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Abstract: Saponins are a structurally diverse class of natural glycosides that possess a broad spectrum
of biological activities. They are composed of hydrophilic carbohydrate moiety and hydrophobic
triterpenoid or steroid aglycon. Naturally occurring diosgenyl glycosides are the most abundant
steroid saponins, and many of them exhibit various pharmacological properties. Herein, we present
an overview of semisynthetic saponins syntheses–diosgenyl β-d-glycosaminosides (d-gluco and
d-galacto). These glycosides possess a 2-amino group, which creates great possibilities for further
modifications. A wide group of glycosyl donors, different N-protecting groups and various reaction
conditions used for their synthesis are presented. In addition, this paper demonstrates the possibilities
of chemical modifications of diosgenyl β-d-glycosaminosides, associated with functionalisation
of the amino group. These provide N-acyl, N-alkyl, N,N-dialkyl, N-cinnamoyl, 2-ureido and
2-thiosemicarbazonyl derivatives of diosgenyl β-d-glycosaminosides, for which the results of
biological activity tests (antifungal, antibacterial, anti-cancer and hemolytic) are presented.

Keywords: steroid saponin; diosgenin glycosides; diosgenyl β-d-glucosaminoside;
diosgenyl β-d-galactosaminoside; amine group modifications; antimicrobial activity; anti-cancer
activity; hemolytic activity

1. Introduction

The aim of this review is to provide information on the methods of synthesis and biological
activity of diosgenyl β-d-glycosaminosides and their derivatives. These are semisynthetic saponins
with proven antimicrobial and antitumor activity. This makes them very promising candidates for use
as an antifungal or antibacterial drug. A significant advantage of these compounds is that they are
not toxic. The toxicity of saponins is a particular limitation in the clinical application of this group
of compounds.

2. Saponins, Their Occurrence, Properties and Structure

Saponins are a structurally diverse group of glycosides and are widely distributed in nature.
Although these compounds are typical for plants [1,2], they have also been isolated from animals [3,4].

Saponins have the characteristic ability to reduce the surface tension of aqueous solutions
and maintain a stable foam [5]. Therefore, they are useful in the production of emulsions and
cleaning agents [5]. Most of them have been extracted from herbal preparations used in folk
medicine, especially in Asian countries. In the form of herbal extracts, ointments, and various
types of infusions, they are used as anti-malarial drugs, antidotes against snake and insect venoms,
and as antiseptics, bactericides and antivirals [6]. Saponins also present interesting pharmacological
properties, such as anti-diabetic [7–9], anti-cancer [10–12] and anti-inflammatory [13–16], and specific
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physiological properties—they change the structure of cell membranes, making them more permeable
to compounds [17]. Saponins can also impair the digestion of intestinal proteins and the absorption of
vitamins and minerals [18].

Saponins are composed of hydrophilic carbohydrate moiety and hydrophobic sapogenin. Due to
their structure classic methods of saponin isolation, such as: solvent extraction, column chromatography
and preparative TLC, are in many cases insufficient to isolate single saponins from plant material.
Therefore, various, more modern, often combined separation techniques are used. Depending on
the type of plant material, the following methods of extracting saponins can be distinguished:
microwave-assisted solvent extraction (MAE); ultrasound-assisted solvent extraction (UAE); solid phase
extraction (SPE); preparative column chromatography (CC); high-performance liquid chromatography
(HPLC) coupled with other techniques [19,20].

The division of saponins depends mainly on the type of sapogenin. Triterpenoid and steroid
saponins are one of the most important families of these plant secondary metabolites. Triterpenoid
aglycones have the most varied structures among all types of sapogenins and dominate in the plant
kingdom [21]. Their aglycon usually contains 30 carbon atoms and comprises five six-carbon rings
(oleanane and ursane type; Figure 1) or four six- and one five-carbon ring (lupane type, Figure 1).
A common feature of this type of sapogenins is the arrangement of the methyl substituents. Groups at
the C-4, C-8 and C-10 atoms occupy the β position, whereas groups at the C-4 and C-14 atoms occupy
the α position. The presence of a hydroxyl group at the secondary carbon atom (C-3) is also typical for
triterpenoid sapogenins.
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Figure 1. Chemical structures of triterpenoid sapogenins and the numbering system of carbon atoms.

The basic aglycone of steroid saponins contains 17 carbon atoms and is based on the sterane
skeleton (1,2-cyclopentanoperhydrophenantrene), which comprises three six- and one five-carbon ring
(Figure 2). Steroid sapogenins differ in the structure of the substituent located at the C-17 atom, which
could be an additional heterocyclic ring or an aliphatic chain. Due to the nature of this substituent,
steroid saponins are divided into three types: spirostane, furostane and cholestane (Figure 2) [22].
A common feature in the structure of steroid sapogenins is the arrangement of the methyl substituents
located at the C-10 and C-13 atoms, which occupy the β position, whereas these occupy the α position
at the C-21 atom. The presence of a hydroxyl group at the C-3 atom is also typical for steroidal saponins.
Individual sapogenins differ in the presence of double bonds (e.g., C5 = C6), the configuration of the
methyl group at the C-25 atom in spirostane saponins (25R or 25S) and sometimes the presence of
additional functional groups (e.g., -OH).

The structural diversity of saponins lies also in the hydrophilic fragment, which usually comprises
one or more sugar units. Analysis of the structure–activity relationship (SAR) has proven that the
sugar portion plays an important role in the biological activity and might be the key pharmacophore
for saponins’ anti-cancer activities [23]. The most common saccharides found in saponins are:
β-d-glucopyranose, β-d-galactopyranose, α-l-rhamnopyranose and β-d-xylopyra- nose; di-tri- and
tetrasaccharides also occur. N-Acetyl-d-glucosamine residue sometimes is attached as the first sugar
to the triterpenoid sapogenin [24]; however, in spirostane saponins d-glucose, and less frequently,
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d-galactose, are usually directly attached to sapogenin. Natural steroidal saponins that contain an
amino sugar fragment are very rare.Molecules 2020, 25, x  3 of 26 
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3. Diosgenyl Saponins

Diosgenin ((25R)-spirost-5-en-3β-ol; DsOH; Figure 3) is a spirostane, and it has a very high
structural similarity to steroid hormones. Therefore, it is a valuable and often used precursor in the
synthesis of hormones and corticosteroids, including cortisone, pregnenolone and progesterone, on an
industrial scale [25]. It is known for its anti-inflammatory and antioxidant properties and can also
be used in the treatment of allergic and metabolic diseases (hypercholesterolemia, dyslipidaemia,
diabetes and obesity), as well as for menopause symptoms and skin aging [26].
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Diosgenin in combination with carbohydrate forms diosgenyl glycosides. In these natural
compounds, d-glucose is usually the saccharide directly attached to sapogenin. However, combinations
of diosgenin with other sugars have also been found: d-galactose (e.g., smilacinoside A, funcioside B
or indioside E) and l-arabinose (e.g., conwallasaponin E and polyphilin F). Diosgenyl glycosides are
the most abundant and, from the pharmaceutical point of view, the most explored natural steroid
saponins. They occur mainly in the family of fungus plants (Dioscoreaceae), as well as in some species
of solanaceae (Solanaceae), bean plants (Fabaceae) and fenugreek (Trigonella) [26]. Many of them exhibit
antifungal [27], anti-thrombotic [28], antivirial, antioxidative and tissue-protective properties [29].
Diosgenyl glycosides also exerted an antitumor effect by inducing apoptosis in cancer cells and have
great potential to be explored for cancer treatment [30–32].

Diosgenin saponins are commonly present in Chinese herbal preparations used in traditional
folk medicine. The turning point in the research on this saponin was the discovery of the anti-cancer
properties of the Chinese preparation ‘Yunnan Baiyao’ in the 1960s and the isolation of active substances
with it [33]. Since then, research on methods of diosgenin saponins synthesis and their activity has been
intensified. In the following years, numerous studies of representatives this class of compounds were
carried out to find compounds useful in the fight against cancer cells and in therapies of diverse clinical disorders.
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Amongthemostexploredcompoundsaredioscin (3O-{α-l-Rha-(1→4)-[α-l-Rha-(1→2)]-β-d-Glc}-diosgenin),
gracillin (3O-{α-d-Glc-(1→3)-[α-l-Rha-(1→2)]-β-d-Glc}-diosgenin) and their analogs [34–36].

4. d-Glycosaminosides of Diosgenin

Given that steroid–carbohydrate conjugates exhibit a broad spectrum of biological properties,
research is ongoing not only to isolate these compounds from plant materials but also to improve
the methods of their synthesis. The latter endeavour offers enormous opportunities to obtain
non-naturally occurring compounds. Their design is based on the leading structure of a biologically
active substance with confirmed activity. After finding that the compound exhibits biological activity,
it is often chemically modified to improve its properties (physicochemical or biological) or to eliminate
undesirable properties, such as high toxicity or poor solubility.

Diosgenyl d-glycosaminosides, which contain 2-amino-2-deoxy sugar residue in the carbohydrate
moiety, have not yet been isolated from natural sources. Typically, d-glucose is linked to diosgenin
in naturally occurring saponins. Replacing d-glucose with d-glucosamine or d-galactosamine is
a promising modification; the presence of an amino group creates great opportunities for further
modifications of these compounds. Amino sugars are of great biological importance and are commonly
found as a component of natural oligo- and polysaccharides, glycoproteins, and can significantly
increase the bioactivity of compounds. The formation of a glycosidic bond with them presents
many problems, and much effort has been put into developing the most convenient conditions for
such synthesis [37]. This review presents various synthetic approaches for obtaining diosgenyl
β-d-glycosaminosides (different glycosyl donors, different protective groups of the amino function,
different solvents used for the reaction, etc.). Moreover, the chemical modifications of the obtained
diosgenyl β-d-glycosaminosides that lead to N-acyl, N-alkyl, N,N-dialkyl, N-cinnamoyl, 2-ureido and
2-thiosemicarbazyl derivatives, as well as the results of biological activity tests (antifungal, antibacterial,
anti-cancer and hemolytic) of these new saponins, are presented.

4.1. Methods of Synthesis

The general strategy for the synthesis of diosgenyl 2-amino-2-deoxy-β-d-glycopyranoside
(diosgenyl β-d-glucosaminoside, DsO-β-d-Glc-NH2) relies on the preparation of an appropriately
protected glycosyl donor, next, a coupling of the donor with diosgenin and finally, the deprotection
of the amine and hydroxyl groups of the obtained diosgenyl glycoside. A properly protected
amino group located at the C-2 atom of the glycosyl donor can play a key role in a glycosidic
coupling, e.g., amide-type groups participate in the process of bond forming as the neighbouring group,
which favours the formation of a 1,2-trans-glycosidic bond [38]. Therefore, among other things,
various N-protecting groups were developed for the synthesis of diosgenyl–carbohydrate conjugates.

The first synthesis of diosgenyl 2-amino-2-deoxy-β-d-glucopyranoside was presented by Bednarczyk et
al. in 2000 [39]. Two differently N-protected bromides (5,7) were used as the glycosyl donors (Scheme 1).
The first one was 3,4,6-tri-O-acetyl-2-deoxy-2-trifluoroacetamido-α-d-glucopyranosyl bromide (5),
which was syntesised via acetate 3 [40]. A trifluoroacetyl (TFAc) group was introduced on the free NH2 function
(4), formed by removing the imino group from 2 [41]. The final step was bromination of 4 with TiBr4. The second
bromide-3,4,6-tri-O-acetyl-2-deoxy-2-(3,4,5,6-tetrachlorophthalimido)-α,β-d-glucopyranosyl bromide (7) differs
from the former one (5) in the amine group protection. In this case, a tetrachlorophthaloyl
(TCP)-protecting group was used to block the amine function. From the N-TCP-protected acetate 6,
in reaction with TiBr4, bromide 7 was synthesised. This time, the first was acylation of the amine
function in hydrochloride 1 with tetrachlorophthalic anhydride (TCPA), followed by acetylation of the
N-protected product with acetic anhydride in pyridine. This approach afforded compound 6 (α/β),
and from this, the mixture of the anomeric bromides 7 was obtained. Furthermore, bromides 5 and 7
were also synthesised with the use of HBr in acetic acid [42]. The yields of both manners of bromination
are similar.
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When comparing these approaches, one may see that the overall efficiency of the acetate 4
and 6 synthesis is higher when the acetylation reaction is carried out first, followed by amino
function protection. In this approach, only the β-anomer of 4 (81%) is obtained. However,
when the amine function is first protected and followed by acetylation, the acetate 6 (62%) is a
mixture of α- and β-anomers, with clear dominance of the latter. This observation depends on the
protecting groups used and has also been confirmed for different types of amino protecting groups
(e.g., 2,2,2-trichoroetoxycarbonyl or phthaloyl groups) [43].

Condensations of the obtained glycosyl donors (bromides 5 and 7) with diosgenin were carried
out according to the modified Koenigs–Knorr method [44] that employed silver triflate (AgOTf) as the
reaction promoter, in combination with powdered 4 Å molecular sieves in anhydrous dichloromethane
(CH2Cl2) under an inert gas, namely nitrogen (Scheme 2) [39,41]. In this way, saponins 8 and 9 were
obtained. The reaction of 8 with 1 M sodium methoxide in methanol yielded the partially deprotected
diosgenyl 2-deoxy-2-trifluoroacetamido-β-d-glucopyranoside (10). The treatment of 10 with 1 M
aqueous sodium hydroxide in acetone, followed by neutralisation, yielded the fully deprotected
diosgenyl 2-amino-2-deoxy-β-d-glucopyranoside (11), which was isolated as the hydrochloride
(11.HCl). In turn, the full O- and N-deprotection of 9, in the presence of hydrazine hydrate in ethanol,
was described [43]. This also led to the fully deprotected 11. Under such conditions, glycosylations were
efficient (~65%) and stereoselective, resulting only in β-glycosides. Importantly, this configuration also
occurs in the natural diosgenyl glycosides.

In 2007, Yu and co-workers described another way of synthesis protected diosgenyl
β-d-glucosaminoside using a different group of the glycosyl donors—trichloroacetimidate (TCAI),
namely 3,4,6-tri-O-acetyl-2-deoxy-2-N-dimethylphosphoryl-α-d-glucopyranosyl trichloroacetimidate
(12, Figure 4) [45]. Synthesis of 12 involves treatment of acetate 3 with diphenyl chlorophosphate
in the presence of 4-dimethylaminopyridine (DMAP) and Et3N, which gave N-diphenylphosphoryl
(DPP)-glucosamine derivative. Transesterification of DPP into a dimethylphosphoryl group (DMP)
and removal of the anomeric O-acetyl group, followed by reaction with trichloroacetonitrile (CCl3CN),
resulted in a new glycosyl donor (12). Its reaction with diosgenin in the presence of trimethylsilyl
trifluoromethanesulfonate (TMSOTf) gave saponin 17, with a 92% yield. From glycoside 17,
O-acetyl groups and DMP were finally removed in the presence of NaOH or hydrazine [45].
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In the subsequent years, other glycosyl donors were tested for the synthesis of diosgenyl
glucosaminosides. Kaskiw et al. used 3,4,6-tri-O-acetyl-2-deoxy-2-(2′,2′,2′-trichloroethoxycarbonyl-
amino)-α-d-glucopyranosyl trichloroacetimidate (13) [46]. The 2,2,2-trichoroetoxycarbonyl group
(Troc) is stable under a wide range of standard conditions used in the synthesis of glucosamine
derivatives. Additionally, it belongs to potential participating groups, which promote the formation of
1,2-trans-glycosides. The authors obtained saponin 18 (98%) in the reaction of 13 with diosgenin in the
presence of TMSOTf as the catalyst (Figure 4).

The Kaskiw’s group also used the glycosyl trichloroacetimidate donor with the Troc-protecting
group on an amine function in the synthesis of protected diosgenyl amino disaccharide (23) [47].
The attached disaccharide comprises benzoylated d-glucoaminopyranose with a Troc-protecting group
(20) and acetylated l-rhamnopyranose (21) (Scheme 3). The glycosylation of diosgenin was performed
with the respective trichloroacetimidate (22) in the presence of TMSOTf in an 80% yield. The resulting
glycoside was further transformed, and the protecting groups were subsequently removed by treatment
with sodium methoxide in methanol.
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In turn, Fernandez-Herrera et al. proposed per-O-acetylated 1-O-trichloroacetimidate, with phthaloyl
protection (Phth) of the amine function (14), as a suitable donor for diosgenin glycosylation (Figure 4).
They obtained only β-anomer of saponin 19 in a glycosylation reaction promoted by TMSOTf; the yield
was 96% [48]. Tan’s research group also used a similar procedure to obtain 19, but with a slightly
worse yield (80%) [49]. Saponins 18 and 19 were also synthesised in the reactions of diosgenin with
bromides 15 and 16, respectively (Figure 4) [50]. The authors obtained only the α anomer of 15 and a
mixture of anomers α + β in a case of 16. These bromides were later used without further purification
in the coupling reaction with diosgenin in the presence of AgOTf. The reaction yields were 98% and
90%, respectively.

In addition to the above-described and commonly used d-glucosaminosyl donors, the less
frequently used d-glucosaminosyl chlorides (24–27) and (N-phenyl)trifluoroacetimidates (PTFAI,
28–31) are also noteworthy (Figure 5) [43]. Although glycosyl chlorides are less reactive than
corresponding bromides, they are more stable and were used for the synthesis of diosgenyl glycosides.
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There are several ways that a chlorine atom can be introduced on an anomeric carbon atom
in N-protected and per-O-acetylated d-glucosamine. One of the often-used chlorinating agents is
1,1-dichloromethyl methyl ether in the presence of ZnCl2 or BF3·H2O [51]. This reagent was successfully
used by Bednarczyk et al. to synthesise chlorides 24–27 [43]. Chlorides with the 2-NHTFAc (24) or
2-NHTroc (25) groups were solely α anomers, whereas those with imide-type moieties (2-NPhth 26
and 2-NTCP 27) have the β configuration on the anomeric carbon atom. Glycosyl chlorides (24–27)
were used in coupling reactions with diosgenin, carried out in CH2Cl2 or in its mixture with Et2O,
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in the presence of AgOTf as a reaction promoter. The fully protected diosgenyl β-d-glucosaminosides
(8,9,18,19) were obtained with a yield of 69–99% [43].

The use of (N-phenyl) trifluoroacetimidates (PTFAI) instead of trichloroacetimidates (TCAI) as
glycosyl donors is an alternative method for the synthesis of glycosides [52,53], including diosgenyl
saponins. The synthesis of 1-O-(N-phenyl)trifluoroacetimidates (28–31, Figure 5) from the respective
sugar acetates with four different 2-N-protecting groups (TFAc, Troc, Phth and TCP) requires the
selective removal of the acetyl group from the anomeric carbon, typically with ethylenediamine in a
mixture of acetic acid in THF, followed by reaction with (N-phenyl)trifluoroacetate imidoyl chloride.
This approach was ineffective in the case of d-glucosaminopyranose acetate with the TCP-protecting
group (6); therefore, its bromide or chloride was hydrolysed in reaction with Ag2CO3 in the acetone
and H2O mixture. It was then reacted with freshly prepared (N-phenyl)trifluoroacetate imidoyl
chloride [43]. Such synthesised glycosyl donors in the reaction with diosgenin in the presence of
TMSOTf led to the expected fully protected β-glycosides (8,9,18,19) obtained in yields of 52–85%.

In addition to d-glucosamine, 2-amino-2-deoxy-d-galactopyranose (d-galactosamine) was
glycosidically attached to diosgenin [54]. Natural diosgenyl d-galactosides have been much less
isolated from plants than the corresponding d-glucosides. Similarly to diosgenyl glucosaminosides,
spirostane saponins that contain a d-galactosamine in carbohydrate portion are not found in nature.
To synthesise diosgenyl β-d-galactosaminosides (35), analogous reactions were performed, such as
those described for the d-glucosamine series (Scheme 4). Thus, to obtain bromide 33, d-galactosamine
hydrochloride (32) was used. It was first acylated with tetrachlorophthalic anhydride (TCPA),
followed by acetylation with acetic anhydride in pyridine. Then, the obtained anomeric mixture of the
product was brominated with TiBr4, which led to an anomeric mixture of bromides (33), with a clear
predominance of the β anomer (α:β = 1:4). Due to the high reactivity of bromides, this donor was
immediately used in the condensation reaction with diosgenin in CH2Cl2, in the presence of AgOTf as
the reaction promoter. There was an 80% yield of synthetic protected diosgenyl β-d-galactosaminoside
(34) [54]. Deprotection of the O-acetyl groups and NTCP group of 34 was achieved by using 98%
hydrazine hydrate in EtOH and yielded diosgenyl 2-amino-2-deoxy-β-d-galactopyranoside (35),
which was converted into hydrochloride 35.HCl.
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Glycosylation of diosgenin with d-glycosamine derivatives mainly proceeds according to the SN1
and/or SN2, mechanism, usually with the contribution of protected 2-amino groups (NHTFAc, NHTroc,
NPhth and NTCP). The presence of these groups promotes the formation of 1,2-trans glycosides,
which in the case of d-glucosamine and d-galactosamine means formation of β-configurated glycosides.

The type of promoter used (heavy metal salt or TMSOTf), as well as the solvent and temperature,
are also significant. Table 1 summarizes the most useful procedures of providing diosgenyl
β-d-glycosaminosides. The type of glycosyl donor (bromides, chlorides and imidates) and the order
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of reagent addition has a noticeable influence on the efficiency of the reaction. For the glycosidation
reaction, two procedures are recognized: normal and reverse. In the normal procedure, the promoter
(AgOTf or TMSOTf) is added as the last to the solution containing the glycosyl donor and acceptor,
whereas in the reverse procedure, the glycosyl donor is added to the mixture of the promoter and
glycosyl acceptor [55].

Table 1. Most commonly used procedures for glycosylation of diosgenin.

Entry Procedure Glycosyl Donor Solvent Promotor Product Yield
(%) Lit.

1 normal 5 (α) Bromide NHTFAc CH2Cl2 AgOTf 8 65 [39]
2 normal 5 (α) Bromide NHTFAc CH2Cl2/Et2O AgOTf 8 69 [41]
3 reverse 5 (α) Bromide NHTFAc CH2Cl2/Et2O AgOTf 8 77 [50]
4 normal 7 (α + β) Bromide NTCP CH2Cl2 AgOTf 9 65 [39]
5 normal 7 (α + β) Bromide NTCP CH2Cl2/Et2O AgOTf 9 73 [41]
6 reverse 7 (α + β) Bromide NTCP CH2Cl2 AgOTf 9 93 [50]
7 normal 10 (α) TCAI NDMP CH2Cl2 TMSOTf 15 92 [45]
8 normal 11 (α) TCAI NHTroc CH2Cl2 TMSOTf 16 98; 84 [47,56]
9 normal 12 (α + β) TCAI NPhth CH2Cl2 TMSOTf 17 96; 80 [48,49]

10 reverse 13 (α) Bromide NHTroc CH2Cl2/Et2O AgOTf 16 98 [50]
11 normal 14 (α + β) Bromide NPhth CH2Cl2/Et2O AgOTf 17 51 [50]
12 reverse 14 (α + β) Bromide NPhth CH2Cl2/Et2O AgOTf 17 55 [50]
13 reverse 14 (α + β) Bromide NPhth CH2Cl2 AgOTf 17 90 [50]
14 reverse 18 (α) Chloride NHTFAc CH2Cl2/Et2O AgOTf 8 69 [43]
15 reverse 19 (α) Choride NHTroc CH2Cl2/Et2O AgOTf 16 86 [43]
16 reverse 20 (β) Chloride NPhth CH2Cl2 AgOTf 17 99 [43]
17 reverse 21 (β) Chloride NTCP CH2Cl2 AgOTf 9 87 [43]
18 normal 22 (α + β) PTFAI NHTFAc CH2Cl2 TMSOTf 8 85 [50]
19 normal 23 (α + β) PTFAI NHTroc CH2Cl2 TMSOTf 16 81 [50]
20 normal 24 (β) PTFAI NPhth CH2Cl2 TMSOTf 17 83 [50]
21 normal 25 (β) PTFAI NTCP CH2Cl2 TMSOTf 9 52 [50]
22 reverse 27 (α + β) Bromide NTCP CH2Cl2 AgOTf 28 80 [54]

The choice of glycosylation procedure should also consider the orthogonality of the protecting
groups, and thus the possibility of removing them independently. This factor is especially important
when there is a planned modification of the obtained glycoside, e.g., by attaching further saccharide
units or functionalising the amino group.

O-Acetyl groups used in the above presented syntheses could be easily removed under basic
conditions (typically with sodium methoxide in methanol). It is possible to remove only O-acetyl
groups while the amino-protecting groups remain intact (8→10, Scheme 2). This approach is
important if further attachment of the sugar units to such saponin is planned. To remove the
TFAc amino-protecting group, a solution of NaOH in an acetone–water mixture is typically used
(10→11, Scheme 2). Under these conditions, the O-acetyl groups could be also removed [57]. Likewise,
the O-acetyl groups, the TCP- and TFAc-protecting groups can be removed simultaneously under
weakly basic conditions, e.g., with hydrazine hydrate in EtOH, at the reflux temperature (9→11 and
34→35). If diethylamine is used instead of hydrazine hydrate, an N-acetyl derivative of saponin is
often formed as a by-product [57]. Removal of the phthaloyl group requires a high temperature and
quite a long reaction time. This reaction usually uses hydrazine hydrate or n-butylamine in ethanol
(19→11) [58]. It is worth adding that the order in which the protecting groups are removed must be
taken into account. Generally, O-deacetylation should be done first, otherwise O→N acetyl migration
may occur.

Sometimes, to functionalise an amino group, it is necessary to remove only the protecting group
from the amine function, leaving the acetyl groups on the hydroxyl functions. In that case, it is
preferable to use a trichloroethoxycarbonyl group, which could be selectively removed under reductive
β-elimination with zinc dust or zinc-copper powder in acetic acid (18→ 36, Scheme 5) [43,46].
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4.2. Chemical Modification

Difficulties associated with the isolation and purification of saponins from natural sources force
its synthesis. In addition, chemical modifications create opportunities to obtain new compounds,
often with more favourable therapeutic properties compared to naturally occurring or reference
substances. Saponins, especially diosgenyl glycosides, are attractive candidates for new drug design
and development due to their valuable properties: anti-inflammatory [13,14], antimicrobial [27],
anti-coagulant [28], anti-cancer [30–32] and gelling [59].

Chemical modifications of diosgenyl saponins mainly concern the sugar part. The changes most
often involve attachment of other sugar residues or extension of the sugar chain and introduction of
various functional groups or substituents. Modifications of aglycon have also been described in the
literature [60].

Research related to the chemical modification of diosgenyl β-d-glycosaminosides is mainly
associated with the functionalisation of the amino group. Thus, the following sections present the
procedures for modifying the -NH2 group and the results of studies on the biological activity of the
most interesting derivatives of diosgenyl glycosaminosides.

4.2.1. N-alkyl and N,N-dialkyl Derivatives

A series of N-alkyl and N,N-dialkyl derivatives of diosgenyl 2-amino-2-deoxy-β-d-gluco- and
d-galactopyranosides have been synthesised [50,54]. The synthesis of these compounds used a method
of reductive alkylation of amines [61]. N-Monoalkyl derivatives were obtained by treatment of the
primary amine group in diosgenyl β-d-glycosaminoside with an appropriate aldehyde (R-CHO),
followed by reduction in the resulting imine with sodium cyanoborohydride (NaBH3CN).

The N-alkyl derivatives, as the secondary amines, can react under the same conditions with
another aldehyde molecule to form an enamine, from which the N,N-dialkyl derivative is obtained
after reduction. Such alkylation reactions are not selective and usually provide mixtures of mono- and
dialkylated products, which should be separated by column chromatography.

Using reductive alkylation of diosgenyl β-d-glucosaminoside (11) with respective aldehyde,
four N-alkyl (37–40) and six N,N-dialkyl derivatives (41–46) were obtained, whereas using alkylation
of diosgenyl β-d-galactosaminoside (35) one N-alkyl (47) and two N,N-dialkyl (48 and 49) derivatives
were synthesized (Figure 6).
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Kaskiw at al. synthesised the other group of diosgenyl β-d-glucosaminosides with different
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amino function of this saponin was acetylated with: benzoyl chloride, succinic anhydride
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presence of 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetra-methylaminium hexafluorophosphate (HBTU)
and N,N-diisopropylethylamine (DIPEA). The final removal of the O-acetyl groups from obtained
derivatives with sodium methoxide in CH2Cl2/MeOH mixture generated the respective diosgenyl
glycosides 52–56 with good yields (73–92%; Figure 7) [46,47].

The same approach was used to obtain N-acyl derivatives of diosgenyl glycoside containing a
disaccharide residue (59–62, Figure 7). After removing the Troc protecting group from the saponin
23 by treating it with zinc dust in acetic acid, the free amino group was acylated under the same
conditions used for monosaccharide saponins with benzoyl chloride, (±)-α-lipoic acid, 3-nitrobenzoic
acid and 3,5-dinitrobenzoic acid (76–83%). Finally, O-acetyl and O-benzoyl groups from the obtained
saponins were removed by treating with sodium methoxide in methanol to yield N-acyl diosgenyl
disaccharide consisting of glucosaminose (59–62).

To search for pharmaceuticals that may be well-delivered to a cell, Grzywacz et al. synthesised
the N-acyl derivatives of diosgenyl β-d-glucosaminoside (11) with a series of amino acids, peptide and
hydroxy acids conjugated with saponin (63–76, Scheme 6) [62]. The use of amino acids and peptide as
drug delivery vectors is growing due to their large structural diversity, biocompatibility as well as low
toxicity [63,64]. Hydroxy acids used in these explorations are structural analogs of some amino acids.
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N-Aminoacyl and N-hydroxyacyl derivatives of diosgenyl 2-amino-2-deoxy-β-d-glucopyranoside
(63–76) were obtained using the solution-phase method of peptide synthesis in DCM/DMF mixture.
Fmoc-protected amino acids were used for the synthesis, whereas N,N’-diisopropylcarbodiimide (DIC)
and 1-hydroxybenzotriazole (HOBt) were used as the coupling agents (Scheme 6). Reactions with
amino acids and peptide were carried out with and without microwave assistance. In both procedures,
the reaction yields were similar, but the duration was markedly reduced (even several fold) in the case
of the reactions carried out in microwave reactor. Reactions of hydroxy acids were conducted solely
without microwave assistance. For modifications of diosgenyl β-d-glucosaminoside (11), the following
protected amino acids were selected: glycine, N-acetylglycine, sarcosine, l- and d-alanine, L-serine,
l-threonine, l-lysine, l-proline, l-methionine and dipeptide (l-Ala-l-Ala). From the obtained diosgenyl
N-aminoacyl saponins, the Fmoc-protecting group was removed by treatment with a freshly prepared
15% piperidine solution in DCM. Three hydroxy acids, namely glycolic acid, l-lactic acid and l-glyceric
acid, were also attached to diosgenyl β-d-glucosaminoside (11). The formation of N-acyl derivatives of
diosgenyl glucosaminoside in the presence of DIC and HOBt from the mentioned amino acids proceeds
according to the known mechanism of amide bond formation using HOBt in order to minimize the
formation of unreactive N-acylurea [65].
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4.2.3. Other Derivatives

Urea derivatives—not only of carbohydrates—exhibit a broad spectrum of biological activity.
They can be part of antibiotics, enzyme inhibitors or compounds with documented cytotoxicity, such as
streptozotocin or chlorozotocin [66,67]. The presence of amino group in diosgenyl glycosaminosides
creates the possibility of ureido derivatives’ formation. Therefore, such saponins were also synthesised
and explored.

The first saponin with a 2-phenylureido moiety, glycoside 77, was obtained by Myszka et al.
in the reaction of diosgenyl β-d-glucosaminoside (11) with phenyl isocyanate in a CHCl3/MeOH
mixture [34]. In the same way, using isocyanates, three different ureido derivatives of diosgenyl
β-d-galactosaminoside (82–84) were obtained [54]. Wang et al. proposed a different route for the
synthesis of 2-ureido diosgenyl saponins [56]. To obtain several urea derivatives (78–81) they used
diosgenyl 3,4,6-tri-O-acetyl-N-Troc-2-amino-2-deoxy-β-d-glucopyranoside (18) and commercially
available amines, including benzyl-, 4-fluoro-benzyl-, 4-methoxy-benzyl-, and tert-butyl-amine
(Figure 8). Notably, this modification was made without the need for removal of the Troc- and
O-acetyl-protecting group from glycoside 18. The reactions were carried out in dimethyl sulfoxide
(DMSO) at 70 ◦C in the presence of DIPEA. Only after completion of the reaction were the
acetyl-protecting groups removed with a solution of NH3 in methanol. The reactions yields were
54–75%.
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The same group of researchers synthesised two other series of diosgenyl β-d-glucosaminoside
derivatives with a cinnamoyl and thiosemicarbazonyl moiety at the C-2 atom (Figure 9) [56].
Before the introduction of sulfonamides, cinnamic acid and its derivatives performed the function
of chemotherapeutics. Derivatives that contained a thiosemicarbazonyl moiety can be valuable
bioeffectors with a wide range of pharmaceutical applications. Some of them are antiviral, antibacterial
or antifungal drugs [68–70].
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2-thiosemicarbazonyl (88–90) functional groups.

For the synthesis of both series, it was necessary to remove the Troc protecting group (zinc dust in
acetic acid) from the amine function in 18 and obtain saponin 36 (Scheme 5). The reaction of 36 with
cinnamoyl chlorides with differently substituted phenyl rings formed the respective N-cinnamoyl
derivatives of the O-acetylated diosgenyl glucosaminoside. Their O-deprotection with NH3 in
MeOH provided a series of new diosgenyl N-cinnamoyl-β-d-glucosaminosides (85–87, Figure 9).
Reaction yields were 55–71%.

To synthesise thiosemicarbazonyl derivatives of diosgenyl glucosaminoside (88–90), Wang et al.
first converted the free amino group of 36 to isosulfocyanide in reaction of 36 with thiocarbonyl chloride
in the presence of CaCO3 in DCM/H2O mixture [56]. They then treated it with 80% hydrazine hydrate
in ethanol, followed by the appropriate benzaldehyde. Finally, the O-acetyl groups were removed,
which gave saponins 88–90 (total yields were 48–53%).

4.3. Pharmacological Properties

Over the past 30 years, a significant increase in the incidence of fungal infections,
multi-drug resistance to bacteria and the number of cases of cancer have been observed. Therefore,
alternative therapeutic methods are being sought, in particular, effective therapies with new mechanisms
of action against resistant pathogens.

Natural diosgenyl glycosides exhibit a broad spectrum of pharmaceutical properties [27–32].
The diverse biological activity of these compounds is closely connected with their diverse structural
construction. Therefore, their synthetic analogs are designed and synthesised to find pharmaceutics
with improved activities. This also applies to diosgenyl β-d-glycosaminosides, for which syntheses are
presented above.

4.3.1. Antibacterial Activity

Saponins exhibit antibacterial activity by inhibiting the growth of Gram-positive (G+) or
Gram-negative (G−) bacteria. However, some of them are not effective against G− bacteria,
probably because they cannot penetrate the cell membranes of these microorganisms [71]. The cell
wall of G- bacteria has a much more complex structure; it is composed of an additional outer
membrane, phospholipids and lipopolysaccharide, which are not present in the cell wall of G+ bacteria.
The mechanism of saponins’ action is based on their ability to form complexes with the sterols present
in the surface membrane of eukaryotic cells/microorganisms (bacteria and fungi). As a consequence,
it causes disorders of membrane integration, its perforation and rupture, and loss of intracellular
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components. Nucleic acids and proteins are key components of pathogens, and the integrity of
the cytoplasmic membrane is essential for cell growth [72–74]. Studies on the obtained diosgenyl
β-d-glycosaminosides indicate that none of the above-presented saponins exhibit activity against G−
bacteria; the minimum inhibitory concentrations (MIC; µg/mL) were over 512 µg/mL [50,54,62].

The bactericidal effect on a large number of Gram-positive cocci were performed, setting
MIC50, MIC90, and the minimum bactericidal concentration (MBC50 and MBC90; µg/mL) for
diosgenyl β-d-glucosaminoside hydrochloride (11.HCl) [75]. The studies were conducted for clinical
isolates of: methicillin- and vancomycin-resistant strains (MR and VR), as well as methicillin- and
vancomycin-sensitive strains (MS and VS) of S. aureus and E. faecalis, and for S. pyogenes and
R. equi. As control compounds, widely available antibiotics, including imipenem, doxycycline,
erythromycin and ciprofloxacin were used (Table 2). The results of studies showed that 11.HCl is
equally and, in many cases, more active against examined strains to the tested antibiotics used to treat
patients infected with these bacteria. Interestingly, the values of the MBC against R. equi for 11.HCl
(MBC = 4 µg/mL (50%), 16 µg/mL (90%)) were much lower than the MBC for the standard antibiotics.
Additionally, when comparing the MIC90 and MBC90 values for 11.HCl and for erythromycin, it can
be seen that saponin 11.HCl in each case gives better results, with the exception of R. equi bacteria
(MIC90 = 4 µg/mL).

Further studies assessing antibacterial activity for 11.HCl showed that its exhibits relative
activity against tested reference strains of G+ bacteria: E. faecalis, S. aureus, S. epidermidis and R. equi
(MIC = 16 µg/mL), whereas analogous hydrochloride of diosgenyl β-d-galactosaminoside (35.HCl) is
completely inactive against the listed strains [50,54].

Additionally, the synergism of diosgenyl β-d-glucosaminoside hydrochloride (11.HCl) and
antibiotics was studied [75]. The results were presented as a Fractionated Inhibitory Concentration
(FIC index; FIC ≤ 0.5 indicates synergism, 0.5 < FIC ≤ 1.0 additive activity, 1.0–4 neutral effect and
FIC > 4 shows an antagonistic effect). It was observed that the use of 11.HCl with vancomycin or
with daptomycin leads to a synergistic effect against methicillin- and vancomycin-sensitive strains,
and against R. equi and S. pyogenes. The FIC index for these bacterial strains ranged from 0.312 to
0.458, whereas, for other antibiotics, the FIC value was 0.917–2.0. In no case was an antagonistic
effect observed.

Taking into account the obtained synergistic results, in vivo studies on an albino strain of inbred
BALB/c mice were conducted [75]. As reference antibiotics, vancomycin and daptomycin were chosen
and tests were performed on infected mice with MS S. aureus and vs. E. faecalis. In the case of
these infections, the number of colony-forming microorganisms, called CFU/mL, was determined.
For staphylococcus-infected tissue not treated with any compound, the CFU/ml value was 6.7×107

and was significantly higher than when the infected tissue was treated only with hydrochloride of 11
(CFU/ml = 4.4 × 104), daptomycin (CFU/ml = 3.8 × 103), or vancomycin (CFU/ml = 4.0 × 103). However,
when this tissue was treated with saponin 11.HCl (1 mg of compound/kg of mass) plus daptomycin or
vancomycin (7 mg antibiotic/kg of mass), CFU/ml values were 17 and 22, respectively, lower than for
antibiotics alone. Thus, the highest bacterial inhibition was obtained for a staphylococcus-infected
tissue which was treated with a mixture of saponin and antibiotic. Very similar results were obtained
for vs. E. faecalis-infected tissue.
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Table 2. Selected MIC50 (MIC90) and MBC50 (MBC90) values for 11.HCl and clinically used antibiotics against clinical isolates of Gram-positive bacteria.

MIC50
(MIC90) *

MBC50
(MBC90) **

MR S.
aureus
(n = 20)

***

MS S.
aureus

(n = 20)

VR E.
faecalis
(n = 10)

VS E.
faecalis
(n = 20)

S.
pyogenes
(n = 20)

R. equi
(n = 20)

MR S.
aureus

(n = 20)

MS S.
aureus

(n = 20)

VR E.
faecalis
(n = 10)

VS E.
faecalis
(n = 20)

S.
pyogenes
(n = 20)

R. equi
(n = 20)

11.HCl 4
(8)

2
(4)

8
(32)

8
(16)

2
(4)

2
(4)

8
(16)

8
(16)

16
(64)

16
(32)

4
(8)

4
(16)

Imipenem 16
(128)

1
(2)

16
(64)

4
(16)

0,5
(1)

0,25
(1)

64
(256)

4
(8)

64
(128)

16
(64)

1
(4)

8
(32)

Doxycycline 4
(16)

4
(8)

16
(32)

8
(16)

4
(8)

1
(2)

8
(32)

8
(32)

16
(64)

16
(64)

8
(16)

32
(128)

Erythromycin 4
(16)

2
(8)

16
(64)

8
(32)

2
(8)

0,5
(2)

32
(128)

16
(64)

32
(128)

16
(128)

8
(32)

32
(64)

Ciprofloxacin 4
(8)

2
(8)

8
(32)

4
(8)

2
(8)

1
(2)

8
(16)

4
(16)

16
(128)

8
(16)

8
(16)

16
(64)

* MIC50 (MIC90) = minimum inhibitory concentrations (µg/mL) at which 50% and 90% of the isolates were inhibited, respectively ** MBC50 (MBC90) = minimum bactericidal concentration
(µg/mL) at which 50% and 90% of the isolates were inhibited, respectively *** n is the number of tested isolates of a given bacterium.
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In turn, almost all tested mono- and dialkyl diosgenyl glycosaminosides inhibit the growth
of G+ bacteria. Saponins with the N-ethyl group at the amino function of both d-gluco-(37) and
d-galactosamine (47) are the most active compounds against reference strains of E. faecalis, S. aureus,
S. epidermidis and R. equi (MIC = 0.5–8 µg/mL) [50,54]. Importantly, the introduction of an additional
ethyl group reduces the antimicrobial activity of these derivatives, in particular with respect to E. faecium
and S. aureus (for N,N-diethyl diosgenyl galactosaminoside 48 MIC > 1024 µg/mL). Studies have shown
that several N-alkyl derivatives of 11 exhibit stronger or similar activity than 11.HCl: saponin 38 with
the N-propyl group (MIC = 1–8 µg/mL) and saponins 43–45 with N,N-dialkyl chains. In turn, two
tested saponins with the longest carbons chain, N-pentyl (39) and N,N-diheksyl (46) turned out to be
completely inactive against to the tested strains of G+ bacteria. These indicate that the extension of the
alkyl chain, as well as the addition of another alkyl group, are rather unfavourable from the point of
view of antibacterial activity. This is probably related to the lower solubility of saponins with longer
alkyl chains or to the ability to form micellar structures [50].

The good activity of the N-acetyl derivative of diosgenyl β-d-galactosaminoside
(57, MIC = 8–32 µg/mL for all tested reference strains of G+ bacteria) is surprising, while the analogous
N-acetyl derivative of diosgenyl β-d-glucosaminoside (50) does not exhibit any microbial activity
(MIC > 1024 µg/mL). In the case of N-aminoacyl derivatives of 11, the dependence of saponin structure
on its activity is noticeable, and only N-aminoacyl analogs with the free α-amino group in the aminoacyl
residue are found to be active against tested reference strains of G+ bacteria [62]. Some of them
exhibit better antibacterial activity than 11.HCl: N-sarcosyl (64), N-d-and L-alanyl derivatives (65,66,
respectively). Any increase or decrease in the amino acid substituent has an unfavourable effect on
the biological activity of the compound, and replacing the amino group in amino acid residue by the
hydroxyl group also causes a complete lack of the antibacterial activity.

4.3.2. Antifungal Activity

Strains of Candida albicans constitute about 60% of the strains isolated from patients suffering
from candidiasis, but recent data show the increasing occurrence of strains called non-albicans Candida.
Species belonging to this group are often characterised by reduced susceptibility to antifungal
agents [76].

Based on the conducted tests, the MIC values were determined for diosgenyl glycosides 11.HCl,
35.HCl and some of their derivatives (37–49, 63–76). Hydrochloride of 11 and N,N-dialkyl analogs
with short carbon chains (41–43), are characterised by the highest antifungal activity against reference
strains C. albicans and C. tropicalis [50]. MIC values for tested fungal pathogens are in the range
of 0.5–2 µg/mL. A change in the configuration of the C-4 carbon atom in the carbohydrate residue
adversely affected the activity of the diosgenyl galactosaminoside. Hydrochloride of 35 in comparison
with its d-gluco counterpart (11.HCl) inhibits fungal growth to a lesser extent [54]. In the case of N-alkyl
derivatives of diosgenyl glysocaminosides, good results against both types of Candida were obtained
for diosgenyl β-D-galactosaminosides 47–49 with MIC values in the range of 2–8 µg/mL, which is
similar to those obtained for analogous N-alkyl derivatives of diosgenyl β-d-glucosaminosides (42,43).
In turn, Aspergillus niger turned out to be the least susceptible and the majority of N-alkyl derivatives
of diosgenyl glucosaminosides are inactive against it, with the exception of N-ethyl (37) and N-propyl
(38) derivatives; MIC = 8 µg/mL. Surprisingly, N-acetyl analog of diosgenyl β-d-galactosaminoside
(57) inhibits the growth of fungal reference strains, which is opposite to the corresponding d-gluco
derivative (50).

In the case of N-acyl analogs, only N-aminoacyl derivatives of 11 with the free α-amino group
in the amino acid residue are found to be active against reference strains of human pathogenic fungi
(MIC = 2–4 µg/mL) [62]. Replacing this amino group by the hydroxyl function causes the lack of
antifungal activities. Although part of the tested N-aminoacyl derivatives of 11 (65–69) inhibit the
growth of C. albicans and C. lypolitica, their activity is slighter weaker than the activity of reference
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11.HCl. Noteworthy, for the tested N-acyl analogs the antifungal activity does not depend on the type
of the attached amino acid, and usually the MIC values are 4 µg/mL.

In view of a large number of non-albicans Candida and their drug resistance, the tests of
five derivatives of diosgenyl glucosaminoside (11.HCl, 41–44, Figure 6) on clinical isolates were
attempted [77]. These compounds were selected because of their promising MIC values against the
reference strains of fungi Candida species. The tests were carried out on clinical strains: C. glabrata,
C. krusei, C. parapsilosis and C. tropicalis, which were collected from patients suffering from vaginal,
skin and mouth mycoses. As reference compounds, generally available conventional antifungal
agents, including antibiotics, were used: amphotericin B, clotrimazole, fluconazole, itraconazole,
natamycin and nystatin. The results of the tests are presented in Table 3.

Table 3. MIC50 * and MIC90 * values for hydrochloride of 11, N,N-dialkyl saponins 41–44 and antifungal
agents against clinical isolates of fungi of genus non-albicans Candida.

Saponin Antibiotic

Fungus

C. glabrata (n = 22) ** C. krusei (n = 12) C. parapsilosis (n = 19) C. tropicalis (n = 13)

50% 90% 50% 90% 50% 90% 50% 90%

11.HCl 2 4 16 1024 2 4 4 1024
41 4 4 16 1024 1 2 4 1024
42 4 4 64 1024 2 4 4 512
43 4 8 1024 1024 4 4 8 1024
44 8 16 1024 1024 8 16 128 1024

Amphotericin B 2 2 2 2 2 4 1 2
Clotrimazole 4 8 0.25 0.25 0.25 0.25 4 16
Fluconazole 128 128 32 64 4 8 128 1024
Itrakonazol 4 32 0.25 0.25 0.25 0.25 256 1024
Natamycin 2 2 1 1 4 4 2 4

Nystatin 8 8 2 4 4 8 2 4

* MIC50 (MIC90) = minimum inhibitory concentrations (µg/mL) at which 50% and 90% of the isolates were inhibited,
respectively. ** n is the number of tested isolates of a given pathogen.

Tested derivatives of diosgenyl glucosaminoside 11.HCl, 41 and 42 exhibited a high efficacy
against C. glabrata and C. parapsilosis species. They inhibit fungal growth in 90% at a concentration
of 4 µg/mL and lower. Among them the most active is derivative 41, i.e., N,N-dimethyl derivative,
which inhibits 90% growth of C. parapsilosis isolates at a concentration of 2 µg/mL. These results are
comparable or even stronger than those of conventional antifungal agents, such as clotrimazole and
the other three antibiotics, classified as polyenes.

Two species, C. krusei and C. tropicalis, showed a certain discrepancy in their sensitivity to the
tested saponins. While the MIC50 values for most isolates are 4–128 µg/mL, the highest concentration
(1024 µg/mL) is required to inhibit the growth of individual strains in 90%. Against these two strains,
three antibiotics and most conventional antifungal agents appear to be more effective. It has to be added
that C. tropicalis species, in this examination, are characterised by significant resistance to fluconazole
and itraconazole.

4.3.3. Anti-Cancer Activity

Antiproliferative activity is an important biological property of natural saponins. This activity
may result from programmed cell death (apoptosis or autophagy) or nonapoptotic (necrosis) and
also applies to cancer cells. It has been shown that saponins have significant potential as anti-cancer
agents [78].

Hydrochloride of diosgenylβ-d-glucosaminoside (11.HCl) was the first diosgenyl glycosaminoside
which has been tested for cytotoxic activity. Importantly, this compound does not exhibit
antiproliferative activity against non-tumoral cells—peripheral lymphocyte blood cells [48].
Further antitumor tests on 11.HCl determined its independent effect and in combination with
2-chlorodeoxyadenosine (2-CdA, cladribine) on lymphocytes isolated from the patients suffering from
chronic B-cell lymphocytic leukemia (B-CLL) [41]. It was found that this saponin is cytotoxic towards
B-CLL—it induces apoptosis and necrosis of some leukemic B-cells. Additionally, 11.HCl enhances
the cytostatic effect of 2-CdA, significantly reducing (20–30%) the number of lymphatic cancer cells in
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some patients. This could indicate that the tested saponin increases B-cell membrane permeability
and facilitates the penetration of the drug into the tumor cell. In turn, in in vitro studies on the other
tumor cells, including cervical carcinoma cells—HeLa, CaSKi, ViBo—and human leukemia cells—HEL,
K562, HL60 and melanoma WM9—were conducted. The hydrochloride of 11 shows only a moderate
antiproliferative effect (IC50 ranging from 10.7 to 41 µM) [48,49]. However, it is worth adding that
11.HCl shows better inhibitory activity toward the tested cancer cell lines than the starting material,
which is diosgenin (IC50 values 63.8–81 µM) [49].

N-Acyl derivatives of diosgenyl glucosaminosides 50, 52–56, 59–62 have been also examined for
cytotoxic activity [46,47]. Most of the tested saponins show moderate activity against several human
cancer cell lines (including SK-N-SH, MCF-7 and HeLa lines). Compound 54, containing α-lipoic acid
residue, turned out to be the most active against all three cancer cell lines (IC50 ranging from 4.8 µM to
7.3 µM; IC50 is the concentration of an inhibitor where the response is reduced by half). This cytotoxicity
may be related to the redox properties of α-lipoic acid, which is a biogenic antioxidant, physiologically
acting as a coenzyme in the oxidative decarboxylation of α-ketonic acids. However, the effect of this
substituent on cytotoxicity is definitely smaller in the case of the α-lipoic derivative of diosgenyl amino
disaccharide (60); the IC50 values for this compound increased 2-6 times in comparison to IC50 of
54 [47]. Further analysis of data for the other derivatives of diosgenyl amino disaccharide (59–62)
confirmed that they are, in general, less active than their corresponding monosaccharides analogs with
the same N-substitution (52–56).

In the case of N-cinnamoyl derivatives (85–87), SAR studies have shown that a significant effect
on the cytotoxic activity clearly depends on the type of introduced substituent and its position in
the benzene ring [56]. Electron-donating and electron-withdrawing substituents were introduced
at various positions into the benzene ring of compound 85. N-cinnamoyl derivatives with electron
donating groups such as methyl (86) or methoxy (87) in the para position show excellent activity against
HeLa and MCF-7 cell lines (IC50 ranging from 0.5–6.3 µM) and are much more active than the starting
compound 85 (IC50 ranging from 12.8–39.1 µM). In turn, the introduction of such a group (OMe) in the
ortho or meta position led to a significant decrease in the activity of the compound.

4.3.4. Hemolytic Activity

Saponins are known to show a high ability to hemolyse red blood cells. This process causes
irreversible destruction of the lipid double-layer of erythrocyte membranes and the release of
hemoglobin and other intracellular components into the surrounding plasma. This may constitute a
significant limitation in the use of saponins in therapies. Hemolytic activity is closely related to the
structure of saponins and depends, among others, on the structure of the aglycon, on the length and
number of carbohydrate units and the type of its chemical modification [17,35].

Diosgenyl β-d-glucosaminoside hydrochloride (11.HCl) and N-alkyl analogs (41–44) have been
tested for hemolytic activity by determining the minimum hemolytic concentration (MHC) [77].
The results of tests showed that these saponins are non-toxic to human red blood cells. Hemolysis
was not observed even when the erythrocytes were exposed to 256 µg/mL concentration of saponins,
which is many times higher than the MIC = 2–4 µg/mL for the majority of isolated Candida species.

In the case of N-acyl derivatives of 11, based on SAR research, it can be concluded that the ability to
hemolyse red blood cells is correlated to the structure of glycosaminosides and is somewhat correlated
with its antimicrobial activity [62]. N-Acetyl (50), glycyl (63), glycoyl (74) and l-lactyl (75) derivatives,
which do not show or show very weak antimicrobial activity, also do not exhibit hemolytic activity.
In turn, l-seryl (68), l-threonyl (69) and l-lysyl (71) derivatives of diosgenyl β-d-glucosaminoside,
which exhibit better antifungal than antibacterial activity, turn out to be toxic toward red blood cells.
Importantly, compounds with the highest antimicrobial activity, namely sarcosyl (64), l-alanyl (65) and
d-alanyl (66) derivatives of 11, are not toxic towards human red blood cells.
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5. Conclusions

In this mini-review, various approaches to diosgenyl aminoglycosides are presented as well as
various possibilities of their chemical modifications based on 2-amine function. Respective bromides,
chlorides, trichloroacetimidates and (N-phenyl)trifluoroacetimidates are demonstrated to be useful
donors for glycosidic bond formation between d-glucosamine or d-galactosamine and diosgenin.
Since such a reaction demands protection of the amine function, useful protective groups are presented,
such as: tetrachlorophthaloyl (TCP), trifluoroacetyl (TFA), 2,2,2-trichloroetoxycarbonyl (Troc),
dimethylphosphoryl (DMP) and phthaloyl (Phth). The presented glycosidation reactions generally
run with good yields, although these yields are dependent on used conditions, e.g., on the order in
which the reagents are added. Regarding the modifications of the amine function, its alkylations,
acylations, including acylations with amino acids and hydroxy acids, transformations into ureids
and thiosemicarbazones are shown. We would like to emphasize that the presented reactions of
glucosamine or galactosamine are of universal importance. The indicated protection groups and
reaction pathways can be used to form a glycosidic bond between glucosamine or galactosamine and
any aglycone. This universality also applies to the presented modifications of the amine function.

Presented syntheses were aimed at finding semi-natural diosgenin derivatives with favorable
pharmacological properties. A wide range of such derivatives is presented, which makes it
difficult to discuss the influence of specific modification on pharmacological properties. However,
some conclusions can be made.

None of the tested derivatives of diosgenyl glycosaminosides are effective against G- bacteria.
This finding confirms the known fact that saponins do not exhibit such activity.

A basic amino group is necessary for the activity of the diosgenyl glucosaminosides against
G+ bacteria. Compounds with such a group, i.e., hydrochloride, some of the N-alkyl, N,N-dialkyl
and N-aminoacyl derivatives, exhibit relatively strong activity against G+ bacteria. Depriving the
diosgenyl glucosaminosides of the basic amino group by acetylation or replacing it with a
hydroxyl group results in a loss of antibacterial activity. Among alkyl derivatives, diosgenyl
N-ethylglucosaminoside is the most active against G+ bacteria, whereas, among N-aminoacyl
derivatives, diosgenyl N-alanylglucosaminoside is the most active. In both cases, further elongations of
the N-substituent are ineffective from the standpoint of the inhibitory activity towards the G+ bacteria.
These findings are probably due to the lower solubility of the compounds with longer N-substituents
or to the micelle formation.

Basic amino group is also necessary for the activity of the diosgenyl glucosaminosides against
tested Candida species. The growth of tested fungi is the most efficiently inhibited by the hydrochloride
of diosgenyl glucosaminoside and its alkyl derivatives with short carbon chains (N-ethyl and
N,N-dimethyl). N-aminoacyl derivatives of diosgenyl glucosaminoside quite effectively acted against
fungi, and this effect is independent of the size of amino acid. Again, replacing the amino group by the
amido group (acylation), as well as replacing the α-amino group by the hydroxyl group, causes the
antifungal activities to decrease.

Switching of thed-glucosamine intod-galactosamine dramatically changes antimicrobial properties
of the respective diosgenyl glycosides. While the hydrochloride of diosgenyl glucosaminoside is active
against G+ bacteria and against Candida, the hydrochloride of diosgenyl galactosamine is not active at
all. Conversely, N-acetyl derivative of diosgenyl glucosaminoside does not exhibit any antibacterial
nor antifungal activity, whereas its galactosamine analogue acts against G+-bacteria-tested and against
Candida-tested. This result may suggest that these two diosgenyl glycosaminosides act according to
different mechanisms.

With regard to anti-cancer properties, promising results were obtained for the hydrochloride
of diosgenyl glucosaminoside and some acyl derivatives, particularly for the α-lipoic acid
derivative. No alkyl nor aminoacyl derivatives of diosgenyl glycosaminosides were tested for
their anti-tumor activity.
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Extremely important is that derivatives of diosgenyl d-glucosaminosides, which are active against
antimicrobials and/or cancers (hydrochloride, N-alkyl, N-aminoacyl active), are non-toxic to human
red blood cells.

The conclusions drawn in this work may be helpful in designing further modifications of diosgenyl
glycosaminosides as well as in designing modifications of other glycosaminosides aimed at the search
for effective pharmaceuticals.

Author Contributions: Writing—original draft preparation, review and editing, D.G., literature search and partial
draft preparation, H.M.; further management and supervision, B.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education in Poland–DS/531-T100-D687-20.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sparg, S.G.; Light, M.E.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol.
2004, 94, 219–243. [CrossRef] [PubMed]

2. Vincken, J.P.; Heng, L.; de Groot, A.; Gruppen, H. Saponins, classification and occurrence in the plant
kingdom. Phytochemistry 2007, 68, 275–297. [CrossRef] [PubMed]

3. Malyarenko, T.; Malyarenko, O.; Ivanchina, N.; Kalinovsky, A.; Popov, R.; Kicha, A. Four New Sulfated Polar
Steroids from the Far Eastern Starfish Leptasterias ochotensis: Structures and Activities. Mar. Drugs 2015,
13, 4418–4435. [CrossRef] [PubMed]

4. Williams, J.R.; Gong, H. Isolation and synthesis of shark-repelling saponins. Lipids 2004, 39, 795–799.
[CrossRef] [PubMed]

5. Smułek, W.; Zdarta, A.; Łuczak, M.; Krawczyk, P.; Jesionowski, T.; Kaczorek, E. Sapindus saponins’ impact on
hydrocarbon biodegradation by bacteria strains after short- and long-term contact with pollutant. Colloids Surf.
B Biointerfaces 2016, 142, 207–213. [CrossRef]

6. Xu, R.; Zhao, W.; Xu, J.; Shao, B.; Qin, G. Studies on bioactive saponins from Chinese medicinal plants.
Adv. Exp. Med. Biol. 1996, 404, 371–382. [CrossRef]

7. Koh, R.; Tay, I. Saponins Properties, Applications and Health Benefits; Nova Science Publishers, Inc.: New York,
NY, USA, 2012.

8. Barky, A.; Hussein, S.A.; AlmEldeen, A.; Hafez, Y.A.; Mohamed, T.M. Saponins and their potential role in
diabetes mellitus. Diabetes Manag. 2017, 7, 148–158.

9. Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants—A review. Pathophysiology 2015,
22, 95–103. [CrossRef]

10. Man, S.; Gao, W.; Zhang, Y.; Huang, L.; Liu, C. Chemical study and medical application of saponins as
anti-cancer agents. Fitoterapia 2010, 81, 703–714. [CrossRef]

11. Lin, Y.-Y.; Chan, S.-H.; Juang, Y.-P.; Hsiao, H.-M.; Guh, J.-H.; Liang, P.-H. Design, synthesis and cytotoxic
activity of N-modified oleanolic saponins bearing a glucosamine. Eur. J. Med. Chem. 2018, 143, 1942–1958.
[CrossRef]

12. Thakur, M.; Melzig, M.F.; Fuchs, H.; Weng, A. Chemistry and pharmacology of saponins: Special focus on
cytotoxic properties. Bot. Targets Ther. 2011, 1, 19–29. [CrossRef]

13. Hassan, H.S.; Sule, I.M.; Musa, M.A.; Musa, Y.K.; Abubakar, S.M.; Hassan, S.A. Anti-inflammatory activity of
crude saponin extracts from five Nigerian medicinal plants. Afr. J. Tradit. Complementary Altern. Med. 2012,
9, 250–255. [CrossRef] [PubMed]

14. Jang, K.J.; Kim, H.K.; Han, M.H.; Oh, Y.N.; Yoon, H.M.; Chung, Y.H.; Kim, G.Y.; Hwang, H.J.; Kim, B.W.;
Choi, Y.H. CytoAnti-inflammatory effects of saponins derived from the roots of Platycodon grandiflorus in
lipopolysaccharide-stimulated BV2 microglial cells. Int. J. Mol. Med. 2013, 31, 1357–1366. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.jep.2004.05.016
http://www.ncbi.nlm.nih.gov/pubmed/15325725
http://dx.doi.org/10.1016/j.phytochem.2006.10.008
http://www.ncbi.nlm.nih.gov/pubmed/17141815
http://dx.doi.org/10.3390/md13074418
http://www.ncbi.nlm.nih.gov/pubmed/26193286
http://dx.doi.org/10.1007/s11745-004-1298-z
http://www.ncbi.nlm.nih.gov/pubmed/15638249
http://dx.doi.org/10.1016/j.colsurfb.2016.02.049
http://dx.doi.org/10.1007/978-1-4899-1367-8_30
http://dx.doi.org/10.1016/j.pathophys.2015.02.001
http://dx.doi.org/10.1016/j.fitote.2010.06.004
http://dx.doi.org/10.1016/j.ejmech.2017.11.004
http://dx.doi.org/10.1007/s11101-010-9183-z
http://dx.doi.org/10.4314/ajtcam.v9i2.10
http://www.ncbi.nlm.nih.gov/pubmed/23983342
http://dx.doi.org/10.3892/ijmm.2013.1330
http://www.ncbi.nlm.nih.gov/pubmed/23563392


Molecules 2020, 25, 5433 22 of 25

15. Zou, W.; Gong, L.; Zhou, F.; Long, Y.; Li, Z.; Xiao, Z.; Ouyang, B.; Liu, M. Anti-inflammatory effect of
traditional Chinese medicine preparation Penyanling on pelvic inflammatory disease. J. Ethnopharmacol.
2020, 23, 113405. [CrossRef]

16. Gallelli, L. Escin: A review of its anti-edematous, anti-inflammatory, and venotonic properties. Drug Des.
Dev. Ther. 2019, 27, 3425–3437. [CrossRef]

17. Augustin, J.M.; Kuzina, V.; Andersen, S.B.; Bak, S. Molecular activities, biosynthesis and evolution of
triterpenoid saponins. Phytochem 2011, 72, 435–457. [CrossRef]

18. Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins,
biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462.
[CrossRef]

19. Weng, A.; Jenett-Siems, K.; Schmieder, P.; Bachran, D.; Bachran, C.; Görick, C.; Thakur, M.; Fuchs, H.;
Melzig, M. A convenient method for saponin isolation in tumour therapy. J. Chromatogr. B Anal. Technol.
Biomed. Life Sci. 2010, 1, 713–718. [CrossRef]

20. Uddin, M.S.; Ferdosh, S.; Haque Akanda, M.J.; Ghafoor, K.; Rukshana, A.H.; Ali, M.E.; Kamaruzzaman, B.Y.;
Fauzi, M.B.; Shaarani, S.; Islam Sarker, M.Z. Techniques for the extraction of phytosterols and their benefits
in human health: A review. Sep. Sci. Technol. 2018, 53, 2206–2223. [CrossRef]

21. Netala, V.R.; Ghosh, S.B.; Bobbu, P.; Anitha, D.; Tartte, V. Triterpenoid saponins: A review on biosynthesis,
applications and mechanism of their action. Int. J. Pharm. Pharm. Sci. 2015, 7, 24–28.

22. Negi, J.S.; Negi, P.S.; Pant, G.J.; Rawat, M.S.; Negi, S.K. Naturally occurring saponins: Chemistry and biology.
J. Poisonous Med. Plant Res. 2013, 1, 1–6.

23. Yan, L.L.; Zhang, Y.J.; Gao, W.Y.; Man, S.L.; Wang, Y. In vitro and in vivo anticancer activity of steroid
saponins of Paris polyphylla var. yunnanensis. Exp. Oncol. 2009, 31, 27–32. [PubMed]

24. Yan, M.-C.; Liu, Y.; Chen, H.; Ke, Y.; Xua, Q.-C.; Cheng, M.-S. Synthesis and antitumor activity of two natural
N-acetylglucosamine-bearing triterpenoid saponins: Lotoidoside D and E. Bioorg. Med. Chem. Lett. 2006,
16, 4200–4204. [CrossRef] [PubMed]

25. Li, H.; Ni, J. Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones
in a microbial fuel cell. Bioresour. Technol. 2011, 102, 2731–2735. [CrossRef]

26. Patel, K.; Gadewar, M.; Tahilyani, V.; Kumar, D.P. A review on pharmacological and analytical aspects of
diosgenin: A concise report. Nat. Prod. Bioprospect. 2012, 2, 46–52. [CrossRef]

27. Yang, C.-R.; Zhang, Y.; Jacob, M.R.; Khan, S.I.; Zhang, Y.-J.; Li, X.-C. Antifungal activity of C-27 steroidal
saponins. Antimicrob. Agents Chemother. 2006, 50, 1710–1714. [CrossRef]

28. Zhang, R.; Huang, B.; Du, D.; Guo, X.; Xin, G.; Xing, Z.; Liang, Y.; Chen, Y.; Chen, Q.; He, Y.; et al.
Anti-thrombosis effect of diosgenyl saponins in vitro and in vivo. Steroids 2013, 78, 1064–1070. [CrossRef]

29. Zhao, X.; Cong, X.; Zheng, L.; Xu, L.; Yin, L.; Peng, J. Dioscin, a natural steroid saponin, shows remarkable
protective effect against acetaminophen-induced liver damage in vitro and in vivo. Toxicol. Lett. 2012,
214, 69–80. [CrossRef]

30. Li, M.; Han, X.; Yu, B. Synthesis of monomethylated dioscin derivatives and their antitumor activities.
Carbohydr. Res. 2003, 338, 117–121. [CrossRef]

31. Li, W.; Qiu, Z.; Wang, Y.; Zhang, Y.; Li, M.; Yu, J.; Zhang, L.; Zhu, Z.; Yu, B. Synthesis, cytotoxicity, and
hemolytic activity of 6′-O-substituted dioscin derivatives. Carbohydr. Res. 2007, 342, 2705–2715. [CrossRef]

32. Wang, B.; Chun, J.; Liu, Y.; Wang, Y.-S.; Joo, E.-J.; Kim, Y.S.; Cheng, M.S. Synthesis of novel diosgenyl saponin
analogues and apoptosis-inducing activity on A549 human lung adenocarcinoma. Org. Biomol. Chem. 2012,
10, 8822–8834. [CrossRef] [PubMed]

33. Ravikumar, P.R.; Hammesfahr, P.; Sih, C.J. Cytotoxic saponins form the Chinese herbal drug Yunnan Bai Yao.
J. Pharm. Sci. 1979, 68, 900–903. [CrossRef] [PubMed]

34. Mimaki, Y.; Yokosuka, A.; Kuroda, M.; Sashida, Y. Cytotoxic activities and structure–cytotoxic relationships
of steroidal saponins. Biol. Pharm. Bull. 2001, 24, 1286–1289. [CrossRef] [PubMed]

35. Wang, Y.; Zhang, Y.; Zhu, Z.; Zhu, S.; Li, Y.; Li, M.; Yu, B. Exploration of the correlation between the structure,
hemolytic activity, and cytotoxicity of steroid saponins. Bioorg. Med. Chem. 2007, 15, 2528–2532. [CrossRef]

36. Hernandez, J.C.; Leon, F.; Brouard, I.; Torres, F.; Rubio, S.; Quintana, J.; Estevez, F.; Bermejo, J. Synthesis of
novel spirostanic saponins and their cytotoxic activity. Bioorg. Med. Chem. 2008, 16, 2063–2076. [CrossRef]

37. Banoub, J.; Boullanger, P.; Lafont, D. Synthesis of oligosaccharides of 2-amino-2-deoxy sugars. Chem. Rev.
1992, 92, 1167–1195. [CrossRef]

http://dx.doi.org/10.1016/j.jep.2020.113405
http://dx.doi.org/10.2147/DDDT.S207720
http://dx.doi.org/10.1016/j.phytochem.2011.01.015
http://dx.doi.org/10.3109/10409238.2014.953628
http://dx.doi.org/10.1016/j.jchromb.2010.01.026
http://dx.doi.org/10.1080/01496395.2018.1454472
http://www.ncbi.nlm.nih.gov/pubmed/19300413
http://dx.doi.org/10.1016/j.bmcl.2006.05.086
http://www.ncbi.nlm.nih.gov/pubmed/16765595
http://dx.doi.org/10.1016/j.biortech.2010.11.030
http://dx.doi.org/10.1007/s13659-012-0014-3
http://dx.doi.org/10.1128/AAC.50.5.1710-1714.2006
http://dx.doi.org/10.1016/j.steroids.2013.07.003
http://dx.doi.org/10.1016/j.toxlet.2012.08.005
http://dx.doi.org/10.1016/S0008-6215(02)00443-3
http://dx.doi.org/10.1016/j.carres.2007.09.004
http://dx.doi.org/10.1039/c2ob26579f
http://www.ncbi.nlm.nih.gov/pubmed/23042047
http://dx.doi.org/10.1002/jps.2600680731
http://www.ncbi.nlm.nih.gov/pubmed/458613
http://dx.doi.org/10.1248/bpb.24.1286
http://www.ncbi.nlm.nih.gov/pubmed/11725965
http://dx.doi.org/10.1016/j.bmc.2007.01.058
http://dx.doi.org/10.1016/j.bmc.2007.10.089
http://dx.doi.org/10.1021/cr00014a002


Molecules 2020, 25, 5433 23 of 25

38. Demchenko, A.V. Stereoselective Chemical 1,2-cis O-Glycosylation: From ‘Sugar Ray’ to Modern Techniques
of the 21st Century. Curr. Org. Chem. 2003, 7, 35–79. [CrossRef]
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