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ABSTRACT

Altered cell metabolism is a hallmark of cancer and critical for its development. 
Particularly, activation of one-carbon metabolism in tumor cells can sustain 
oncogenesis while contributing to epigenetic changes and metabolic adaptation during 
tumor progression. We assessed whether increased one-carbon metabolism activity is 
a metabolic feature of invasive ductal carcinoma (IDC). Differences in the metabolic 
profile between biopsies from IDC (n = 47) and its adjacent tissue (n = 43) and between 
biopsies from different breast cancer subtypes were assessed by gas spectrometry 
in targeted (Biocrates Life Science®) and untargeted approaches, respectively. The 
metabolomics data were statistically treated using MetaboAnalyst 4.0, SIMCA P+ 
(version 12.01), Statistica 10 software and t test with p < 0.05. The Cancer Genome 
Atlas breast cancer dataset was also assessed to validate the metabolomic profile 
of IDC. Our targeted metabolomics analysis showed distinct metabolomics profiles 
between IDC and adjacent tissue, where IDC displayed a comparative enrichment 
of metabolites involved in one-carbon metabolism (serine, glycine, threonine, and 
methionine) and a predicted increase in the activity of pathways that receive and 
donate carbon units (i.e., folate, methionine, and homocysteine). In addition, the 
targeted and untargeted metabolomics analyses showed similar metabolomics profiles 
between breast cancer subtypes. The gene set enrichment analysis identified different 
transcription-related functions between IDC and non-tumor tissues that involved one-
carbon metabolism. Our data suggest that one-carbon metabolism may be a central 
pathway in IDC and even in general breast tumors, representing a potential target 
for its treatment and prevention.

www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 18), pp: 1637-1652

           Research Paper

www.oncotarget.com


Oncotarget1638www.oncotarget.com

INTRODUCTION

Breast cancer is the most common malignancy 
in women and the leading cause of their cancer-related 
deaths, with an estimated 23% prevalence and 14% 
mortality rate worldwide [1, 2]. The invasive ductal 
carcinoma (IDC) accounts for 75% of reported breast 
cancer cases. This breast tumor usually rises from lobular 
and ductal epithelial cells at the terminal duct lobular unit, 
comprising different subtypes based on histological and 
molecular features [3–5].

Different breast cancer subtypes (i.e., luminal 
A, luminal B, HER2 enriched, and basal-like) reflect 
the disease heterogeneity [3, 5–7]. These are defined 
by genetic changes that result in the overexpression of 
oncogenes and downregulation of tumor suppressor genes, 
generating different malignant phenotypes [8–10]. Several 
oncogenes (i. e., RAS, PI3K, TP53 and MYC) can regulate 
metabolic pathways that are critical for cell survival in the 
inhospitable tumor microenvironment, where oxygen and 
nutrients sources are highly limited [11, 12].

Accumulating evidence has highlighted that cancer 
cells differ from their normal counterparts in nutrient use, 
biomolecule synthesis and energy generation. In the last 
decade, distinct metabolic patterns between normal and 
cancer cells were recognized as a hallmark of the disease 
[13]. Screening for metabolic signatures of tumor cells 
by “omics” platforms has substantially contributed to a 
better understanding of cancer metabolism and behavior 
[14, 15].

Targeted or non-targeted metabolomics refers to 
the analysis of the metabolite pool of a living system 
(the metabolome). Thus, identifying metabolic changes 
using metabolomics may have a potential impact on the 
understanding and treatment of cancer [16].

One-carbon metabolism is activated in some 
cancers and can provide the building blocks and reducing 
power required to maintain high cell proliferation 
rates, a key feature of oncogenesis [17]. This pathway 
encompasses a broad range of biosynthetic reactions 
in both cytoplasm and mitochondria that catabolize 
reactions in different carbon sources to derive one-
carbon (methyl) units, integrating several nutrients 
during this process. The generated carbon units can 
sustain fundamental cellular functions, including cellular 
biosynthesis, redox homeostasis and the epigenetic state 
[17, 18].

Mutations in TP53 and MYC, which are 
common in breast tumors, seem to increase one-carbon 
metabolism activity [19–23]. Aiming to contribute to 
the understanding of breast carcinogenesis and the 
identification of potential treatment targets, here we 
assessed whether the increased activity of one-carbon 
metabolism is a metabolic feature of breast cancers 
and whether it may represent a potential target for its 
treatment and prevention.

RESULTS

Targeted metabolomics profile of IDC and 
non-tumor adjacent breast tissue samples from 
breast cancer patients

The first aim of this work was to analyze 
metabolomic differences, mainly in metabolites 
associated with one-carbon metabolism, by applying a 
targeted metabolomics approach that considered only 
low-molecular-weight (m/z < 1500) ionizable molecules 
present in at least 50% of samples from each group. We 
searched for comparative differences in the metabolite 
profiles of IDC and non-tumor adjacent breast tissues.

For this purpose, we applied an unsupervised 
principal component analysis (PCA) that showed strong 
group separation between the two groups (Figure 1A), 
suggesting a specific metabolomics signature for each 
condition. This was further confirmed by applying partial 
least square discriminant analysis (PLS-DA - Figure 1B), 
which demonstrated robust group separation between 
groups and displayed good cross-validation results (max 
components = 5; C-V method = 10-fold CV; performance 
measure = Q2 - Supplementary Figure 1).

Multivariate classification analyses were 
complemented by applying random forest (RF) analyses, 
a supervision class prediction model, to a) determine 
the capacity for a metabolomics profile to accurately 
classify tissue samples into their respective groups and 
b) identify the most important metabolites for class 
prediction and, hence, the strongest correlation with 
the respective disease. RF analysis from the metabolic 
profiles accurately classified almost 100% of the samples 
between their respective IDC and non-tumor adjacent 
breast tissue groups, with a 0.0108 out-of-bag (OOB) 
class error for both groups (Figure 2A). The major 
metabolites contributing to the classification are shown 
in Figure 2B.

Altered metabolites

After multivariate statistics, the Student’s 
T-test was applied to search for metabolites that were 
significantly different between the IDC and non-tumor 
adjacent tissues (p < 0.05, Benjamini-Hochberg false 
discovery rate) and highlighted 99 metabolites with a 
significant difference in concentration between the two 
groups. In some of these metabolites, it was possible 
to apply a fold change (FC) analysis to determine 
the changes included in the groups (Supplementary 
Table 1). We further observed, by hierarchical analysis 
(multivariate statistics), whether these molecules could 
define the IDC metabolic status based on their individual 
relative concentration (Figure 3). All metabolic analyses 
were validated using software R. The results are available 
in Supplementary Material 3.
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Figure 2: Random forest (RF) metabolite classification and its variables of importance in IDC and non-tumor adjacent 
breast tissues. BC-T: IDC; BC-S: non-tumor adjacent breast tissue. (A) Supervised class prediction analysis comparing BC-T and 
BC-S, with a 0.0108 overall classification error (0.0 for tumor tissue and 0.0233 for adjacent tissue); (B) Metabolites showing the most 
differentiation between BC-T and BC-S were selected from the RF and T test, in which the color code indicates green for low and red for 
high. BC-T: invasive ductal carcinoma - IDC | BC-S: non-tumor adjacent breast tissue. Asn/Asp/Glu: asparagine, aspartate, glutamate ratio; 
Gln/gln/asp: glutamine, glutamine, aspartate ratio; Asn/Asp/Phe: asparagine, aspartate, phenylalanine ratio; PyrGlu: pyruvate glutamate; 
GCKR: sum of hexoses; lactate/GCKR: lactate GCKR ratio; Gly: glycine; PC ae C34:3: phosphatidylcholine ae C34:4; Ala-Asp-Glu, sum 
alanine + aspartate + glutamine; PUFA ARAC PC aa: phosphatidylcholine enriched with arachidonic acid; PUFA SM: sphingomyelin 
enriched with polyunsaturated fatty acid.

Figure 1: Tissue metabolomics multivariate analysis. BC-T: IDC; BC-S: non-tumor adjacent breast tissue. (A) Principal 
component analysis (PCA) showing the natural separation between breast tumor and non-tumor adjacent breast tissues. (B) Partial least 
square discriminant analysis (PLS-DA) showing robust separation among the groups (BC-T vs BC-S). Each point in the plot corresponds 
to a tissue sample.
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Figure 3: Metabolite hierarchical clustering in IDC and non-tumor adjacent breast tissues. BC-T: IDC; BC-S: 
non-tumor adjacent breast tissue. Horizontal columns: relative concentration of each biologically relevant metabolite 
displaying distinct metabolic patterns between BC-T and BC-S. Each bar in the horizontal columns represents the 
expression intensity. For example, the blue scale indicates a decreased level, while the red scale indicates an increased 
level. The dendrogram on the left was codirected based on the metabolite intensity expression profiles. GCKR: sum of 
hexoses; lactate/GCKR: lactate, glucose ratio; Lac: lactate; Asp: aspartate, Glu: glutamine; Ala-Asp-Glu: sum alanine + 
aspartate + glutamine; BCAA: branched-chain amino acid; Xle: sum leucine + isoleucine; Leu: leucine; Gln: glutamine; 
Gly: glycine; Gluc AA: gluconeogenic amino acids; Pro: proline; Asn: asparagine; Thr: threonine; Ala: alanine; FADS1: 
desaturated fatty acid (indirect analysis); C14:1/C4: tetradecanoylcarnitine, butyrylcarnitine ratio; C5/C4: valerylcarnitine, 
butyrylcarnitine ratio; C3/C4: propionyl, butyrylcarnitine ratio; PUFA ARAC PC ae/SFA: phosphatidylcholine enriched 
with arachidonic acid fatty acid and saturated fatty acid ratio; PC aa C34:3: phosphatidylcholine ae C34:3; Asn/Asp/Phe: 
asparagine, aspartate, phenylalanine ratio; Asn/Asp/Glu: asparagine, aspartate, glutamine ratio; Gln/gln/asp: glutamine, 
glutamine, aspartate ratio.
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Figure 4: Metabolite set enrichment analysis (MSEA) of IDC. The horizontal bar graph summarizes 50 metabolic pathways 
using metabolites that were significantly altered in IDC.

The set of metabolites that were significantly 
different between the groups was subjected to pathway 
enrichment analysis to elucidate the metabolic 
pathways that were perturbed in IDC (Figure 4). The 
top 15 pathways enriched in these tumor samples all 
involved one-carbon metabolism: ammonia recycling, 
urea cycle, aspartate metabolism, glycine and serine 
metabolism, carnitine synthesis, arginine and proline, 
alanine metabolism, oxidation of branched-chain fatty 
acids, malate-aspartate shuttle, spermidine and spermine 
biosynthesis, glutamate metabolism, glucose-alanine 
cycle, methionine metabolism, phenylalanine and tyrosine 
metabolism, and glutathione metabolism. A detailed 
analysis including all 55 identified pathways is provided 
in Supplementary Table 2, and the metabolic pathway 

network of the significantly altered metabolites in IDC is 
presented in Figure 5.

Targeted metabolomics profile of breast  
cancer subtypes

After exploring the metabolomic changes in IDC, our 
next step was to check if these changes were independent 
of the IDC subtype, as described in Supplementary 
Material 1 - Supplementary Table 3, especially changes 
associated with one-carbon metabolism.

According to our results, it was not possible to 
identify metabolic differences between breast cancer 
subtypes (Figure 6). After that, we performed a metabolic 
validation through an untargeted approach in a new cohort 
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Figure 5: Metabolic network map between IDC and non-tumor adjacent breast tissues according to the main 
metabolites identified in this study. BC-T: IDC; BC-S: non-tumor adjacent breast tissue. Box plots: red, normalized concentration 
of the metabolite in BC-T. Box plots: green, normalized concentration of the metabolite in BC-S. In one-carbon metabolism, carbon 
unit generation into different cellular outputs involves a complex containing three pathways: the folate cycle, the methionine cycle, and 
the transsulfuration pathway. Compared with non-tumor breast adjacent tissue, metabolites that fuel one-carbon metabolism (serine, 
glycine, threonine, and methionine), in addition to classical pathways previously described in cancer (i. e., glycolysis, glutaminolysis, 
fatty acid metabolism), were all increased in IDC. These metabolites seem to work together to meet most requirements of metabolic 
pathways involved in cell proliferation, including cellular biosynthesis (nucleotide and amino acid synthesis, and membrane formation), 
maintenance of the genome (through the nucleotide pool), epigenetic regulation (methylation), and regulation of the redox state. GCKR: 
sum of hexoses; G6P: glucose 6-phosphate; F6P: fructose 6-phosphate; F-1,6BP: fructose 1,6-bisphosphate; G3P: glyceraldehyde 
3-phosphate; 3-PG: 3-phosphoglycerate; 1-3 BG: 1,3-bisphosphoglycerate; 2-PG: 2-phosphoglycerate; PEP: phosphoenolpyruvic acid; 
ADMA: asymmetric dimethylarginine; NO: nitric oxide; ROS: reactive oxygen species; BCAA: branched-chain amino acid.
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Figure 6: Metabolic targeted multivariate analysis. Red: Her-2; green: luminal A; purple: luminal B; blue: luminal B Her; pink, 
triple negative. (A) Principal component analysis (PCA) showing that was not possible to identify metabolic differences between breast 
cancer subtypes (B) Partial least square discriminant analysis (PLS-DA) showing that there was no metabolic separation between tumor 
subtypes.

of breast cancer subtypes to verify if its behavior was 
common to subtypes.

Untargeted metabolomics profile of breast 
cancer subtypes

Our next step was to compare the untargeted 
metabolomics profile of different human breast tumor 
subtypes to examine whether there was a single 
metabolomics signature for this heterogeneous disease. 
The tumor samples (n = 42) were obtained from the AC 
Camargo Cancer Center biobank, and their metabolomics 
profiles were assessed through an untargeted approach by 
LC-MS analysis (global metabolomics profile). Principal 
component analysis (PCA) and partial least squares 
discriminant analysis (PLS-DA) did not show a relevant 
metabolic separation (Figure 7). The raw data for this 
analysis are available in Supplementary Material 2.

Both by targeted and untargeted approaches, the 
metabolic evaluation among breast cancer subtypes was 
similar, suggesting that the metabolic changes presented 
by the IDC may be a universal characteristic of the 
disease. In this scenario, our next step was to perform a 
genetic validation between tumor and non-tumor samples.

Functional enrichment analysis of differentially 
expressed genes - validation cohort

To assess whether the upregulation of one-carbon 
metabolism may be a general feature of IDC and whether 

this could be due to gene alterations, we performed a 
differential gene expression analysis comparing tumor and 
non-tumor samples from an independent patient cohort 
using the Cancer Genome Atlas breast cancer dataset 
(TCGA-BRCA) [24]. Only IDC samples from TCGA 
were included in this analysis. In Table 1, we highlight 10 
processes that were biologically capable of differentiating 
breast cancer and normal tissue. Among them, we 
observed genes involved in one-carbon metabolism, 
specifically highlighted in Table 2, for the metabolic 
process *GO: 0008152. We then performed gene set 
enrichment analysis (GSEA) (Figure 8) [25].

DISCUSSION

Aiming to contribute to data on the regulation 
of biological pathways underlying the malignant 
transformation of IDC, we assessed the metabolic 
profiles of human biopsies from primary tumors and 
their adjacent tissues. Our analysis displayed distinct 
metabolomic patterns with almost no overlap between 
IDC and adjacent tissue. A predominance of one-carbon 
metabolism markers characterized the tumor metabolic 
phenotype, as further supported by genomic data from 
external samples. Furthermore, similar metabolomics 
profiles between distinct IDC and breast cancers subtypes 
were also observed. Our findings suggest that one-carbon 
metabolism is involved in IDC carcinogenesis and may be 
a therapeutic molecular target, irrespective of its subtype. 
They also point out that this metabolic alteration may be 
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a universal feature of breast cancers, but this hypothesis 
should be confirmed in the future.

It has been reported that approximately 10% of 3-PG 
are diverted from the glycolytic pathway to one-carbon 
metabolism by subsets of tumor cells (including breast 
tumors) and used in the de novo biosynthesis of serine 
(SSP), its main carbon donor [22, 23, 26]. Accordingly, 
in our metabolomics analysis, we observed a decreased 
sum of hexoses (GCKR) and increased serine and lactate 
levels in IDC samples (vs. adjacent tissue), suggesting 
that glycolysis may participate in the de novo synthesis of 
serine in this breast tumor.

Furthermore, our gene set enrichment analysis 
highlighted the activation of glycolysis-gluconeogenesis 
and insulin signaling pathways. Gluconeogenesis can 
contribute up to 70% of the total serine synthesized under 
high metabolic demand, as observed during carcinogenesis 
[19, 27]. Insulin is a major regulator of cell metabolism 
and regulates the translocation of glucose transporter 4 
(GLUT4) to the plasma membrane, a process that initiates 
cellular glucose uptake (glycolysis), and overexpression 
of its receptors is often observed in tumor cells and 
associated with poor survival in patients with breast cancer 
[28]. Taken together, our data suggest an important role 
of these pathways and their importance for the metabolic 
plasticity of IDC by providing the main substrate for one-
carbon metabolism activation.

It is worth noting that increased lactate levels 
generated from glycolysis contribute to extracellular 
environment acidification, which can promote the 
immune evasion of tumor cells [29] and is considered 
an important mechanism by which anaerobic glycolysis 
(Warburg effect) contributes to cancer aggressiveness 
[30]. An increased Warburg effect was also observed in 
the pathway enrichment analysis of our tumor samples 

(vs. adjacent tissue), in parallel to the indirect increase in 
β-alanine metabolism. Once β-alanine can be metabolized 
to carnosine (an intracellular buffer) [31], these findings 
suggest a neoplastic self-regulatory mechanism against 
excessive acidification and a negative glycolysis feedback 
mechanism in the IDC.

In addition to serine, there are alternative input 
pathways for one-carbon metabolism. An enzymatic 
glycine cleavage system that produces ammonia (NH3), 
carbon dioxide (CO2) and carbon units has been reported 
in some cancer cells [32]. The conversion of threonine, 
choline and betaine into glycine has also been reported 
and may support this process [17]. In our study, in 
addition to serine, all these initial alternative carbon 
donors were significantly increased in the IDC samples 
(vs. adjacent tissue), suggesting highly active one-carbon 
metabolism.

In one-carbon metabolism, serine donates a carbon 
atom from its side chain to folate, which generates 
methionine as one of its final products [32]. The folate 
cycle coupled with the methionine cycle constitutes a 
bicyclic metabolic pathway that distributes carbon units 
and methyl groups through a set of metabolic reactions, 
from the generation of THF and methyl-tetrahydrofolate 
(mTHF) [19, 32]. The methionine cycle then is linked 
to the transsulfuration pathway through homocysteine, 
which can generate glutathione and influence cellular 
redox regulation [17, 19, 32]. Our metabolomics analysis 
showed an enrichment in folate, methionine, homocysteine 
and glutathione metabolism in IDC samples (vs. adjacent 
tissue), suggesting increased activity of all cycles that 
integrate one-carbon metabolism.

According to the histopathological grade of our 
samples, more than 70% of the IDC biopsies had a high 
mitotic index (grades 2 and 3). Proliferating cancer cells 

Figure 7: Metabolic untargeted multivariate analysis blue: Her-2; purple: luminal A; green: luminal B; gray: quality 
control; red: triple negative. (A) Principal component analysis (PCA) model R2 parameters = 0.787 and Q2 = 0.671. It was not possible 
to observe a natural separation between samples of breast cancer subtypes. (B) Partial least square discriminant analysis (PLS-DA) model 
R2 parameters = 0.771 and Q2 = 0.065. Model built with all data, without QC prediction. Evidence that there is no metabolic separation 
between tumor subtypes.
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Figure 8: Enriched one-carbon related pathways in breast cancer samples from the KEGG database. Gene set enrichment 
analysis (GSEA) was performed on metabolism-related genes using the TCGA-BRCA cohort of tumors and normal tissue sample RNA-Seq 
data.

Table 1: Genetic validation analysis performed in the cancer genome atlas (TCGA) 

term_id proteins hits P value P value_fdr term_description
GO:0009987 111 111 3E-254 7,6801E-251 cellular process
GO:0008150 108 108 1,3652E-246 1,7475E-243 biological process
GO:0044763 104 104 1,7493E-236 1,4927E-233 single-organism cellular process
GO:0044699 102 102 1,7975E-231 1,1504E-228 single-organism process
GO:0065007 99 99 5,2756E-224 2,7011E-221 biological regulation
GO:0050789 93 93 3,0673E-209 1,3087E-206 regulation of biological process
GO:0050794 91 91 2,2922E-204 8,383E-202 regulation of cellular process
*GO:0008152 75 75 3,7092E-166 1,1869E-163 metabolic process
GO:0032501 73 73 1,8012E-161 5,1235E-159 multicellular organismal process
GO:0050896 71 71 8,3822E-157 2,1459E-154 response to stimulus

*TCGA analysis was performed to identify biological functions capable of differentiating breast cancer and normal tissue.

Table 2: Genes involved in one-carbon metabolism identified through Gene Ontology (GO) by genetic validation

HGNC. symbol Fold Change Cellular Location
ALDH1L1 4.8561047775901 cytoplasm
SHMT2 –1.0479550141666 mitochondria
MTHFD2 –1.57882401191097 mitochondria
TYMS –2.14173789433925 cytoplasm
GLDC –3.13552794835523 mitochondria

generally require nucleotides (purines and pyrimidines) 
for the synthesis of cellular components, which can 
involve folate cycle and aspartate metabolism [33–35]. 
The biosynthesis of polyamines, spermidine and spermine 
(as well as their precursor, putrescine) and extracellular 
matrix are also required to ensure the stability and 
function of nucleotides and to accommodate new tumor 
cells, which can be supported by the methionine cycle 
and proline metabolism [36]. In this sense, the increased 

metabolism of aspartate, proline, purines, as well as 
increased spermidine and spermine biosynthesis, observed 
in our IDC biopsies (vs. adjacent tissue) were consistent 
with high cell proliferation rates and might be sustained by 
one-carbon metabolism activation [32, 33]. This scenario 
can be validated through gene set enrichment analysis 
(GSEA) where purine metabolism was highlighted 
between pathways related to one-carbon metabolism. 
Interestingly, we observed a decrease in TYMS in our gene 
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validation, which is associated with increased dUMP and 
DNA instability. This condition results in an imbalance 
and excessive incorporation of uracil in DNA instead of 
thymine [37], a process that seems to impair DNA repair 
mechanisms and contributes to carcinogenesis.

One-carbon metabolism can also directly meet 
the high metabolite requirements for cell proliferation 
through its by-product, ammonia [17]. In mice, the 
ammonia accumulated in the tumor microenvironment 
is used directly to generate amino acids (recycling) and 
accelerate the proliferation of breast cancer cells [38]. 
Accordingly, we identified enrichment of the ammonia 
recycling in our IDC biopsies along with an increase in 
the urea cycle (vs. adjacent tissue). These findings suggest 
that the proliferation of IDC cell proliferation implies 
intense metabolism of amino acids, with a very similar 
contribution to synthesis and catabolism (protein turnover).

In addition, cancer development and progression 
require membrane phospholipids, which can also 
be partially generated by one-carbon metabolism 
[17]. Comprising approximately 50% of membrane 
phospholipids, the choline portion of phosphatidylcholines 
is synthesized through the methionine cycle, while fatty 
acids are supplied by uptake and/or de novo synthesis 
[17, 39, 40]. Along with the increase in the methionine 
cycle, we also observed higher levels of saturated fatty 
acids (SFA) and lower levels of polyunsaturated fatty 
acids (PUFA) in our IDC biopsies (vs. adjacent tissue), 
which is consistent with previous reports on invasive 
ductal carcinomas [41]. High SFA levels can contribute to 
the structure of lipid rafts, membrane microdomains that 
act as platforms for cell signaling and have been shown to 
activate oncogenic pathways in breast tumor cells, such 
as cell proliferation (i.e., from HER-2) [42, 43]. Low 
PUFA levels may reflect a mechanism for protecting cell 
membranes from lipid peroxidation [43, 44].

In our study, decreased levels of PUFAs in the 
IDC included metabolites involved in arachidonic acid 
(AA, arachidonic acid) metabolism. Enrichment of these 
PUFAs in the adjacent tissue was previously associated 
with immune evasion of tumor cells and adjacent tissue 
inflammation, favoring new mutations [17, 45]. Therefore, 
our molecular findings suggest a lipid metabolism 
reprogramming in IDC to serve both cell membrane 
synthesis and surface protein-mediated signaling for 
proliferation while favoring cell survival.

Changes in cancer cell metabolism can also influence 
epigenetic regulation. The methionine cycle activation in 
IDC (vs. adjacent tissue) highlighted by our own analyses 
provides an important source of substrates for post-
translational modifications involving methylation [17, 
46]. Arginine methylation is a common post-translational 
modification that is implicated in different cellular processes 
that lead to the production of asymmetric dimethyl arginine 
(ADMA) via nicotinamide adenine dinucleotide phosphate 
(NADPH) [47, 48]. In our study, a predictive increase in 

nicotinamide and ADMA metabolism was observed in the 
IDC samples (vs. adjacent tissue) [49]. Increased NADPH 
availability has been considered an advantage for one-
carbon metabolism, since one molecule is consumed in 
each turn of the cytoplasmic folate cycle [17].

Furthermore, our gene set enrichment analysis 
identified a predicted activation of the Wnt signaling 
pathway. A recent study has demonstrated a requirement 
for methionine cycle activation and ADMA during Wnt 
signaling, since the depletion of methionine is a potent 
inhibitor of Wnt signaling and Wnt-induced turnover 
protein [50].

Increased ADMA production, suggested by our 
metabolomics data, can generate high levels of ROS 
[46, 47]. In breast cancers, ROS generation has been 
associated with cell apoptosis and impaired tumor 
development [49, 51]. Our IDC biopsies showed a 
predictive increase in glutathione metabolism (vs. adjacent 
tissue), which is an output of the transsulfuration pathway 
in one-carbon metabolism and an important regulator of 
the redox state [20, 47]. This finding suggests an activation 
of antioxidant defenses due intense cell oxidative stress in 
IDC to avoid cell apoptosis.

Oxidative stress can lead to mitochondrial damage 
[52]. Mitochondrial fitness is an important feature of 
one-carbon metabolism activation, since most of its 
chemical reactions take place inside these organelles 
[20, 53]. However, under stress conditions, the one-carbon 
mitochondrial pathway may be downregulated and its 
reactions shifted to the cytoplasm [19, 54]. We observed 
a decrease in the expression of genes that participate 
in mitochondrial reactions of one-carbon metabolism, 
such as SHMT2, GLDC (glycine dehydrogenase) and 
MTHFD2 [19], in parallel to an increase in ALDH1L1, 
which participates in cytoplasmic reactions of one-carbon 
metabolism by generating tetrahydrofolate (THF) [19]. 
These findings suggest that major one-carbon activation in 
IDC takes place in the cytoplasm, probably due oxidative 
stress.

It is worth noting that our metabolomic data suggest 
mitochondrial fitness in IDC: activation of the TCA 
cycle, BCAA degradation, increased succinyl-CoA and 
α-ketoglutarate metabolites, increased biotin metabolism 
and enrichment of the malate-aspartate shuttle were 
observed in this tumor (vs. adjacent tissue) [55–58]. 
These processes may be due to the exclusion of defective 
mitochondria by autophagy, which is described as a 
defense mechanism of cancer cells in the presence of ROS 
accumulation [53]. Taken together, our findings suggest 
the potential relevance of one-carbon metabolism in IDC 
cells, allowing carbon unit donation for proliferation 
processes, even under intense oxidative distress.

Individual analysis of each IDC subtype provided 
metabolomic observations similar to those obtained in 
the entire IDC sample. In addition, our metabolomic data 
showed a strong association of one-carbon activation 
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with cell proliferation, and all studied IDC biopsies 
were from primary tumors with a marked proliferative 
status, regardless of their subtype. Considering that high 
proliferation is a common feature of breast carcinoma 
development, the set of our metabolomics observations 
allows the suggestion that activation of the one-carbon 
pathway is a general property of IDC.

Our study included retrospective data and thus 
presents the limitations involved in this type of design. 
However, this enabled us to integrate metabolomic and 
genomic data from different populations to support the 
presence of one-carbon activation in IDC. We were also 
unable to perform a targeted analysis in different breast 
cancer subtypes, but our untargeted approach strongly 
suggested that one-carbon activation might be a universal 
metabolic feature of this malignancy.

Taken together, our results support the ancillary 
role of several metabolic pathways in breast cancer 
progression, where one-carbon metabolism activation 
seems to be pivotal. The extent to which these 
metabolic pathways represent real vulnerabilities 
remains to be determined. Considering whether this 
pathway is sensitive to the availability of nutrients, 
dietary management should be explored, as well as 
the effectiveness (from a metabolomic perspective) 
of antimetabolic drugs, including metformin, 5-FLU, 
methotrexate, pemetrexed and other agents targeting 
one-carbon metabolism that have demonstrated clinical 
benefits [32, 59, 60].

MATERIALS AND METHODS

Targeted metabolomics profile

Subject selection and sample collection

Between 2007 and 2010, 90 patients with IDC were 
voluntarily recruited after obtaining written informed 
consent at the Institut Gustave-Russy and Institut Curie 
(Paris), University of Debrecen (Hungary), and University 
of Tartu (Estonia), after ethical approval from the local 
ethics committee (Reference: CAPPesq 1.560.877). 
Written informed consent was obtained from each patient 
prior to trial participation. Invasive ductal carcinoma 
(IDC) status was confirmed by histopathological analysis. 
Tissue samples (breast cancer tissue and non-tumor 
adjacent breast tissue) were collected from the same 
subjects at the time of diagnosis. The criteria for selection 
were as follows: at least 35 years old, no macrometastasis 
disease, no prior anticancer treatment, operable IDC and 
within stages II and III. Disease diagnosis and staging 
respectively were performed by histopathological analysis 
and according to the TNM staging system [61, 62] in 
size-matched samples of tumor and adjacent (2–5 cm 
away from the tumor) tissues collected from the same 
subjects. The IDC (tumor group) and non-tumor adjacent 

breast tissue (control group) samples were subjected to 
metabolomics analysis.

Targeted metabolomic analyses

Quantitative values of tissue metabolites were 
obtained from 100 mg of IDC and non-tumor adjacent 
breast tissue samples by targeted metabolomics 
analysis. We used different kits customized by 
BIOCRATES Life Sciences AG, Innsbruck, Austria, 
which enabled the absolute quantification of >600 
different metabolites using mass spectrometry coupled 
with liquid chromatography (LC) with tandem mass 
spectrometry (MS/MS) [63, 64].

The sample preparation for analysis was performed 
according to the kit user manual, which contains an 
entailed Standard Operating Procedure that was validated 
by BIOCRATES Life Sciences AG, Innsbruck, Austria, 
in their labs in Austria. For LC-MS/MS analyses, 
BIOCRATES (Life Sciences AG, Innsbruck, Austria) kits 
include a full 7-point calibration curve (run in duplicate; 
start and end of analysis cohort) and QC samples at low, 
medium and high concentrations. The QC samples in the 
kit comprise 57 metabolites that encompass amino acids, 
biogenic amines, glycerophospholipids and acylcarnitines, 
with the concentration of the analytes in the three QC 
samples corresponding to low, medium and high levels 
relative to the quantitation range for each of these 
metabolites [11].

The experimental metabolomics measurement 
technique is described in detail by patent US 2007/0004044 
(accessible online at http://www.freepatentsonline.com/ 
20070004044.html). Briefly, a targeted profiling scheme 
was used to quantitatively screen for fully annotated 
metabolites using multiple reaction monitoring, 
neutral loss and precursor ion scans. Quantification of 
metabolite concentrations and quality control assessment 
were performed with the MetIQ software package 
(BIOCRATES Life Sciences AG, Innsbruck, Austria) 
adhering to 21CFR (Code of Federal Regulations) 
Part 11, which implies proof of reproducibility within a 
given error range. Only low-molecular-weight ionizable 
molecules (m/z <1500) were considered. An xls file was 
then generated, which contained the sample identification, 
metabolite names, and tissue metabolite concentrations 
(expressed in μM).

Targeted metabolites panel

The metabolites were quantified using 
AbsoluteIDQ® p180, which quantified 40 acylcarnitines, 
21 amino acids, 19 biogenic amines, the sum of hexoses, 
76 phosphatidylcholines, 14 lysophosphatidylcholines, 
15 sphingomyelins and 90 glycerophospholipids; 
AbsoluteIDQ® Stero17, which quantified 17 steroid 
hormones; Bile Acids kit®, which quantified 20 bile 
acids; the neurotransmitter assay, which quantified 
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9 neurotransmitters; the eicosanoid assay and other 
polyunsaturated fatty acid oxidation products (PUFAs), 
which quantified 17 different types of these molecules; 
the fatty acid assay, which quantified 32 fatty acids; the 
lipid assay, which quantified 162 glycerophospholipids, 33 
sphingomyelins and 131 ceramides. Glycerophospholipids 
were differentiated from the presence of ester (a) and 
ether (e) bonds in the glycerol moiety, where two letters 
indicate that two glycerol positions were linked to a 
fatty acid residue (aa = diacyl, ae = acyl-alkyl) and 
a single letter indicates the presence of a single fatty 
acid residue (a = acyl or e = alkyl). Additionally, the 
samples were analyzed for the following metabolites 
of energy metabolism: lactate, pyruvate/oxaloacetate,  
α-ketoglutarate, fumarate and succinate (BIOCRATES 
Life Sciences AG, Innsbruck, Austria) (Supplementary 
Material 1 – Supplementary Table 4)

Targeted metabolomics data analysis

For metabolomics data analysis, only common 
features found in at least 50% of samples in any group 
were considered, correcting for individual bias. In the 
MetaboAnalyst 4.0 (Xia Lab @ McGill, Canada) [65], 
metabolomic data were previously processed for sample 
standardization (median normalization), with log-
transformation of all quantified metabolites to stabilize the 
concentration distributions and Pareto Scale, a centered 
mean and division by the square root of the standard 
deviation of each variable.

The statistical tools sequentially employed 
to evaluate significant differences induced by 
the carcinogenesis process were as follows: PCA 
(unsupervised multivariate principal component analysis), 
PLS-DA (supervised multivariate analysis), RF analysis 
(random forest), and hierarchical analysis, the paired 
Student’s T and false discovery rate (FDR) - Benjamini-
Hochberg test. The most important metabolites, capable 
of differentiating adjacent normal and tumoral tissues 
via important variables (VIPs), were selected from the 
RF and T-test analyses. Complementary analysis for 
comparison of metabolomic profiles between breast 
cancer subtypes were also performed using ANOVA and 
the fold change (FC). The level of statistical significance 
considered for all tests was 5% (p£0.05). Subsequently, 
the set of statistically significant metabolites between 
the groups was submitted to metabolite set enrichment 
analysis (MSEA), which was also performed using the 
MetaboAnalyst 4.0 platform.

Gene validation

Gene set enrichment analysis was performed 
by GSEA (Broad Institute) using the KEGG and 
REACTOME databases. TCGA-BRCA data were 
downloaded by TCGAbiolinks. DESeq2 was used to 
perform gene differential expression [25].

Untargeted metabolomics profile

Subject selection and sample collection

Forty-two samples of paraffin-block frozen breast 
cancer subtypes were selected from the AC Camargo 
Cancer Canter biobank after ethical approval from the local 
ethics committee (Reference: Project Alias WSSS1944 - 
code 2165/16). The tumor tissue samples were classified 
as luminal subtype A (n = 11), luminal B (n = 11), 
triple negative (n = 10) and HER2 positive (n = 10). All 
samples belonged to female patients with a primary tumor, 
infiltrative ductal, without distant metastasis and without 
previous treatment status. Written informed consent was 
obtained from each patient prior to trial participation.

Sample preparation for untargeted metabolomic 
analyses

Tumor samples were obtained from the Tissue-Tek 
OCT matrix and washed five times with 200 µL of PBS 
buffer (NaCl 0.137 mol/L, KCl 0.0027 mol/L, Na2HPO4, 
0.01, KH2PO4 0.0018 mol/L, pH ?7.4). Then, they were 
dried with an Eppendorf Concentrator plus (Hamburg, 
Germany) and weighed. Metabolite extraction was 
perform by adding 10 µL of MeOH: CHCl3: H2O 6:3:1 
(v/v) per mg of dried tissue in a Bullet Blender (Next, 
Advance, Troy, NY, USA) with stainless steel beads 
using five cycles of 5 minutes (maximum speed). The 
supernatant was dried and resuspended in 20 µL of 1:1 
water: acetonitrile (v/v) containing 150 µmol/L internal 
standard (p-fluoro-phenylalanine) per mg of dried tissue. 
The solution was centrifuged (15,000 rpm, 10 minutes, 
4 °C), and the supernatant was analyzed.

Untargeted metabolomic analyses by LC-MS

LC-MS analysis was performed using high-
performance liquid chromatography (Prominence, 
Shimadzu, Kyoto, Japan) coupled to a quadrupole-time-
of-flight mass spectrometer (microQTOF II, Bruker 
Daltonics, Bremen, Germany) using electrospray 
ionization. A 3-μL sample volume was injected into a 
Kinetex C18 column (Phenomenex, Torrance, CA, EUA, 
2.1 × 150 mm, 2.6 μm) at 40° C using mobile phase A 
(0.1% formic acid aqueous solution, v/v) and mobile 
phase B (0.1% formic acid in acetonitrile v/v) at a flow 
rate of 0.2 mL/min with the following gradient: 0–3 min 
(5–20% B), 3–10 min (20–100% B), 10–15 (100% B), 
15.–15.1 (100–5% B), 15.1–23 min (5% B). MS analysis 
was carried out in positive and negative mode in full scan 
mode from m/z 70 to 1000 at a spectrum rate of 2 Hz. 
The end plate offset was 500 V, hexapole RF was 120 Vpp 
(positive mode) and 200 Vpp (negative mode), and 
capillary was 4500 V (positive) and 3500 V (negative). 
For ESI, a gas temperature of 250° C, gas flow of 8 L/min 
and pressure of 4 bar were applied.
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Untargeted metabolomics data treatment

Data processing was performed using the XCMS 
package [66] on the R platform (3.2.3, R Foundation for 
Statistical Computing, R Core Team). LC-MS data were 
converted to a *. mzXML file using Bruker Compass 
DataAnalysis 4.0 software (Bruker Daltonics, Germany).

For both positive and ionization modes, molecular 
features (MF) were extracted by applying the matched 
filter algorithm in the XCMS software using a signal/
noise threshold (snthresh = 10), full width at half 
maximum of the model peak (fwhm = 4), and minimum 
difference in m/z for peaks with overlapping retention 
times (mzdiff = 0.01), between 1 and 18 minutes. For 
the grouping step, the band width (bw = 20 and 10, for 
the first and second grouping, respectively) and width 
of overlapping m/z slices (mzwid = 0.025) were used. 
The data were aligned using the retcor algorithm with a 
smooth loess and 0.5 span. After the second grouping, 
fill Peaks was used to reduce missing values. Raw 
data were normalized to the intensity of the internal  
standard, fluoro-phenylalanine (m/z [M+H] + =184.0768 
and [M-H]- = 182.0623, for positive and negative data, 
respectively).

Untargeted statistical analysis

Principal component analysis (PCA) and partial 
least squares discriminant analysis (PLS-DA) were 
carried out after log transformation and Pareto scaling to 
evaluate group separations in SIMCA P+ (version 12.0.1, 
Umetrics, Sweden). Significant statistical MFs were 
selected according to the variable importance projection 
(VIP score > 1.0) observed in the PLS-DA models.

Differences for individual MFs were evaluated by 
comparing groups using univariate analysis, in which 
the Mann-Whitney U test (p-value < 0.05) Statistica 10 
software and the t test (p-value < 0.05) were applied.

Untargeted metabolite annotation

Statistically significant MF, both positive and 
negative modes, was putatively identified in the CEU 
mass mediator, version 3.0 [67] by searching the Human 
Metabolome Database (HMDB) and Metlin databases. The 
metabolites were annotated using [M+H]+, [M+2H]2+, 
and [M+Na]+ as possible adducts for positive mode 
and [M–H]–, [M+FA–H]–, and [M–2H]2– for negative 
mode. The tolerance error used was 5 ppm. The putatively 
identified metabolites were correlated with metabolic 
pathways using the Kyoto Encyclopedia of Genes and 
Genome, KEGG (https://www.genome.jp/kegg/) database.
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