 + + + + + BSU25760, 26390 (SigK)

BAS3522 BSU12560 (Xpf)

BAS3823 + + +

BAS5102 + + +

Bcer98_2607 + +

BCG9842_0035 + + + + +

BMB171_P0077 + + + +

A ‘+’ designates the presence of a motif in the PA sigma factor gene at the
left. MEME motifs are presented here for a representative (from the BAS
genome where available) genome for each of the PA sigma factors detected
by the analyses.

Table 3 MEME motifs found in ECF sigma factors

ECF Locus Tag 1 2 3 4 5 6 7 Orthologous BSU locus tag

BAS0964 + + +

BAS2285 + + + +

BAS3082 + + + BSU09520 (SigM)

+ + + + BSU27120 (SigV)

+ + + + BSU01730 (SigW)

+ + + + BSU23100 (SigX)

+ + + + BSU38700 (SigY)

+ + + + BSU26840 (SigZ)

+ + + + BSU14730 (YlaC)

BAS0171 + + +

BAS0613 + + +

BAS1035 + + + +

BAS1626 + +

BAS1658 + + + +

BAS1966 + + +

BAS2323 + + + +

BAS2545 + + +

BAS2600 + + +

BAS2758 + + + +

BAS3383 + + +

BAS4558 + + + +

BAS5212 + + + +

BALH_4199 + + + +

BCAH187_A3458 + +

BCAH820_1326 +

BCE_1118 + + + +

BCE_5322 + + +

Bcer98_3970 + +

BcerKBAB4_3133 + +

BcerKBAB4_4716 + + + +

BcerKBAB4_5577 + + +

BCQ_1681 + +

A ‘+’ designates the presence of a motif in the ECF sigma factor gene at the
left. MEME motifs are presented here for a representative (from the BAS
genome where available; otherwise as the locus tag indicates) gene for each
of the ECF sigma factors detected by the analyses.
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present in all Bacillus species examined). At least one of
these PA sigma factors, BAS0093, the ortholog of the B.
subtilis SigH locus, is evolutionarily conserved amongst
many of the Firmicutes [51]. Further, the location of
these conserved PA sigma factors within their respective
genomes was syntenic between genomes. Indeed, finding
a PA sigma factor that was not present in all members
of the Bc species-group was rare (Figure 4). One B. sub-
tilis PA sigma factor, BSU16470 (SigD), lacked an ortho-
logous sequence in all members of the Bc species-group.
A second PA sigma factor, BSU12560 (Xpf), was uni-
formly found in all Ba strains but only in one other Bc
strain (Bc ZK) and in B. weiheinstephanensis. Two
(BAS0928 and BAS3231) were absent in Bc subsp. cyto-
toxis. In rare cases (e.g. plasmid-borne pE33L466_0212
of Bc ZK, with similarity to the SigA genes of B. clausii
and B. halodurans), a few PAs appear to be the result of

horizontal gene transfer from organisms outside of the
Bc species-group. However these are the only data that
we found indicative of horizontal transfer, suggesting
indirectly that horizontal gene transfer has not been a
significant contributor to sigma factor evolution in these
organisms.
The pattern of ECF sigma factor distribution was decid-
edly different and more complex. Of the 7 ECF sigma
factors found in B. subtilis, 6 were not present in the Bc
species-group. Thus, the divergence of the Bc species-
group from B. subtilis resulted in a relatively stable set
of PA sigma factor genes shared by both, with a regimen
of gene expansion that resulted in additional ECF sigma
factors encoded in the genomes of the Bc species-group.
Interestingly, our analyses suggest that this pattern of
expansion of ECF sigma factor genes within a given
lineage may independently occur in another lineage of

Figure 3 Correlation of genome size with the number of PA and ECF sigma factors in Bacillaceae. The number of PA (black circles) and
ECF (open circles) sigma factors genes identified in the genomes listed in Table 1 are plotted against genome size. The highlighted grey area is
the observed number of PA and ECF sigma factor genes found for members of the Bc species-group. These results show that the number of
ECF, but not PA, sigma factor genes is correlated with genome size.
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Bacillales. Our initial screen of sigma factors identified
52 sigma factors encoded in Brevibacillus brevis [52]. Of
these 52 genes, 41 are ECF sigma factors. The B. brevis
ECF sigma factor gene family may therefore represent
an independent and dramatic expansion, comparing
whole-genome phylogenetic analysis (see above) and the
absence of sequence similarity of the B. brevis ECF
sigma factors to those of the Bc species-group (data not
shown).
In contrast to the relative conservation of the PA sigma

factors, the patterns of gene duplication/loss among para-
logous ECF sigma factors of the Bc species-group were
difficult to deduce (Figure 5). No clear syntenic pattern
was observed when comparing the location of these ECFs
in the various genomes. Neighbor-joining (NJ) analysis
(phylogenetic relationships of the 499 Bc species-group
sigma factors can be found in Additional file 4) indicates
some support for relationships between four groups of Bc
species-group ECF sigma factors, including: 1) BAS0964
and BAS2600 (supported in 70 NJ bootstrap replicates),
2) a grouping of three paralogs including BAS2758 and
BcerKBAB4-5577, followed by BAS1966 (supported in 90
and 93 NJ replicates, respectively), 3) BAS2285 and
BAS0613 (supported in 83 NJ bootstrap replicates, and 4)
BAS2545 and BcerKBAB4-3133 (supported in 100 NJ
replicates). However, evidence of more recent common
ancestry between any pair of sigma factor paralogs is the
exception rather than the rule. The remaining 18 Bc spe-
cies-group ECF sigma factor genes are of indeterminate
relation to one another, and the preponderance of evi-
dence seems to point to an active period of ECF sigma
factor duplications in the ancestors of the Bc species-
group. However, the evolutionary origin of many of the
ECF sigma factors in the Bc species-group is difficult to
discern, as the phylogenetic placement of these genes
was more complex than for PA sigma factors. While it
was relatively unusual to find PA sigma factors that were
only encoded in some genomes, the pattern of ECF
sigma factor genes harbored by some but not all Bc spe-
cies-group organisms was complex (compare Figures 4
and 5).

Conclusions
The preponderance of evidence presented here and else-
where is that the ECF sigma factors of the Bc species-

Table 4 PA and ECF sigma factor counts in Bacillaceae
genomes

Genome Locus Tag PA ECF Total

Bacillus cereus species-group:

B. anthracis A0248 BAA 11 16 27

B. anthracis Ames BA 11 16 27

B. anthracis Ames-0581 GBAA 11 16 27

B. anthracis CDC 684 BAMEG 11 16 27

B. anthracis Sterne BAS 11 16 27

B. cereus biovar anthracis CI BACI 9 13 22

B. cereus 03BB102 BCA 9 15 24

B. cereus AH187 BCAH187 9 17 26

B. cereus AH820 BCAH820 10 18 28

B. cereus ATCC-10987 BCE 9 14 23

B. cereus ATCC14579 BCB 9 10 19

B. cereus B4264 BCB 9 14 23

B. cereus G9842 BCG 10 13 23

B. cereus Q1 BCQ 9 17 26

B. cereus ZK BCZK 11 16 27

B. thuringiensis Al-Hakam BALH 9 15 24

B. thuringiensis BMB171 BMB 10 10 20

B. thuringiensis konkukian BT 9 17 26

B. weihenstephanensis KBAB4 KBAB 10 18 28

B. cereus cytotoxis NVH 391-98 Bcer98 8 3 11

Bacillus subtilis group:

B. amyloliquefaciens FZB42 RBAM 11 6 17

B. licheniformis ATCC-14580 BL 11 9 20

B. licheniformis DSM-13 Bli 10 9 19

B. pumilus SAFR-032 BPUM 11 8 19

B. subtilis 168 BSU 11 7 18

Bacillus megaterium:

B. megaterium DSM319 BMD 11 8 19

B. megaterium QM-B1551 BMQ 13 9 22

Geobacillus group:

Anoxybacillus flavithermus WK1 Aflv 9 2 11

Geobacillus C56-T3 GC56T3 9 2 11

G. kaustophilus HTA426 GK 9 3 12

G. thermodenitrificans NG80-2 GTNG 11 3 14

Geobacillus WCH70 GWCH70 9 3 12

Geobacillus Y412MC61 GYMC61 9 2 11

Other Bacillaceae:

Lysinibacillus sphaericus C3-41 Bsph 9 12 21

Oceanobacillus iheyensis HTE831 OB 11 8 19

Bacillus halodurans group:

B. clausii KSM-K16 ABC 9 5 14

B. halodurans C-125 BH 10 9 19

B. pseudofirmus OF4 BpOF4 9 8 17

B. selenitireducens MLS10 Bsel 5 8 13

Exiguobacterium:

Exiguobacterium AT1b EAT1B 5 5 10

E. sibiricum 255-15 Exig 4 4 8

Table 4 PA and ECF sigma factor counts in Bacillaceae
genomes (Continued)

Paenibacillaceae Outgroups:

Brevibacillus brevis NBRC-100599 BBR 11 41 52

Paenibacillus JDR 2 Pjdr2 10 19 29
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Table 5 PA sigma factor genes in the Bc species-group compared to B. subtilis

PA Locus tag BAS GBAA BA BAA BAMEG BCAH820 BACl BT BALH BCA BCZK BCAH187 BMB BCQ BCE BCG BCB BC KBAB Bcer98 BSU Orthologous BSU locus tag

BAS4194 + + + + + + + + + + + + + + + + + + + + + BSU25200 (SigA)

BAS0928 + + + + + + + + + + + + + + + + + + + + BSU04730 (SigB)

+ BSU16470 (SigD)

BAS3755 + + + + + + + + + + + + + + + + + + + + + BSU15320 (SigE)

BAS3983 + + + + + + + + + + + + + + + + + + + + + BSU23450 (SigF)

BAS3754 + + + + + + + + + + + + + + + + + + + + + BSU15330 (SigG)

BAS0093 + + + + + + + + + + + + + + + + + + + + + BSU00980 (SigH)

BAS3231 + + + + + + + + + + + + + + + + + + + + BSU13450 (SigI)

BAS4236 + + + + + + + + + + + + + + + + + + + + + BSU25760, BSU26390
(SigK)

BAS3522 + + + + + + + + BSU12560 (Xpf)

BAS3823 + + + + +

BAS5102 + + + + + + + + + + + + + + + + + + + +

Bcer98_2607 +

BCG9842_0035 +

BMB171_P0077 + +

A ‘+’ designates the presence of a PA sigma factor ortholog group. The PA locus tag shown is from B. anthracis strain Sterne, unless this gene was not found in that organism. In those instances another locus tag
was chosen as a representative. Genome abbreviations are as in Table 1.
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Table 6 ECF sigma factor genes in the Bc species-group compared to B. subtilis

ECF Locus tag BAS GBAA BA BAA BAMEG BCAH820 BACl BT BALH BCA BCZK BCAH187 BMB BCQ BCE BCG BCB BC KBAB Bcer98 BSU Orthologous BSU locus
tag

BAS0964 + + + + + + + + + + + + + + + + + +

BAS2285 + + + + + + + + + + + + + + + + + +

BAS3082 + + + + + + + + + + + + + + BSU09520 (SigM)

BAS0171 + + + + + + + + + + + + +

BAS0613 + + + + + + + + + + + + + + + + +

BAS1035 + + + + + + + + + + + + + + + + + +

BAS1626 + + + + + + + + + + + + + + + + + + +

BAS1658 + + + + + + + + + + + + + + + + + + +

BAS1966 + + + + + + + + + + + + + + + + + + +

BAS2323 + + + + + + + + + + + + + + + + + + +

BAS2545 + + + + + + + + + + + +

BAS2600 + + + + + + + + + + + + + + + + + + + +

BAS2758 + + + + + +

BAS3383 + + + + + + + + + + + + + + + + + + +

BAS4558 + + + + + + + + + + + + + +

BAS5212 + + + + + + + + + + + + + + + + +

BALH_4199 + + + + + + +

BCAH187_A3458 +

BCAH820_1326 +

BCE_1118 +

BCE_5322 +

Bcer98_3970 +

BcerKBAB4_3133 + + + + +

BcerKBAB4_4716 + +

BcerKBAB4_5577 + +

BCQ_1681 + + + + + +

BT9727_0859 +
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group have common ancestry with one another and they
are the product of gene duplications, although at this
time the bulk of that evidence is raw sequence similar-
ity. Our hypothesis is that many of the ancestors of
these genes regulated a larger sub-set of genes than
their descendents do presently. Following duplication,
each cognate descendent sigma factor was then free to
specialize (fine-tune) for a smaller subset of genes and
for a more specialized role, and in the process of evol-
ving into this specialized niche these genes then become
critically important in the survival of descendent genera-
tions and are retained in their respective genomes. This
subfunctionalization [53] of gene regulation also is
potentially reinforced by duplication and/or

specialization of the genes which they regulate, which
are likewise free from constraints that arise from being
co-regulated with a larger set of genes. Interestingly, this
suggests that, although our ability to discern relation-
ships among paralogous ECF sigma factors at this time
is, at best, murky, in the future these relationships may
be deduced from genes that each sigma factor is found
to regulate.

Methods
Whole-genome single copy-gene phylogeny
Our initial aim was to determine the sigma factor con-
tent of the ancestral Bc species-group genome and then
to determine the changes that had subsequently

Figure 4 Phylogenetic distribution of PA sigma factors in the Bc species-group. Sigma factors genes found in fewer than all of the
genomes listed in Table 1, mapped on a Bc species-group cladeogram similar to that shown in Figure 2. The five Ba strains in Table 1 have a
gene content identical to strain Ba strain Sterne, and so are condensed to one line in this tree. A + indicates the presence of a gene, as listed in
the column heading, in that genome. Genome abbreviations are as found in Table 1.
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occurred during divergence of these genomes. However,
the genus Bacillus has undergone numerous and com-
plex recent taxonomic revisions and been the subject of
discordant phylogenetic results [1,43], making any defi-
nitive definition of the genus a potential complication.
Consequently, we constructed a phylogenetic tree of the
Bacillaceae that was independent of earlier efforts, but
relied solely on whole genome sequences to discern
relationships. Our efforts focused on the family Bacilla-
ceae as defined by the ribosomal 16S rDNA sequences
contained in the Ribosomal Database Project Release 10
[44], to direct our sampling of whole-genome data
(Table 1) available at NCBI. This yielded a total dataset
of 41 genomes. We purposely excluded draft genome
sequences from this analysis to ensure that the absence
of a given sigma factor was not an artifact of the incom-
plete sequence available for that organism. Two close
relatives of the Bacillaceae, Paenibacillus and Brevibacil-
lus, from the closely related family Paenibacillaceae,
were used as outgroups for the purpose of rooting. We
then performed phylogenetic analyses on the larger

Bacillaceae to identify the closest relatives to the Bc spe-
cies-group.
Determination of a gene’s orthology is the most

important complicating factor in identifying phyloge-
netic relationships derived from whole genome data. We
avoided this problem by restricting our analysis to sin-
gle-copy genes, for which determination of orthology
versus paralogy is not needed [54]. Aligned amino acid
sequences were used because the extent of divergence of
the genes examined made alignments of DNA sequences
unreliable in many cases. Single-copy genes were identi-
fied using BLAST searches of each annotated protein-
coding gene of one genome to all other genomes listed
in Table 1. Results of the BLAST were parsed to identify
instances where a gene’s BLAST result produced a hit
for one and only one of each genome in the analysis.
Qualifying genes (Additional file 1) were extracted from
the dataset and aligned with ClustalW [55] and put into
a concatenated cumulative dataset for phylogenetic ana-
lysis with PHYLIP [56]. Phylogenetic analysis of this
data set with the Proml progam of PHYLIP utilized the

Figure 5 Phylogenetic distribution of ECF sigma factors in the Bc species-group. Presentation and analyses are as described for Figure 4.
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maximum-likelihood algorithm and 100 bootstrap
replicates.

Identification of sigma factor genes and MEME analysis
Genes encoding prospective sigma factors of the Bc
species-group were identified with an iterative auto-
mated BLAST search of amino acid sequences, using
as an initial reference the annotated sigma factors of B.
subtilis, the most studied of Bacillus genomes. The B.
subtilis proteins were initially compared by BLAST to
the predicted protein coding sequences of the Bc spe-
cies-group. Proteins identified in this analysis were
iteratively compared by BLAST against the Bc species-
group until no additional prospective sigma factors
were found. This process, while minimizing the possi-
bility of false negative results (missed sigma factors),
inevitably resulted in the inclusion of sequences that,
although bearing superficial similarity to a known
sigma factor, were likely not functional sigma factors
(false positives). Consequently, this analysis was sup-
plemented with MEME [57]] analysis using the zoops
setting. The zoops setting does not require the pre-
sence of a motif since it is unlikely for these genes to
have repeated motifs. All other MEME settings used
the default parameters. We searched for up to 10
motifs, 7 of which proved informative for identifying
these sigma factors, and differentiating between PA
and ECF sigma factors (Tables 3 and 4 and Additional
file 3). MEME motifs were utilized to segregate genes
that most likely encoded functional sigma factors from
those that were not. An additional benefit of the
MEME analysis is that it provided independent evi-
dence in addition to that of the BLAST analyses to
segregate sigma70 PA sigma factors from ECF sigma
factors. This gene identification process also was vul-
nerable to variation in annotations between the pub-
lished genomes, which could result in the omission of
sigma factors that were not present in the original
annotations. Thus, we used TBLASTN searches of the
identified sigma factors against the complete nucleo-
tide sequences of all genomes, which were conse-
quently examined to see if any such cryptic non-
annotated sigma factors were present in members of
the Bc species-group. The presence/absence data
reported here was updated to reflect these gaps in the
publicly-available annotations. Lastly, sigma factor pro-
teins identified in these analyses were aligned using
ClustalW and phylogenetic relations among them were
examined using the neighbor-joining algorithm of
Molecular Evolutionary Genetics Analysis (MEGA)
[58]. Other algorithms (such as maximum-likelihood)
were computationally infeasible due to the large size of
the data set (499 genes).

Additional material

Additional file 1: Single-copy genes used in the phylogenetic
analysis of the Bacillaceae. Annotations for each of the single-copy
gene are from the Paenibacillus genome as submitted to Genbank, one
of the outgroups included in the analysis.

Additional file 2: Sigma factor genes identified in this study. Locus
tags for genes found in each genome follow the locus tag identifier or
sigma factor identifier for each ortholog.

Additional file 3: Results of MEME analysis of the sigma factor
genes identified in iterative BLAST searches. MEME results for 10
motifs (nmotifs = 10) are shown, 7 of which follow phylogenetic patterns
that differentiate PA from ECF sigma factors (Tables 2 and 3).

Additional file 4: Results of phylogenetic analysis of the sigma
factors identified in Additional file 2. Phylogenetic analysis utilized the
neighbor-joining algorithm of MEGA (see text).

Acknowledgements
We thank Michael Day and Jeremy Zaitshik for insightful discussion and
comments on an earlier version of this manuscript. These studies were
supported by Grant # P20RR016478 from the National Center for Research
Resources (NCRR), a component of the National Institutes of Health (NIH).
The contents of this publication are solely the responsibility of the authors
and do not necessarily represent the official views of NCRR or NIH.
We sadly report that, during the review of this manuscript, Timothy Schmidt
unexpectedly died while at work. Tim was a good friend and colleague, and
will be missed.

Authors’ contributions
TS performed the data analyses included in the manuscript, except for
Figures 1A/B, which were analyzed together by TS and ES. All authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 17 February 2011 Accepted: 24 August 2011
Published: 24 August 2011

References
1. Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD: Phylogeny and

molecular taxonomy of the Bacillus subtilis species complex and
description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst
Evol Microbiol 2009, 59(Pt 10):2429-2436.

2. Koehler TM: Bacillus anthracis physiology and genetics. Mol Aspects Med
2009, 30(6):386-396.

3. Hadjifrangiskou M, Chen Y, Koehler TM: The alternative sigma factor
sigmaH is required for toxin gene expression by Bacillus anthracis. J
Bacteriol 2007, 189(5):1874-1883.

4. Soufiane B, Cote JC: Bacillus thuringiensis Serovars bolivia, vazensis and
navarrensis Meet the Description of Bacillus weihenstephanensis. Curr
Microbiol 2009.

5. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M,
Hegna I, Kolsto AB: Bacillus anthracis, Bacillus cereus, and Bacillus
thuringiensis–one species on the basis of genetic evidence. Appl Environ
Microbiol 2000, 66(6):2627-2630.

6. Auger S, Galleron N, Bidnenko E, Ehrlich SD, Lapidus A, Sorokin A: The
genetically remote pathogenic strain NVH391-98 of the Bacillus cereus
group is representative of a cluster of thermophilic strains. Appl Environ
Microbiol 2008, 74(4):1276-1280.

7. Lapidus A, Goltsman E, Auger S, Galleron N, Segurens B, Dossat C, Land ML,
Broussolle V, Brillard J, Guinebretiere MH, et al: Extending the Bacillus
cereus group genomics to putative food-borne pathogens of different
toxicity. Chem Biol Interact 2008, 171(2):236-249.

8. Stenfors Arnesen LP, Fagerlund A, Granum PE: From soil to gut: Bacillus
cereus and its food poisoning toxins. FEMS Microbiol Rev 2008,
32(4):579-606.

Schmidt et al. BMC Genomics 2011, 12:430
http://www.biomedcentral.com/1471-2164/12/430

Page 14 of 16

http://www.biomedcentral.com/content/supplementary/1471-2164-12-430-S1.XLS
http://www.biomedcentral.com/content/supplementary/1471-2164-12-430-S2.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-12-430-S3.HTML
http://www.biomedcentral.com/content/supplementary/1471-2164-12-430-S4.PDF
http://www.ncbi.nlm.nih.gov/pubmed/19622642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19622642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19622642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19654018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17189374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17189374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10831447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10831447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18156332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18156332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18156332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17434157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17434157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17434157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18422617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18422617?dopt=Abstract


9. Moyer AL, Ramadan RT, Novosad BD, Astley R, Callegan MC: Bacillus cereus-
induced permeability of the blood-ocular barrier during experimental
endophthalmitis. Invest Ophthalmol Vis Sci 2009, 50(8):3783-3793.

10. Latsios G, Petrogiannopoulos C, Hartzoulakis G, Kondili L, Bethimouti K,
Zaharof A: Liver abscess due to Bacillus cereus: a case report. Clin
Microbiol Infect 2003, 9(12):1234-1237.

11. Psiachou-Leonard E, Sidi V, Tsivitanidou M, Gompakis N, Koliouskas D,
Roilides E: Brain abscesses resulting from Bacillus cereus and an
Aspergillus-like mold. J Pediatr Hematol Oncol 2002, 24(7):569-571.

12. Steggles JR, Wang J, Ellar DJ: Discovery of Bacillus thuringiensis virulence
genes using signature-tagged mutagenesis in an insect model of
septicaemia. Curr Microbiol 2006, 53(4):303-310.

13. Fedhila S, Nel P, Lereclus D: The InhA2 metalloprotease of Bacillus
thuringiensis strain 407 is required for pathogenicity in insects infected
via the oral route. J Bacteriol 2002, 184(12):3296-3304.

14. Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV: Bacillus
thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci
USA 2003, 100(5):2760-2765.

15. Cappello M, Bungiro RD, Harrison LM, Bischof LJ, Griffitts JS, Barrows BD,
Aroian RV: A purified Bacillus thuringiensis crystal protein with
therapeutic activity against the hookworm parasite Ancylostoma
ceylanicum. Proc Natl Acad Sci USA 2006, 103(41):15154-15159.

16. Rae R, Riebesell M, Dinkelacker I, Wang Q, Herrmann M, Weller AM,
Dieterich C, Sommer RJ: Isolation of naturally associated bacteria of
necromenic Pristionchus nematodes and fitness consequences. J Exp Biol
2008, 211(Pt 12):1927-1936.

17. Gunawan S, Tufts DM, Bextine BR: Molecular identification of hemolymph-
associated symbiotic bacteria in red imported fire ant larvae. Curr
Microbiol 2008, 57(6):575-579.

18. Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Brown N, Bruce D,
Campbell CS, Campbell ML, Chen J, et al: Pathogenomic sequence
analysis of Bacillus cereus and Bacillus thuringiensis isolates closely
related to Bacillus anthracis. J Bacteriol 2006, 188(9):3382-3390.

19. Passalacqua KD, Varadarajan A, Byrd B, Bergman NH: Comparative
transcriptional profiling of Bacillus cereus sensu lato strains during
growth in CO2-bicarbonate and aerobic atmospheres. PLoS One 2009,
4(3):e4904.

20. Huynen MA, Bork P: Measuring genome evolution. Proc Natl Acad Sci USA
1998, 95(11):5849-5856.

21. Lozada-Chavez I, Angarica VE, Collado-Vides J, Contreras-Moreira B: The role
of DNA-binding specificity in the evolution of bacterial regulatory
networks. J Mol Biol 2008, 379(3):627-643.

22. Lozada-Chavez I, Janga SC, Collado-Vides J: Bacterial regulatory networks
are extremely flexible in evolution. Nucleic Acids Res 2006,
34(12):3434-3445.

23. Slamti L, Lereclus D: Specificity and polymorphism of the PlcR-PapR
quorum-sensing system in the Bacillus cereus group. J Bacteriol 2005,
187(3):1182-1187.

24. Mignot T, Mock M, Robichon D, Landier A, Lereclus D, Fouet A: The
incompatibility between the PlcR- and AtxA-controlled regulons may
have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol
2001, 42(5):1189-1198.

25. Koehler TM: Bacillus anthracis genetics and virulence gene regulation.
Curr Top Microbiol Immunol 2002, 271:143-164.

26. Martin J, Zhu W, Passalacqua KD, Bergman N, Borodovsky M: Bacillus
anthracis genome organization in light of whole transcriptome
sequencing. BMC Bioinformatics 11(Suppl 3):S10.

27. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR,
Honore N, Garnier T, Churcher C, Harris D, et al: Massive gene decay in the
leprosy bacillus. Nature 2001, 409(6823):1007-1011.

28. Anderson I, Sorokin A, Kapatral V, Reznik G, Bhattacharya A, Mikhailova N,
Burd H, Joukov V, Kaznadzey D, Walunas T, et al: Comparative genome
analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS
Microbiol Lett 2005, 250(2):175-184.

29. Paget MS, Helmann JD: The sigma70 family of sigma factors. Genome Biol
2003, 4(1):203.

30. Helmann JD: The extracytoplasmic function (ECF) sigma factors. Adv
Microb Physiol 2002, 46:47-110.

31. Mittenhuber G: A phylogenomic study of the general stress response
sigma factor sigmaB of Bacillus subtilis and its regulatory proteins. J Mol
Microbiol Biotechnol 2002, 4(4):427-452.

32. Gruber TM, Gross CA: Multiple sigma subunits and the partitioning of
bacterial transcription space. Annu Rev Microbiol 2003, 57:441-466.

33. Takamatsu H, Kodama T, Imamura A, Asai K, Kobayashi K, Nakayama T,
Ogasawara N, Watabe K: The Bacillus subtilis yabG gene is transcribed by
SigK RNA polymerase during sporulation, and yabG mutant spores have
altered coat protein composition. J Bacteriol 2000, 182(7):1883-1888.

34. Wang ST, Setlow B, Conlon EM, Lyon JL, Imamura D, Sato T, Setlow P,
Losick R, Eichenberger P: The forespore line of gene expression in Bacillus
subtilis. J Mol Biol 2006, 358(1):16-37.

35. Miyazaki H, Kato H, Nakazawa T, Tsuda M: A positive regulatory gene,
pvdS, for expression of pyoverdin biosynthetic genes in Pseudomonas
aeruginosa PAO. Mol Gen Genet 1995, 248(1):17-24.

36. Agnoli K, Lowe CA, Farmer KL, Husnain SI, Thomas MS: The ornibactin
biosynthesis and transport genes of Burkholderia cenocepacia are
regulated by an extracytoplasmic function sigma factor which is a part
of the Fur regulon. J Bacteriol 2006, 188(10):3631-3644.

37. Dona V, Rodrigue S, Dainese E, Palu G, Gaudreau L, Manganelli R,
Provvedi R: Evidence of complex transcriptional, translational, and
posttranslational regulation of the extracytoplasmic function sigma
factor sigmaE in Mycobacterium tuberculosis. J Bacteriol 2008,
190(17):5963-5971.

38. Llamas MA, van der Sar A, Chu BC, Sparrius M, Vogel HJ, Bitter W: A Novel
extracytoplasmic function (ECF) sigma factor regulates virulence in
Pseudomonas aeruginosa. PLoS Pathog 2009, 5(9):e1000572.

39. Kazmierczak MJ, Wiedmann M, Boor KJ: Alternative sigma factors and their
roles in bacterial virulence. Microbiol Mol Biol Rev 2005, 69(4):527-543.

40. Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T: The third
pillar of bacterial signal transduction: classification of the
extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol
2009, 74(3):557-581.

41. Helmann JD, Chamberlin MJ: Structure and function of bacterial sigma
factors. Annu Rev Biochem 1988, 57:839-872.

42. Keynan Y, Weber G, Sprecher H: Molecular identification of
Exiguobacterium acetylicum as the aetiological agent of bacteraemia. J
Med Microbiol 2007, 56(Pt 4):563-564.

43. Xu D, Cote JC: Phylogenetic relationships between Bacillus species and
related genera inferred from comparison of 3’ end 16S rDNA and 5’ end
16S-23S ITS nucleotide sequences. Int J Syst Evol Microbiol 2003, 53(Pt
3):695-704.

44. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-
Mohideen AS, McGarrell DM, Marsh T, Garrity GM, et al: The Ribosomal
Database Project: improved alignments and new tools for rRNA analysis.
Nucleic Acids Res 2009, , 37 Database: D141-145.

45. Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L,
Olmedo-Alvarez G: Understanding the evolutionary relationships and
major traits of Bacillus through comparative genomics. BMC Genomics
11(1):332.

46. Tourasse NJ, Helgason E, Klevan A, Sylvestre P, Moya M, Haustant M,
Okstad OA, Fouet A, Mock M, Kolsto AB: Extended and global
phylogenetic view of the Bacillus cereus group population by
combination of MLST, AFLP, and MLEE genotyping data. Food Microbiol
28(2):236-244.

47. Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolsto AB: Multilocus
sequence typing scheme for bacteria of the Bacillus cereus group. Appl
Environ Microbiol 2004, 70(1):191-201.

48. Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T, Wiessner-Gunkel E,
Stewart GS, Scherer S: Bacillus weihenstephanensis sp. nov. is a new
psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol
1998, 48(Pt 4):1373-1382.

49. Nakamura LK: Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 1998,
48(Pt 3):1031-1035.

50. Lonetto M, Gribskov M, Gross CA: The sigma 70 family: sequence
conservation and evolutionary relationships. J Bacteriol 1992,
174(12):3843-3849.

51. Morikawa K, Inose Y, Okamura H, Maruyama A, Hayashi H, Takeyasu K,
Ohta T: A new staphylococcal sigma factor in the conserved gene
cassette: functional significance and implication for the evolutionary
processes. Genes Cells 2003, 8(8):699-712.

52. Yamada H, Tsukagoshi N, Udaka S: Morphological alterations of cell wall
concomitant with protein release in a protein-producing bacterium,
Bacillus brevis 47. J Bacteriol 1981, 148(1):322-332.

Schmidt et al. BMC Genomics 2011, 12:430
http://www.biomedcentral.com/1471-2164/12/430

Page 15 of 16

http://www.ncbi.nlm.nih.gov/pubmed/19264886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19264886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19264886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14686990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16941243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16941243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16941243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12029046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12029046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12029046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12598644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12598644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17005719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17005719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17005719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18515723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18515723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18795363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18795363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16621833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16621833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16621833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19295911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19295911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19295911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9600883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18466918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18466918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18466918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16840530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16840530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15659693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15659693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11886551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11886551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11886551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12224521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11234002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11234002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16099605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16099605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12540296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12073657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12125823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12125823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14527287?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14527287?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10714992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10714992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10714992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16497325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16497325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7651323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7651323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7651323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16672617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16672617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16672617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16672617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19730690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19730690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19730690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16339734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16339734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19737356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19737356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19737356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3052291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3052291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17374901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17374901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12807189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12807189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12807189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14711642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14711642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9828439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9828439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9734060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1597408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1597408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12875655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12875655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12875655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7287624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7287624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7287624?dopt=Abstract


53. Lynch M, Force A: The probability of duplicate gene preservation by
subfunctionalization. Genetics 2000, 154(1):459-473.

54. Daubin V, Gouy M, Perriere G: A phylogenomic approach to bacterial
phylogeny: evidence of a core of genes sharing a common history.
Genome Res 2002, 12(7):1080-1090.

55. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res 1994, 22(22):4673-4680.

56. Felsenstein J: Evolutionary trees from DNA sequences: a maximum
likelihood approach. J Mol Evol 1981, 17(6):368-376.

57. Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing
DNA and protein sequence motifs. Nucleic Acids Res 2006, , 34 Web
Server: W369-373.

58. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary
Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007,
24(8):1596-1599.

doi:10.1186/1471-2164-12-430
Cite this article as: Schmidt et al.: Whole-genome phylogenies of the
family Bacillaceae and expansion of the sigma factor gene family in the
Bacillus cereus species-group. BMC Genomics 2011 12:430.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Schmidt et al. BMC Genomics 2011, 12:430
http://www.biomedcentral.com/1471-2164/12/430

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/10629003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10629003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7288891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7288891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17488738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17488738?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Expansion of the sigma factor gene family in the Bc species-group of the Bacillaceae
	Initial dataset containing the Bc species-group sigma factors
	Sigma factor genes in the Bacillaceae
	Phylogenetic analysis of the Bc species-group sigma factors


	Conclusions
	Methods
	Whole-genome single copy-gene phylogeny
	Identification of sigma factor genes and MEME analysis

	Acknowledgements
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


