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Acute respiratory distress syndrome (ARDS) is characterized by protein-rich alveolar
edema, reduced lung compliance and severe hypoxemia. Despite some evidence
of improvements in mortality over recent decades, ARDS remains a major public
health problem with 30% 28-day mortality in recent cohorts. Pulmonary vascular
dysfunction is one of the pivot points of the pathophysiology of ARDS, resulting in a
certain degree of pulmonary hypertension, higher levels of which are associated with
morbidity and mortality. Pulmonary hypertension develops as a result of endothelial
dysfunction, pulmonary vascular occlusion, increased vascular tone, extrinsic vessel
occlusion, and vascular remodeling. This increase in right ventricular (RV) afterload
causes uncoupling between the pulmonary circulation and RV function. Without any
contractile reserve, the right ventricle has no adaptive reserve mechanism other than
dilatation, which is responsible for left ventricular compression, leading to circulatory
failure and worsening of oxygen delivery. This state, also called severe acute cor
pulmonale (ACP), is responsible for excess mortality. Strategies designed to protect
the pulmonary circulation and the right ventricle in ARDS should be the cornerstones
of the care and support of patients with the severest disease, in order to improve
prognosis, pending stronger evidence. Acute cor pulmonale is associated with higher
driving pressure (≥18 cmH2O), hypercapnia (PaCO2 ≥ 48 mmHg), and hypoxemia
(PaO2/FiO2 < 150 mmHg). RV protection should focus on these three preventable
factors identified in the last decade. Prone positioning, the setting of positive end-
expiratory pressure, and inhaled nitric oxide (INO) can also unload the right ventricle,
restore better coupling between the right ventricle and the pulmonary circulation, and
correct circulatory failure. When all these strategies are insufficient, extracorporeal
membrane oxygenation (ECMO), which improves decarboxylation and oxygenation and
enables ultra-protective ventilation by decreasing driving pressure, should be discussed
in seeking better control of RV afterload. This review reports the pathophysiology of
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pulmonary hypertension in ARDS, describes right heart function, and proposes an RV
protective approach, ranging from ventilatory settings and prone positioning to INO
and selection of patients potentially eligible for veno-venous extracorporeal membrane
oxygenation (VV ECMO).

Keywords: ARDS, right ventricle, VV ECMO, echocardiography, acute cor pulmonale (ACP)

INTRODUCTION

Acute respiratory distress syndrome (ARDS) is characterized by
protein-rich alveolar edema, reduced lung compliance and severe
hypoxemia (Thompson et al., 2017). Despite some evidence of
improvements in mortality over recent decades (Brun-Buisson
et al., 2004; Phua et al., 2009) due to better understanding
of its pathophysiology and routine application of protective
mechanical ventilation, ARDS remains a major public health
problem with an approximately 30% 28-day mortality in recent
cohorts (Bellani et al., 2016; Combes et al., 2018; Constantin et al.,
2019). Pulmonary vascular dysfunction (Snow et al., 1982; Price
et al., 2012) is one of the pivot points of the pathophysiology,
resulting in a certain degree of pulmonary hypertension, higher
levels of which are associated with morbidity and mortality
(Bull et al., 2010). The hemodynamic consequences of such
remodeling of the pulmonary circulation has led clinicians to
pay attention to the right ventricle as the deleterious impact of
right ventricular (RV) failure on prognosis is well demonstrated
(Mekontso Dessap et al., 2016).

This review reports the pathophysiology of pulmonary
hypertension and RV injury, describes RV function, and
explains the interest of proposing a RV protective approach
to manage ARDS patients, ranging from ventilatory settings
and prone positioning to nitric oxide (NO) inhalation and
selection of patients potentially eligible for veno-venous
extracorporeal membrane oxygenation (VV ECMO) in this
context. A few specificities of ARDS-related COVID-19, if any,
will be mentioned.

PATHOPHYSIOLOGY OF RIGHT
VENTRICULAR INJURY IN ACUTE
RESPIRATORY DISTRESS SYNDROME

Right Ventricular Physiology
The right ventricle is composed of the filling chamber and the
outflow chamber. Under normal conditions, the right ventricle
ejects the blood into the pulmonary circulation, a system of
low resistance and high compliance. In contrast to the left
ventricle, its isovolumetric contraction pressure is very low and
its isovolumetric relaxation is insignificant (Redington et al.,
1990): it acts as a passive conduit. This is why its systolic function
is sensitive to any increase in pulmonary vascular resistance
(PVR) with no adaptation reserve, leading to dysfunction and
ultimately to failure. However, the right ventricle is able to adapt
to a certain degree of pulmonary hypertension by dilating, due to
its high diastolic compliance (Laks et al., 1967).

Pulmonary Vascular Dysfunction
ARDS is characterized by acute onset hypoxemia (ARDS
Definition Task Force et al., 2012) with increased pulmonary
vascular permeability, leading to non-cardiogenic pulmonary
edema (Ashbaugh et al., 1967). Along with alveolar damage,
ARDS directly causes injury to the pulmonary circulation,
through several pathophysiological mechanisms, involving
endothelial dysfunction, distal pulmonary vascular occlusion at
the level of the capillaries, pulmonary vasoconstriction, extrinsic
vessel occlusion by alveoli distension and ultimately vascular
remodeling (Price et al., 2012). All of these phenomena lead to
elevation of PVR, pre-capillary pulmonary hypertension and
increased RV afterload.

In COVID-19, a certain “protection” of the pulmonary
circulation could occur with first the development of pulmonary
angiogenesis (Ackermann et al., 2020) and second the virtual
absence of hypoxic pulmonary vasoconstriction (Archer et al.,
2020). Conversely, proximal obstruction of the pulmonary
circulation has been reported to be frequent.

Focus on the Effect of Mechanical
Ventilation
Inadequate mechanical ventilation may have a deleterious effect
on RV function. During spontaneous breathing in a healthy
subject, RV function is optimal with adequate venous return
due to negative pleural pressure (Guyton et al., 1957), and
RV afterload is limited because of a low transpulmonary
pressure (TPP) as lung compliance is normal. In ARDS, a
situation where lung compliance is decreased, positive pressure
ventilation induces increased TPP at least during tidal ventilation
and sometimes during expiration in the case when too high
a positive end-expiratory pressure (PEEP) is applied. As a
consequence, the pulmonary capillaries are stretched and their
caliber reduced, resulting in an increase in PVR (Whittenberger
et al., 1960; West et al., 1964). Cyclic increase in PVR
during tidal ventilation is responsible for cyclic changes in RV
afterload, and then in RV outflow (Vieillard-Baron et al., 1999)
eventually leading to pulse pressure variations (Figure 1). At
the same time, ventilator settings may indirectly impact the
pulmonary circulation through changes in PaO2 and PaCO2,
both of which strongly mediate pulmonary vasoconstriction
(Yamamoto et al., 2001).

It was suggested at least at the beginning of the COVID-
19 pandemic that lung compliance was less decreased than in
classical ARDS (Gattinoni et al., 2020), thus potentially inducing
less interaction with the pulmonary circulation. This is, however,
still questionable.
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FIGURE 1 | Acute cor pulmonale in a patient ventilated for ARDS and in shock and completely adapted to the respirator. (A) A mid-esophageal 4-chamber view
demonstrated severe RV dilatation with paradoxical septal motion. (B) Invasive low blood pressure with significant pulse pressure variation (blue arrows indicate
insufflation) through a radial catheter. Central venous pressure was also elevated. LV, left ventricle; LA, left atrium; RV, right ventricle.

Right Ventricular Failure and Acute Cor
Pulmonale
Acute cor pulmonale (ACP) is the last stage of the uncoupling
between the right ventricle and the pulmonary circulation. It
could be understood, especially in its most severe form, as an
RV failure state. RV afterload is suddenly increased, and RV
ejection is impaired. In consequence, the right ventricle increases
in size. This RV dilatation participates in circulatory failure by
compressing the left ventricle (LV) (Scharf et al., 1979). Moreover,
in normal conditions, RV and LV systoles occur simultaneously,
with the right and left ventricles starting and ending contraction
almost at the same time. When RV systole is overloaded, RV
contraction is prolonged, so that the right ventricle continues to
push after the left ventricle has ended, and the pressure in the RV
cavity is then higher than the pressure in the LV cavity during a
short instant (Elzinga et al., 1980). This explains the paradoxical
septal motion observed in ACP (Figure 1A).

ACUTE COR PULMONALE: INCIDENCE,
RISK FACTORS, AND IMPACT ON
OUTCOME

Prior to the widespread use of protective ventilation, ACP was
reported in almost 60% of patients (Jardin et al., 1985). However,
all patients were ventilated with high tidal volume and plateau
pressure (Pplat) and all patients with severe RV dilatation finally
died (Jardin et al., 1985). Since the era of protective ventilation,
the incidence of ACP has declined to between 20 and 30%
(Vieillard-Baron et al., 2001; Page et al., 2003; Mekontso Dessap
et al., 2010, 2016), but may still be as high as 50% in the most
severe ARDS (Vieillard-Baron et al., 2007). This leads physicians

to take into consideration RV function in management strategies
of patients with moderate to severe ARDS.

We still lack convincing data on the incidence of RV
failure/ACP in ARDS related to COVID-19. One preliminary
study in a very small series of patients reported an incidence
of 17% (Evrard et al., 2020). Other studies not only including
critically ill patients reported an RV dilatation in 35% of cases
(Dweck et al., 2020) or an impact of RV dilatation on ICU transfer
or death (Soulat-Dufour et al., 2021). In 90 COVID-19 patients,
Bleakley et al. (2021) reported that radial RV dysfunction was
common, while the longitudinal function was relatively spared.
Micro-occlusive vasculopathy was also reported in COVID-19
by dual energy CT and was more clearly associated with RV
dysfunction than the pulmonary embolism obstruction score
(Ridge et al., 2020).

The largest study reporting risk factors for developing ACP
was performed in 752 patients with moderate to severe ARDS
submitted to protective ventilation (Mekontso Dessap et al.,
2016). Driving pressure ≥ 18 cmH2O, PaCO2 ≥ 48 mmHg,
PaO2/FiO2 < 150 mmHg and pneumonia as causes of ARDS
identified patients at risk of ACP. Incidence of ACP ranged
from less than 10% when only one risk factor was present to
close to 60% with 3–4 risk factors (Mekontso Dessap et al.,
2016). Interestingly, neither Pplat nor PEEP was reported as
a potential risk factor. An explanation could be that a low
PEEP was homogenously applied (mean 8 cmH2O) and Pplat
was maintained below 27 cmH2O in most patients. In other
conditions, they both may affect pulmonary circulation and RV
function. A high Pplat is associated with RV failure, especially
when it reflects high TPP (Vieillard-Baron et al., 1999). The
“safe Pplat” for the right ventricle was suggested to be below
27 cmH2O (Jardin and Vieillard-Baron, 2007). Pplat is not always
a surrogate of lung stress, because it reflects the compliance of
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the respiratory system (Gattinoni et al., 2004; Chiumello et al.,
2008) and chest wall compliance must be taken into account,
especially in obese patients. Monitoring of pleural pressure with
an esophageal balloon could be of value in these patients, while
data are missing. This could also be a specificity of COVID-19
patients who could tolerate higher Pplat, as many patients are
obese and the association between Pplat and outcome in this
subpopulation is unclear (De Jong et al., 2018).

The potential effect of PEEP on RV function is more
questionable. Because of the opposite effect of lung distension
on intra- and extra-alveolar pulmonary blood vessels, the
relationship between lung distension and PVR is U-shaped
(Whittenberger et al., 1960). Thus, the choice of the level of PEEP
set by the clinician can directly affect the RV afterload because
poor lung aeration on one side and alveolar overdistension on
the other side can both raise PVR. In an experimental study,
RV function was impaired when the lung was de-recruited and
normalized after re-aeration (Duggan et al., 2003). As a matter
of fact, lung CT-scan has shown a low amount of potentially
recruitable lung (and so a high potential for overdistension) in
most ARDS patients (Gattinoni et al., 2006) and a high PEEP was
shown to induce hemodynamic instability more frequently in a
randomized controlled trial, while no information was given on
RV function, which was associated with worse outcome [Writing
Group for the Alveolar Recruitment for Acute Respiratory
Distress Syndrome Trial (ART) Investigators, 2017]. Despite a
strict limitation of Pplat, a PEEP of 15 cmH2O produced a
significant increase in PVR associated with a decrease in cardiac
output (Schmitt et al., 2001). The reasonable goal of PEEP is
then to reach a balance between enough recruitment and no
or minimal overdistension. In other words, the goal is to set
the best PEEP to recruit the zones of the collapsed lung, which
typically characterize ARDS (Puybasset et al., 2000), without
inducing alveolar dead space. Nowadays, no definitive manner to
determine the best PEEP is available, but RV function evaluation
can be used as a monitoring parameter to avoid PEEP resulting in
too much overdistension.

As briefly discussed above, hypercapnia induces pulmonary
vasoconstriction (Kiely et al., 1996). Hypercapnia is the
consequence of respiratory strategy, i.e., protective ventilation
designed to reduce ventilator-induced lung injury, but which also
reflects the severity of ARDS (Nuckton et al., 2002).

Finally, one of the prognostic factors in ARDS is
hemodynamic instability. And RV failure is one of its
mechanisms. While still debatable, many arguments suggest that
pulmonary vascular dysfunction and RV failure/ACP could thus
have a negative impact on in-hospital mortality (Bull et al., 2010;
Mekontso Dessap et al., 2016). This leads to discussion of the
potential interest of an RV protective ventilation strategy.

EVALUATION OF RIGHT VENTRICULAR
FUNCTION AT THE BEDSIDE

Historically, a pulmonary arterial catheter has been used to
evaluate RV function at the bedside. Some of the key elements of
monitoring proposed were as follows: low cardiac output, right

atrial pressure (RAP) higher than pulmonary artery occlusion
pressure (PAOP), and pulmonary hypertension. Recently, the
so-called transpulmonary gradient, i.e., the difference between
mean pulmonary artery pressure and PAOP, was reported to be
frequently abnormally increased and associated with outcome
(Bull et al., 2010). However, use of a pulmonary arterial catheter
has progressively declined and critical care echocardiography has
been progressively implemented and performed in ARDS (Dres
et al., 2018). Echocardiographic definition of RV injury is still
challenging but in ARDS ACP or severe RV dilatation accurately
reflects RV failure, especially when RAP is elevated (Vieillard-
Baron et al., 2018). It is recommended by experts in the field
to monitor RAP and invasive blood pressure and to perform
echocardiography (Vieillard-Baron et al., 2016).

RIGHT VENTRICULAR PROTECTIVE
STRATEGY

The main “rules” for protecting the RV in ARDS, by means of
avoiding or correcting RV failure, are reported in Figure 2. While
in our usual practice, we apply systematic daily evaluation of
RV function by echocardiography in ARDS patient, Figure 2
also allows to reemphasize that when echocardiography is not
so easily available, pulse pressure variation should be understood
as a marker of a deleterious interaction between the RV and the
ventilator and then requires further hemodynamic evaluation by
echocardiography.

Ventilatory Strategy
As largely discussed above in the physiological rationale,
Pplat should be maintained below 27 cmH2O, and permissive
hypercapnia should be limited by careful increase in respiratory
rate and by replacing the heat and moisture exchanger by a
heated humidifier. Oxygenation should also be increased without
too much PEEP (Vieillard-Baron et al., 2013), with a view
to optimizing arterial oxygen delivery rather than PaO2/FiO2.
Indeed, it has long been known that increased PEEP may improve
oxygenation but reduce oxygen delivery because of its potential
negative hemodynamic effect (Kumar et al., 1970).

Prone Positioning
In the most severe ARDS, it is unlikely that all of the
predefined goals of an RV protective approach will be reached.
In this situation, prone positioning has been reported to
efficiently unload the right ventricle (Vieillard-Baron et al.,
2007). It improves oxygenation without increasing PEEP and
decreases hypercapnia and Pplat due to lung recruitment of the
dependent areas of the lung without overdistension of the non-
dependent areas (Guérin et al., 2020), rendering lung ventilation
more homogeneous.

To optimize hemodynamic improvement, prone positioning
should be performed without chest support, which may be
responsible for a decrease in systemic venous return and cardiac
output due to excessive elevation of intra-thoracic pressure
(Chiumello et al., 2006; Brown et al., 2013).
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FIGURE 2 | Right ventricle protective strategy. Principles for detection and management of right ventricular (RV) failure in patients with ARDS. This should combine
invasive blood pressure monitoring and echocardiography. In the case of significant pulse pressure variation (PPV, Panel A), critical care echocardiography must be
performed. It usually demonstrates cyclic decrease in RV outflow at each insufflation (Panel B on an upper esophageal view with pulsed wave Doppler into the main
pulmonary artery) with either isolated RV dilatation or acute cor pulmonale. Management is based on three different strategies: hemodynamic, respiratory, and
specific. VV ECMO can be considered in the case of persistent RV failure. PEEP, positive end-expiratory pressure; iNO, inhaled nitric oxide; PDESi,
phosphodiesterase type 5 inhibitor; PGI2, prostaglandin I2; VV ECMO, veno-venous extracorporeal membrane oxygenation.

Hemodynamic Support and Nitric Oxide
Inhalation
When RV failure induces circulatory failure, hemodynamic
support is based on two key principles: (i) strongly limit fluid
expansion and (ii) restore blood pressure.

Fluid expansion may by itself induce RV failure (Patterson
and Starling, 1914) and increase RAP and systemic congestion,
leading to acute kidney injury (Chen et al., 2016, 2017).
Moreover, it is very unlikely that fluid expansion increases
cardiac output, even though significant pulse pressure variation,
a marker of LV preload dependency, is observed (Vieillard-
Baron et al., 2016; Figure 1). Correction of blood pressure
by infusion of catecholamines helps improve RV function. In
other experimental models of RV failure-related pulmonary
circulation obstruction, norepinephrine decreases RV wall
stress and RV end-diastolic pressure and improves RV stroke
volume, unlike fluid expansion (Ghignone et al., 1984). One
of supposed mechanisms is that norepinephrine corrects the
functional RV ischemia induced by high RV wall stress
combined with low blood pressure (Guyton et al., 1954;
Vlahakes et al., 1981). The same observation was made in

lung injury (Prewitt and Ghignone, 1983; Vieillard-Baron et al.,
2003). In the case of associated LV systolic dysfunction, as
observed in ARDS-related septic shock, dobutamine acting on
both ventricles may be preferred, though there is no study
supporting this approach.

Levosimendan is another inotropic drug called inodilator,
acting via troponin C calcium binding. It was proposed
when there is uncoupling between the right ventricle and the
pulmonary circulation. This is strongly physiologically based in
ARDS, but only one pilot study suggests an improvement in
RV performance in ARDS patients (Morelli et al., 2006). Due to
the potential side effects of levosimendan, more data are needed
before making any recommendation.

Nitric oxide inhalation has nowadays been abandoned in
ARDS after studies and meta-analyzes reported no beneficial
effect on outcome (Gebistorf et al., 2016). However, the use of
NO for a hemodynamic indication in a subgroup of patients with
refractory RV failure despite respiratory optimization has never
been evaluated. NO inhalation has been found to significantly
decrease RV afterload in ARDS, especially in the case of
hypercapnia (Puybasset et al., 2000).
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In COVID-19-related ARDS, NO inhalation has been poorly
studied, but the rationale is not strongly favored due to the virtual
absence of hypoxic vasoconstriction. A few studies have reported
an improvement in oxygenation (Longobardo et al., 2021; Robba
et al., 2021), especially when cardiac biomarkers were elevated
(Garfield et al., 2021), but no association was reported with
RV function improvement (Bagate et al., 2020). However, the
subgroup of patients with RV failure was not specially studied.
In the absence of clear evidence, NO inhalation could be initiate
when RV failure is persistent despite RV protective ventilator
strategy or when prone position is contraindicated.

Veno-Venous Extracorporeal Membrane
Oxygenation
The EOLIA trial suggested that ECMO could be effective in some
of the most severe cases of ARDS, but failed to demonstrate
a 20% increase in survival (Combes et al., 2018). One of
the reasons, despite the non-negligible proportion of crossover
between control patients and ECMO patients, could be that
criteria for selecting eligible patients were mainly based on blood
gas analysis, as proposed by the Berlin classification (Ferguson
et al., 2012). By easily controlling blood oxygenation and
decarboxylation (Schmidt et al., 2013), VV ECMO suppresses two
of the major factors of raised PVR in ARDS and could then be
sufficient to unload the right ventricle without the use of veno-
arterial (VA) ECMO (Miranda et al., 2015). VV ECMO could
also promote ultra-protective ventilation which could benefit the
right ventricle by a more pronounced reduction of Pplat and
driving pressure (Schmidt et al., 2019). Considering the inevitable
complications of VV ECMO, including severe bleeding (Combes
et al., 2018), better selection of patients is essential. How this
subgroup of patients with severe ARDS and RV failure could be
considered as the ideal target remains to be evaluated, while a
recent pilot study showed in a non-selected echocardiographic
cohort of severe ARDS patients fulfilling the EOLIA criteria
that driving pressure and RV failure were the only two factors
associated with ICU mortality, in contrast to classical severity
markers in ARDS (Petit et al., 2021). Pre-ECMO implantation RV

dysfunction is not rare and has an approximately 30% incidence
of RV dilatation (Lazzeri et al., 2018).

Another potential technique to support the right ventricle is
extracorporeal CO2 removal. Data are too scarce for discussion of
any recommendation (Papazian et al., 2019), but an experimental
study in a porcine model of ARDS showed that CO2 removal is
able to decrease RV afterload and to improve coupling between
the right ventricle and the pulmonary circulation (Morimont
et al., 2015). Such a technique could be efficient and valuable
in protecting the right ventricle in the case of severe ARDS
with significant hypercapnia and RV failure despite application
of an RV protective strategy, but probably does not promote
ultraprotective ventilation in patients with moderate ARDS
(McNamee et al., 2021).

CONCLUSION

Considering recent studies, RV failure in ARDS with its impact
on outcome is now well recognized, as are its risk factors. Many
studies suggest that to optimize respiratory settings it is essential
to monitor RV function, while clinical impact of such a strategy
on the outcome remains unclear. The RV protective approach
should be prospectively evaluated in the future to improve the
prognosis of the most seriously ill patients. ECMO could be part
of this strategy in the most extreme situations.
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