

The Effect of Dexmedetomidine on Emergence Agitation or Delirium in Children After Anesthesia—A Systematic Review and Meta-Analysis of Clinical Studies

Yuquan Rao, Ruifeng Zeng, Xuebin Jiang, Jun Li[†] and Xiaocou Wang*[†]

Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China

Background: We conducted this systematic review and meta-analysis to investigate the clinical effect of dexmedetomidine in preventing pediatric emergence agitation (EA) or delirium (ED) following anesthesia compared with placebo or other sedatives.

OPEN ACCESS

Edited by:

Saskia N. De Wildt, Radboud University Nijmegen, Netherlands

Reviewed by:

Oguz Dursun, Akdeniz University, Turkey Phuc Huu Phan, Vietnam National Hospital of Pediatrics, Vietnam

> ***Correspondence:** Xiaocou Wang wangxiaocou@126.com

[†]These authors have contributed equally to this work

Specialty section:

This article was submitted to Pediatric Critical Care, a section of the journal Frontiers in Pediatrics

Received: 25 March 2020 Accepted: 20 May 2020 Published: 14 July 2020

Citation:

Rao Y, Zeng R, Jiang X, Li J and Wang X (2020) The Effect of Dexmedetomidine on Emergence Agitation or Delirium in Children After Anesthesia—A Systematic Review and Meta-Analysis of Clinical Studies. Front. Pediatr. 8:329. doi: 10.3389/fped.2020.00329 **Methods:** The databases of Pubmed, Embase, and Cochrane Library were searched until 8th January 2020. Inclusion criteria were participants with age <18 years and studies of comparison between dexmedetomidine and placebo or other sedatives. Exclusion criteria included adult studies; duplicate publications; management with dexmedetomidine alone; review or meta-analysis; basic research; article published as abstract, letter, case report, editorial, note, method, or protocol; and article presented in non-English language.

Results: Fifty-eight randomized controlled trials (RCTs) and five case-control trials (CCTs) including 7,714 patients were included. The results showed that dexmedetomidine significantly decreased the incidence of post-anesthesia EA or ED compared with placebo [OR = 0.22, 95% CI: (0.16, 0.32), $l^2 = 75$, P < 0.00001], midazolam [OR = 0.36, 95% CI: (0.21, 0.63), $l^2 = 57$, P = 0.0003], and opioids [OR = 0.55, 95% CI: (0.33, 0.91), $l^2 = 0$, P = 0.02], whereas the significant difference was not exhibited compared with propofol (or pentobarbital) [OR = 0.56, 95% CI: (0.15, 2.14), $l^2 = 58$, P = 0.39], ketamine [OR = 0.43, 95% CI: (0.19, 1.00), $l^2 = 0$, P = 0.05], clonidine [OR = 0.54, 95% CI: (0.20, 1.45), P = 0.22], chloral hydrate [OR = 0.98, 95% CI: (0.26, 3.78), P = 0.98], melatonin [OR = 1.0, 95% CI: (0.13, 7.72), P = 1.00], and ketofol [OR = 0.55, 95% CI: (0.16, 1.93), P = 0.35].

Conclusion: Compared with placebo, midazolam, and opioids, dexmedetomidine significantly decreased the incidence of post-anesthesia EA or ED in pediatric patients. However, dexmedetomidine did not exhibit this superiority compared with propofol and ketamine. With regard to clonidine, chloral hydrate, melatonin, and ketofol, the results needed to be further tested due to the fact that only one trial was included for each control drug.

Keywords: dexmedetomidine, pediatric, agitation, delirium, meta-analysis

INTRODUCTION

Emergence agitation (EA) or delirium (ED) manifests as a series of sudden complex psychomotor disorders, characterized by perceptual disturbances, delusions, and disorientation following sedation or general anesthesia (1). So far, the specific mechanism of EA or ED has not been clear. The preschool children undergoing ophthalmology or otorhinolaryngology procedures under inhalation agents are susceptible population (2). According to some studies, the incidence of EA or ED after general anesthesia in children ranges from 10 to 80% (3) and significantly increases the occurrence of other complications after anesthesia, like self-injury, prolonged post-anesthesia care unit (PACU) stay, poor satisfaction of parents and care providers, and so on (4). Therefore, it is necessary to find effective measures to prevent or treat EA or ED.

Some studies have reported the pharmacological strategies to prevent EA or ED, including midazolam, propofol, ketamine, opioids, and α_2 adrenergic receptor agonists (5-8). Activation of an α_2 adrenergic receptor can contribute to pharmacological effects of sedation, analgesia, and anti-inflammation; thus, an α_2 adrenergic receptor may be a target for prevention and treatment of EA or ED (9, 10). A study from Ydemann et al. (11) found that clonidine significantly decreased the incidence of postoperative agitation in children after sevoflurane anesthesia compared with placebo. Another commonly used α_2 adrenergic receptor agonist dexmedetomidine shows a higher ratio of specificity for α_2 receptor ($\alpha_2:\alpha_1$ 1600:1) compared with clonidine ($\alpha_2:\alpha_1$ 200:1) (12, 13). Although dexmedetomidine is used as an offlabel drug in children, increasing studies about the effect of dexmedetomidine on EA and ED in pediatric patients have been completed. We conducted this meta-analysis for clinical trials to evaluate the effect of dexmedetomidine on EA or ED following sedation or general anesthesia in pediatric patients compared with placebo and other drugs.

MATERIALS AND METHODS

This systematic review and meta-analysis was performed according to the guidelines of the 2009 PRISMA (Preferred Reporting Items for Systematic reviews and Meta-analyses) (**Supplementary Table 1**) (14).

Search Strategy and Study Selection

We searched the databases including "Pubmed," "Embase," and "Cochrane Library" through the PICOS (Population, Intervention, Comparison, Outcome, Study design) method until 8th January 2020. The entry words included "child" OR "children" OR "pediatric" AND "dexmedetomidine" OR "precedex" OR "MPV-1440" OR "MPV 1440" OR "Dexmedetomidine Hydrochloride" OR "Hydrochloride, Dexmedetomidine" AND "agitation" OR "delirium," and the search scope was "all fields." Because all studies about the effect of dexmedetomidine vs. other drugs (placebo or other sedatives) on agitation or delirium in pediatric patients were eligible in this meta-analysis, we did not confine the search words of control drugs and study design. The inclusion criteria included the following: (1) participants with age<18 years; and (2) management with prophylactic dexmedetomidine and placebo or other sedatives. The exclusion criteria included the following: (1) participants with age \geq 18 years; (2) management with dexmedetomidine alone; (3) review or meta-analysis; (4) basic research; (5) article published as an abstract, letter, case report, editorial, note, method, or protocol; and (6) article presented in non-English language.

Data Analysis

The aim of this meta-analysis was to investigate whether dexmedetomidine had advantage in reducing the incidence of EA or ED following sedation or general anesthesia in pediatric patients compared with placebo or other sedatives.

Three authors were independently responsible for reviewing the titles, abstracts, or both and summarized the data of the included literatures. Another two authors were in charge of the data discrepancy adjustment.

Two authors were responsible for extracting the following information: (1) authors; (2) publication year; (3) number of the total participants in each study; (4) age range of all the participants; (5) country of publication; (6) procedures that the participants underwent; (7) time of dexmedetomidine or other sedative administration; (8) infusion speed or dosage of dexmedetomidine or other sedatives; and (9) number of patients with EA or ED following sedation or general anesthesia.

Two authors independently assessed the quality of included studies. The risk of bias of randomized controlled trials (RCTs) were assessed by the Cochrane Collaboration Risk of Bias Assessment tool including seven items: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and others (bias due to vested financial interest and academic bias). If a trial had one or more of the items to be judged as high or unclear risk of bias, this trial was classified as having high risk (15). The bias risk of case-control trials (CCTs) was assessed by the Newcastle-Otawa Quality Assessment Scale (NOS) comprising three domains: selection, comparability, and outcome for cohort studies. There were four stars in the selection domain, two stars in the comparability domain, and three stars in the exposure domain. Trials with cumulative seven stars or more were considered to be of high quality, those with six stars were considered to be of moderate quality, and those with less than six stars were considered to be of low quality (Supplementary Table 2) (16). If the two authors had different assessment results, they consulted the third or the fourth one. Eventually, the authors reached consensus. All included trials were grouped based on different control drugs.

RevMan Review Manager version 5.3 (Cochrane collaboration, Oxford, UK) and Stata version 12.0 (Stata Corp, College Station, TX, USA) were used to perform statistical analyses. The values of I^2 and the Mantel–Haenszel chi-square test (*P*-value for heterogeneity) were used to evaluate the heterogeneity of included studies. And the values of $I^2 < 40\%$, 40–60%, and >60% represented low, moderate, and high heterogeneity, respectively (17). If $I^2 > 50\%$ or a *P*-value for heterogeneity <0.1 was identified, the method of

random-effect model analysis was applied to analyze the data. Conversely, if $I^2 < 50\%$ or a *P*-value for heterogeneity ≥ 0.1 was presented, the method of a fixed-effect model was used (18). The dichotomous outcome was reported as odds ratios (OR) with 95% confidence interval (CI). The statistical tests were two-sided, and a *P*-value for overall effect < 0.05 was considered to have significant difference.

Sensitivity analysis was conducted to solve the problem of significant heterogeneity ($I^2 > 40\%$) through the method of subgroup analysis or one-by-one literature removal. Meta-regression was used to investigate the heterogeneity sources for the group with $I^2 > 40\%$ according to possible risk factors. A subgroup analysis proceeded based on the risk factor with P < 0.05 by meta-regression analysis; conversely, the method of one-by-one literature removal was used if *P*-values of all risk factors were 0.05 or more.

RESULTS

Study Location and Selection

The screening process of the eligible literatures is shown in Figure 1. We obtained 207 trials from Pubmed, 300 from Embase, and 227 from Cochrane Library according to the

inclusion criteria. Two hundred sixty-three trials were removed due to duplicates. Two hundred eighty-eight trials were excluded because they did not meet the eligibility criteria by browsing the titles and abstracts, and 120 trials were removed by browsing the full text. Eventually, 63 trials (19–81) including 7,714 patients were identified through our search strategy (**Figure 1**). All included trials were divided into nine groups based on control drugs: placebo (19–59), midazolam (19, 59–71), opioids (29, 45, 72–74), propofol (or pentobarbital) (22, 25, 42, 75, 76), ketamine (26, 60, 77–79), clonidine (80), chloral hydrate (81), melatonin (59), and ketofol (ketamine and propofol) (23). We assigned propofol and pentobarbital into the same group because both of them produced general anesthetic efficacy through directly activating the γ -aminobutyric acid A receptor of the central nervous system (82).

Characteristics of Included Trials

There were 41 trials (19–59) including 3,600 patients in the placebo group, 14 trials (19, 59–71) including 1,033 patients in the midazolam group, 5 trials (29, 45, 72–74) including 396 patients in the opioids group, 5 trials (22, 25, 42, 75, 76) including 1,969 patients in the propofol (or pentobarbital) group, 5 trials (26, 60, 77–79) including 332 patients in the ketamine group, and

 TABLE 1 | The basic information of all included trials.

Study	N	Age	Center/ country	Procedures	Anesthesia	Dexmedetomidine dosage	Control
lbacache et al. (34) (Prospective)	90	1–10 years	Single/Chile	Inguinal hernia repair, orchiopexy, or circumcision	General anesthesia (sevoflurane)+ caudal block	After induction, 0.15 μg/kg intravenously in 10 min After induction, 0.3 μg/kg intravenously in 10 min	Placebo (normal saline)
Guler et al. (30) (Prospective)	60	3–7 years	Single/Turkey	Adenotonsillectomy	General anesthesia (sevoflurane)	About 5 min before the end of surgery, 0.5 μ g/kg was infused over a time period of 5 min	Placebo (normal saline)
Shukry et al. (51) (Prospective)	46	1–10 years	Single/USA	Outpatient surgical procedures	General anesthesia (sevoflurane)	5 min following securing the airway, dexmedetomidine was infused at a dose of 0.2 μg/kg/h	Placebo (normal saline)
lsik et al. (35) (Prospective)	42	18 months to 10 years	Single/Turkey	Cranial MRI scanning	General anesthesia (sevoflurane)	1 μ g/kg was infused over 2 min after the induction	Placebo (normal saline)
Erdil et al. (29) (Prospective)	90	2–7 years	Single/Turkey	Adenoidectomy	General anesthesia (sevoflurane)	Dexmedetomidine 0.5 μg/kg after tracheal intubation	Fentanyl: 2.5 µg/kg after tracheal intubation Placebo (normal saline)
Saadawy et al. (47) (Prospective)	60	1–6 years	Single/Egypt	Unilateral inguinal hernia/orchidopexy	General anesthesia (sevoflurane)+caudal block	Dexmedetomidine 1 µg/kg with bupivacaine caudal block after induction	Placebo with bupivacaine caudal block
Talon et al. (71) (Prospective)	100	1–18 years	Single/USA	Elective reconstructive surgery for cutaneous burn injuries	General anesthesia (sevoflurane)	Tranasal dexmedetomidine 2 µg/kg	Oral midazolam 0.5 mg/kg
Koruk et al. (79) (Prospective)	18	2–13 years	Single/Turkey	Transcatheter atrial septal closure operation	General anesthesia (propofol)	Loading: 1 µg/kg was given over 10 min, followed by a dose of 0.5 µg/kg/h before anesthesia	Loading: Ketamine 1 mg/kg 10 min, followed by a rate of 0.5 mg/kg/h
Patel et al. (74) (Prospective)	122	2–10 years	Single/USA	Adenotonsillectomy	General anesthesia (sevoflurane)	Loading: 2 μg/kg over 10 min, followed by 0.7 μg/kg/h until 5 min before the end of the surgery	Intravenous fentanyl (1 μg/kg) as a bolus as soon as intravenous access was obtained
Sato et al. (48) (Prospective)	81	1–9 years	Single/Japan	Outpatient surgical procedures	General anesthesia (sevoflurane)	0.3 μg /kg dexmedetomidine was infused over 10 min after induction of anesthesia	Placebo (normal saline)
Bedirli et al. (72) (Prospective)	77	2–12 years	Single/Turkey	Adenotonsillectomy	General anesthesia (sevoflurane)	1 μg/kg dexmedetomidine after intubation	2 mg/kg tramadol after intubation
Mason et al. (76) (Retrospective)	1662	0.5–5.7 years	Single/USA	CT scanning	Sedation	Loading 2 µg/kg administered over 10 min, followed by infusion of 1 µg/kg/h is initiated and maintained until completion of the imaging study	Pentobarbital 2–3 mg/kg
Mountain et al. (67) (Prospective)	41	1–6 years	Single/USA	Dental restoration and possible tooth extraction	Sedation	4 μg/kg of oral dexmedetomidine	0.5 mg/kg of oral midazolam
Özcengiz et al. (59) (Prospective)	100	3–9 years	Single/Turkey	Esophageal dilatation procedures	General anesthesia (sevoflurane)	Dexmedetomidine 2.5 μg/kg before induction of anesthesia	Midazolam 0.5 mg/kg Melatonin 0.1 mg/kg Placebo (normal saline)

Study	N	Age	Center/ country	Procedures	Anesthesia	Dexmedetomidine dosage	Control
Pestieau et al. (45) (Prospective)	101	6 months to 6 years	Single/USA	Insertion of pressure- equalizing tubes	General anesthesia (sevoflurane)	Intranasal dexmedetomidine 1 μg/kg Intranasal dexmedetomidine 2 μg/kg	Intranasal fentanyl 2 µg/kg Acetaminophen
Akin et al. (61) (Prospective)	90	2–9 years	Single/Turkey	Adenotonsillectomy	General anesthesia (sevoflurane)	1 μg /kg was used intranasally 45–60 min before the induction of anesthesia	0.2 mg/kg midazolam was used intranasally 45–60 min before the induction of anesthesia
Meng et al. (43) (Prospective)	120	5–14 years	Single/China	Tonsillectomy	General anesthesia (sevoflurane)	After induction of anesthesia and before the surgical incision, loading dose of 0.5 μ g/kg over 10 min, followed by a maintenance infusion of 0.2 μ g/kg/h over the surgery After induction of anesthesia and before the surgical incision, loading dose of 1.0 μ g/kg over 10 min, followed by a maintenance infusion of 0.4 μ g/kg/h over the surgery	Placebo (normal saline)
Xu et al. (55) (Prospective)	60	3–7 years	Single/China	Vitreoretinal surgery	General anesthesia (sevoflurane)	0.5 µg/kg was administered intravenously over a period of 10 min before induction	Placebo (normal saline)
Ali and Abdellatif (22) (Prospective)	120	2–6 years	Single/Egypt	Adenotonsillectomy	General anesthesia (sevoflurane)	0.3 μg/kg was administered intravenously over 5 min about 5 min before the end of surgery	Propofol 1 mg/kg was administered intravenously over 5 min about 5 min before the end of surgery Placebo (normal saline)
Aydogan et al. (62) (Prospective)	32	12–18 years	Single/Turkey	Scoliosis surgery	General anesthesia (propofol)	0.4 μg/kg/h was administered intravenously to sustain RASS score of -2-+1 after surgery	Midazolam 0.1 mg/kg/h was administered intravenously to sustain RASS score of -2-+1 after surgery
Bhadla et al. (63) (Prospective)	60	5–12 years	Single/India	Ophthalmic day-care surgery	General anesthesia (sevoflurane)	Intravenous 0.4 µg/kg premedication	Midazolam 0.05 mg/kg premedication
Chen et al. (26) (Prospective)	78	2–7 years	Single/China	Strabismus surgery	General anesthesia (sevoflurane)	Loading 1 μ g /kg, followed by 1 μ g /kg/h infusion after induction of anesthesia	Placebo (normal saline) Ketamine 1 mg/kg intravenously plus 1 mg/kg/h infusion after induction of anesthesia
Gupta et al. (31) (Prospective)	36	8–12 years	Single/India	Corrective surgery spinal dysraphism at lumbosacral area	General anesthesia (sevoflurane)	1 μg/kg bolus over 10 min, followed by 0.5 μg/kg/h as maintenance and discontinued at the beginning of skin closure	Placebo (normal saline)

Study	N	Age	Center/ country	Procedures	Anesthesia	Dexmedetomidine dosage	Control
He et al. (33) (Prospective)	87	3–7 years	Single/China	Elective minor surface surgery	General anesthesia (sevoflurane)	Dexmedetomidine 0.5 µg/kg was administrated after LMA insertion for 10 min Dexmedetomidine 1.0 µg/kg was administrated after LMA insertion for 10 min	Placebo (normal saline)
Kim et al. (37) (Prospective)	40	1–5 years	Single/Korea	Ambulatory hernioplasty or orchiopexy	General anesthesia (sevoflurane)+caudal block	Dexmedetomidine 1 μg/kg was infused, followed by 0.1 μg/kg/h until the end of surgery	Placebo (normal saline)
Hasanin and Sira (75) (Prospective)	80	1–14 years	Single/Egypt	Gastrointestinal endoscopy	Sedation	Loading 2.5 μg/kg was infused over 10 min, followed by 2 μg/kg/h for maintenance	Propofol: loading bolus 2 mg/kg, followed by 100 μg/kg/min for maintenance
Kim et al. (38) (Prospective)	94	1–5 years	Single/Korea	Strabismus surgery	General anesthesia (desflurane)	Continuous infusion with 0.2 μ g/kg/h after induction to the end of surgery	Placebo (normal saline)
Sheta et al. (70) (Prospective)	72	3–6 years	Single/ Saudi Arabia	Dental rehabilitation	General anesthesia (sevoflurane)	Intranasal dexmedetomidine 1 µg/kg	Intranasal midazolam 1 μg/kg
Bong et al. (25) (Prospective)	120	2–7 years	Single/Singapore	Magnetic resonance imaging scanning	General anesthesia (sevoflurane)	Intravenous dexmedetomidine 0.3 μg/kg before discontinuation of sevoflurane	Intravenous propofol 1 mg/kg Placebo (normal saline)
Cho et al. (27) (Prospective)	80	1–6 years	Single/Korea	Ambulatory unilateral orchiopexy	General anesthesia (sevoflurane)+caudal block	Dexmedetomidine 1 µg/kg with ropivacaine caudal block	Placebo (normal saline)
Hauber et al. (32) (Prospective)	382	4–10 years	Single/USA	Tonsillectomy with or without adenoidectomy	General anesthesia (sevoflurane)	Dexmedetomidine was administered intravenously at a dose of 0.5 µg/kg /kg over 2 to 3 s at about 5 min before the completion of surgery	Placebo (normal saline)
Jiang et al. (65) (Retrospective)		0–36 months	Single/China	Cardiac surgery	General anesthesia (fentanyl)	0.25–0.75 μg/kg/h from the end of surgery to 1 h of extubation	Midazolam 0.5–3 µg/kg/min from the end of surgery to 1 h of extubation
Lundblad et al. (41) (Prospective)	43	1.5–8 years	Single/Sweden	Outpatient inguinal hernia repair	General anesthesia (sevoflurane)+ ilioinguinal/ iliohypogastric nerve blocks	llioinguinal/ iliohypogastric nerve blocks with 0.2% ropivacaine and dexmedetomidine 0.3 µg/kg	llioinguinal/ iliohypogastric nerve blocks with 0.2% ropivacaine and placebo (normal saline)
Mukherjee et al. (80) (Prospective)	80	3–7 years	Single/India	Elective day care surgery	General anesthesia (sevoflurane)	1 μg/kg intranasal dexmedetomidine as premedication	4 μg/kg intranasal clonidine as premedication
Peng and Zhang (44) (Prospective)	40	3–24 months	Single/China	Cleft palate repair	General anesthesia (sevoflurane)	Dexmedetomidine 0.8 µg/kg/min was continuously infused after the induction	Placebo (normal saline)
Soliman and Alshehri (52) (Prospective)	150	4–14 years	Single/ Saudi Arabia	Outpatient adenotonsillectomy	General anesthesia (sevoflurane)	An initial loading dose of 0.5 μg/kg (started after induction of anesthesia) over 10 min followed by intravenous infusion 0.1–0.3 μg/kg/h during surgery	Placebo (normal saline)

Study	N	Age	Center/ country	Procedures	Anesthesia	Dexmedetomidine dosage	Control
Yao et al. (56) (Prospective)	89	3–7 years	Single/China	Strabismus surgery	General anesthesia (sevoflurane)	Premedication of intranasal saline or dexmedetomidine 1 μg/kg Premedication of intranasal saline or dexmedetomidine 2 μg/kg	Placebo (normal saline)
Abdelaziz et al. (19) (Prospective)	98	1–7 years	Single/ Saudi Arabia	Strabismus surgery	General anesthesia (sevoflurane)	Intranasal dexmedetomidine (1 μg/kg)	Intranasal midazolam (0.1 mg/kg) Placebo (normal saline)
Ali et al. (23) (Prospective)	90	3–6 years	Single/Egypt	Orthopedic surgeries	General anesthesia (sevoflurane)	Dexmedetomidine 0.3 µg/kg 10 min before the end of surgery.	Ketofol: ketamine 0.25 mg/kg and propofol 1.0 mg/kg in combination 10 min before the end of surgery Placebo (normal saline)
Al-Zaben et al. (21) (Prospective)	75	1–6 years	Single/Jordan	Elective lower abdominal and perineal surgeries	General anesthesia (sevoflurane)+ caudal block	B-D _{cau} : 1 ml/kg caudal 0.25% bupivacaine mixed with 1 μg/kg dexmedetomidine B-D _{IV} : 1 ml/kg of caudal 0.25% bupivacaine and 1 μg/kg dexmedetomidine and 10 ml intravenously in 0.9% saline over 10 min	B: 1 ml/kg caudal 0.25% bupivacaine and 10 ml 0.9% intravenous saline over 10 min
Eldeek et al. (77) (Prospective)	110	3–7 years	Single/Egypt	Magnetic resonance imaging	Sedation	A loading dose of I μg/kg was given over 10 min, followed by 0.5–0.75 μg/kg/h intravenously	A loading dose of ketamine I mg/kg was given over 10 min, followed by 10–15 μg/kg/min intravenously
Lin et al. (40) (Prospective)	90	1–8 years	Single/China	Cataract surgeries	General anesthesia (sevoflurane)	Intranasally received 1 μg/kg Intranasally received 2 μg/kg	Placebo (normal saline)
Makkar et al. (42) (Prospective)	100	2–8 years	Single/India	Elective infra-umbilical surgery	General anesthesia (desflurane)	0.3 μg/kg intravenous dexmedetomidine over 5 min at 5 min before the end of surgery	A single intravenous bolus of 1 mg/kg propofol at 5 min before the end of surgery Placebo (normal saline)
Song et al. (53) (Prospective)	103	2–6 years	Single/Korea	Strabismus surgery	General anesthesia (sevoflurane + desflurane)	Intravenous 0.25, 0.5, or 1.0 μ g/kg for 10 min	Placebo (normal saline)
El-Hamid and Yassin (28) (Prospective)	86	3–7 years	Single/Egypt	Tonsillectomy and/or adenoidectomy	General anesthesia (sevoflurane)	Intranasal dexmedetomidine at 1 μg/kg after induction of general anesthesia	Placebo (normal saline)
Ezz (78) (Prospective)	90	3–6 years	Single/Egypt	Unilateral or bilateral myringotomy	General anesthesia (sevoflurane)	Intranasal dexmedetomidine in a dose 1 μg/kg	Intranasal ketamine in a dose 5 mg/kg

Study	N	Age	Center/ country	Procedures	Anesthesia	Dexmedetomidine dosage	Control
Prabhu and Mehandale (68) (Prospective)	90	1–10 years	Single/India	Elective surgeries of <2 h of expected duration under sevoflurane general anesthesia	General anesthesia (sevoflurane)	Oral dexmedetomidine 4 µg/kg at approximately 45 min before surgery	Oral midazolam 0.5 mg/kg at approximately 45 min before surgery
Keles and Kocaturk (36) (Retrospective)	100	2–6 years	Single/Turkey	Full mouth dental rehabilitation	General anesthesia (sevoflurane)	1 μg/kg oral dexmedetomidine at 45 min before induction of anesthesia	Placebo
Park et al. (73) (Prospective)	57	3–12 years	Single/Korea	Extensive orthopedic surgery of the lower extremities	General anesthesia (sevoflurane)+epidural anesthesia	0.2% ropivacaine (0.2 ml/kg) with dexmedetomidine (1 μ g/kg) through the epidural catheter at 30 min before the end of the surgery	0.2% ropivacaine (0.2 ml/kg) with fentanyl (1 µg/kg) through the epidural catheter at 30 min before the end of the surgery
Riveros et al. (46) (Retrospective)	653	0–18 years	Single/USA	Cardiac catheterization	General anesthesia	Received dexmedetomidine infusion during the surgery	Did not receive dexmedetomidine infusion during the surgery
Yuen et al. (81) (Prospective)	196	2–79 months	Multiple/China	Computerized tomographic (CT)	General anesthesia (oral chloral hydrate)	Intranasal dexmedetomidine spray 3 µg/kg, 30 min before computerized tomography studies	Chloral hydrate
Abdel-Ghaffar et al. (60) (Prospective)	90	3–7 years	Single/Egypt	Bone marrow biopsy	General anesthesia (sevoflurane)	Nebulized dexmedetomidine 2 µg/kg as premedication by inhalation	Nebulized ketamine 2 mg/kg as premedication by inhalation Nebulized midazolam 0.2 mg/kg as premedication by inhalation
Li et al. (39) (Prospective)	82	4–6 years	Single/China	Tonsillectomy	General anesthesia (desflurane)	Dexmedetomidine was continuously infused with 0.2 µg/kg/h after anesthesia induction until the end of the surgery	Placebo (normal saline)
Long et al. (66) (Retrospective)	52	3–7 years	Single/Turkey	Full-mouth dental rehabilitation	General anesthesia (sevoflurane)	2 µg/kg of oral dexmedetomidine in apple juice 45 min before the induction of anesthesia	0.5 mg/kg of midazolam in apple juice 45 min before the induction of anesthesia
Tsiotou et al. (54) (Prospective)	60	3–14 years	Single/Greece	Tonsillectomy with or without adenoidectomy	General anesthesia (propofol)	1 μg/kg dexmedetomidine in 10 min after induction	Placebo (normal saline)
Abdel-Ghaffar et al. (20) (Prospective)	90	3–6 years	Single/Egypt	Tonsillectomy	General anesthesia (sevoflurane)	Trans-mucosal dexmedetomidine 0.5 μg/kg Trans-mucosal dexmedetomidine 1 μg/kg	Placebo (normal saline)
Bi et al. (24) (Prospective)	40	6–48 months	Single/China	Tracheobronchial foreign body removal	General anesthesia (sevoflurane)	Intranasal 1 $\mu g/kg$ at 25 min before anesthesia induction	Placebo (normal saline)

Study	N	Age	Center/ country	Procedures	Anesthesia	Dexmedetomidine dosage	Control
Cho et al. (64) (Prospective)	66	2–12 years	Single/Korea	Tonsillectomy	General anesthesia (sevoflurane)	0.3 μg/kg was administered intravenously for 5 min at 5 min before the end of surgery	Midazolam 0.03 mg/kg was administered intravenously for 5 min at 5 min before the end of surgery
Sajid et al. (69) (Prospective)	80	1–6 years	Single/India	Elective herniotomy	General anesthesia (isoflurane)	Oral dexmedetomidine 4 µg/kg at 40 min before induction	Oral midazolam 0.5 mg/kg at 40 min before induction
Sharma et al. (49) (Prospective)	60	5–10 years	Single/India	Adenotonsillectomy	General anesthesia (isoflurane)	Dexmedetomidine 1 µg/kg infusion over 10 min before induction of anesthesia	Placebo (normal saline)
Shi et al. (50) (Prospective)	90	2–7 years	Single/China	Tonsillectomy	General anesthesia (sevoflurane)	After induction, 0.5 μg/kg over 10 min	Placebo (normal saline)
Ye et al. (57) (Prospective)	60	2–7 years	Single/China	Strabismus and vitreoretinal (VR) surgery	General anesthesia (propofol)	RD: Retrobulbar block with 0.5% ropivacaine 0.1 ml/kg plus dexmedetomidine 1 μg/kg after general anesthesia	RB: Retrobulbar block with 0.5% ropivacaine 0.1 ml/kg only F: General anesthesia alone
Zhang et al. (58) (Prospective)	134	0–16 years	Single/China	Elective interventional cardiac catheterization	General anesthesia (sevoflurane)	An intranasal administration dose of 1.5 mg/kg	Placebo (normal saline)

4 trials (23, 59, 80, 81) including 384 patients in the clonidine, chloral hydrate, melatonin, and ketofol group, respectively.

Table 1 demonstrated the basic information of all included trials; meanwhile, it was discovered that clinical heterogeneity might be associated with the study methods, the type of surgery, the number and age of participants, and the route, dosage, and timing of drug administration. Five trials in the included studies were CCTs (36, 46, 65, 66, 76). The patients in 17 trials (20, 22, 28-30, 32, 39, 43, 49, 50, 52, 54, 61, 64, 72, 74, 78) underwent otolaryngology surgeries, those in 5 trials (36, 44, 66, 67, 70) underwent dental or cleft palate surgeries, those in 9 trials (19, 26, 38, 40, 53, 55-57, 63) underwent ophthalmic surgeries, those in 11 trials (21, 27, 33, 34, 37, 41, 42, 47, 68, 69, 71) underwent general or urological surgeries, those in 4 trials (23, 31, 62, 73) underwent orthopedic surgeries, those in 1 trial (65) underwent cardiac surgery, those in 8 trials (24, 45, 46, 58-60, 75, 79) underwent invasive examination or treatment, those in 5 trials (25, 35, 76, 77, 81) underwent non-invasive examination or treatment, and those in 3 trials (48, 51, 80) underwent all kinds of outpatient surgeries. Different routes of drug administration were used: intranasal in 12 trials (19, 24, 28, 40, 45, 56, 58, 61, 71, 78, 80, 81), oral in 5 trials (36, 66-69), caudal or nerve block in 5 trials (21, 41, 47, 57, 73), inhalation in 1 trial (60), transmucosal in 1 trial (20), and intravenous in 39 trials. The strategy of drug administration was also different: (1) intravenous single dose in 20 trials (22, 23, 25, 29, 30, 32-35, 42, 48-50, 53-55, 59, 63, 64, 72), loading dose plus maintenance infusion in 10 trials (26, 31, 37, 43, 52, 74-77, 79), and only maintenance infusion in 6 trials (38, 39, 44, 51, 62, 65); and (2) administration onset before anesthesia in 29 trials (19, 20, 24, 28, 36, 40, 45, 46, 49, 55, 56, 58–61, 63, 66–71, 75–81), during anesthesia in 32 trials (21–23, 25–27, 29–35, 37–39, 41–44, 47, 48, 50–54, 57, 64, 72–74), and after anesthesia in 2 trials (62, 65). The number of patients with EA or ED in dexmedetomidine and control groups is shown in **Table 2**.

Bias Risk Assessment

Bias risk of 58 RCTs was assessed by the Cochrane Collaboration Risk of Bias Assessment tool. Random sequence generation was assessed as a low risk of bias in 57 studies (98%), allocation concealment was assessed in 36 studies (62%), blinding of participants was assessed in 38 studies (66%), blinding of outcome assessment was assessed in 34 studies (59%), incomplete outcome data were assessed in 58 studies (100%), and selective outcome reporting was assessed in 56 studies (97%). Nineteen RCTs (24, 26, 27, 32, 33, 37, 41, 45, 53, 54, 56, 58–61, 64, 67, 73, 81) were assessed to be of high quality (Supplementary Figures 1, 2). Bias risk of 5 CCTs (36, 46, 65, 66, 76) was assessed by NOS, and the number of stars was 7 from the study of Keles et al. (36), 8 from the study of Riveros et al. (46), 5 from the study of Jiang et al. (65), 5 from the study of Long et al. (66), and 8 from the study of Mason et al. (76), respectively. Therefore, 3 trials (36, 46, 76) were assessed to be of high quality because they obtained 7 stars or more (Supplementary Table 3).

Post-anesthesia Incidence of EA or ED

Different dosages of dexmedetomidine administration in each study were presented in nine trials (20, 21, 33, 34, 40, 43,

TABLE 2 | The number of patients with EA or ED in dexmedetomidine and control groups.

Study	Dexmede	etomidine	Control		
	N (total)	N (EA or ED)	N (total)	N (EA or ED)	
Ibacache et al. (34) (Prospective)	0.15 µg/kg: 30 0.3 µg/kg: 30	0.15 μg/kg: 3 0.3 μg/kg: 6	Placebo: 30	4	
Guler et al. (30) (Prospective)	30	5	Placebo: 30	17	
Shukry et al. (51) (Prospective)	23	6	Placebo: 23	16	
lsik et al. (35) (Prospective)	21	1	Placebo: 21	10	
Erdil et al. (29) (Prospective)	30	5	Fentanyl: 30 Placebo: 30	Fentanyl: 4 Placebo: 14	
Saadawy et al. (47) (Prospective)	30	3	Placebo: 30	9	
Talon et al. (71) (Prospective)	50	5	Midazolam: 50	5	
Koruk et al. (79) (Prospective)	9	0	Ketamine: 9	1	
Patel et al. (74) (Prospective)	61	11	Fentanyl: 61	25	
Sato et al. (48) (Prospective)	39	11	Placebo: 42	27	
Bedirli et al. (72) (Prospective)	38	4	Tramadol: 39	5	
Mason et al. (76) (Retrospective)	1274	4	Pentobarbital: 388	8	
Mountain et al. (67) (Prospective)	22	3	Midazolam: 19	5	
Özcengiz et al. (59) (Prospective)	25	2	Midazolam: 25 Melatonin: 25 Placebo: 25	Midazolam: 1 Melatonin: 2 Placebo: 8	
Pestieau et al. (45) (Prospective)	1 μg/kg: 23	1 μg/kg: 5	Fentanyl: 23	Fentanyl: 3	
	2 µg/kg: 28	2 μg/kg: 9	Placebo: 27	Placebo: 11	
Akin et al. (61) (Prospective)	45	8	Midazolam: 45	5	
Meng et al. (43) (Prospective)	0.5 μg/kg: 40 1.0 μg/kg: 40	0.5 μg/kg: 6 1.0 μg/kg: 2	Placebo: 40	8	
Xu et al. (55) (Prospective)	30	3	Placebo: 30	13	
Ali and Abdellatif (22) (Prospective)	40	2	Propofol: 40 Placebo: 40	Propofol: 3 Placebo: 7	
Aydogan et al. (62) (Prospective)	16	1	Midazolam: 16	4	
Bhadla et al. (63) (Prospective)	30	7	Midazolam: 30	14	
Chen et al. (26) (Prospective)	27	3	Placebo: 24 Ketamine: 27	Placebo: 11 Kertamine: 6	
Gupta et al. (31) (Prospective)	18	0	Placebo: 18	4	
He et al. (33) (Prospective)	0.5 μg/kg: 29 1 μg/kg: 32	0.5 μg/kg: 5 1 μg/kg: 2	Placebo: 26	11	
Kim and Koo (37) (Prospective)	20	1	Placebo: 20	11	
Hasanin and Sira (75) (Prospective)	40	0	Propofol: 40	0	
Kim et al. (38) (Prospective)	47	7	Placebo: 47	33	
Sheta et al. (70) (Prospective)	36	4	Midazolam: 36	11	
Bong et al. (25) (Prospective)	40	3	Propofol: 39 Placebo: 41	Propofol: 0 Placebo: 2	
Cho et al. (27) (Prospective)	40	3	Placebo: 40	18	
Hauber et al. (32) (Prospective)	193	69	Placebo: 189	125	
Jiang et al. (65) (Retrospective)	77	14	Midazolam: 97	31	
Lundblad et al. (41) (Prospective)	22	0	Placebo: 21	4	
Mukherjee et al. (80) (Prospective)	40	9	Clonidine: 40	14	
Peng and Zhang (44) (Prospective)	20	3	Placebo: 20	18	
Soliman et al. (52) (Prospective)	75	8	Placebo: 75	23	
Yao et al. (56) (Prospective)	1 μg/kg: 30 2 μg/kg: 30	1 μg/kg: 5 2 μg/kg: 1	Placebo: 29	14	

Study	Dexmede	tomidine	Control		
	N (total)	N (EA or ED)	N (total)	N (EA or ED)	
Abdelaziz et al. (19) (Prospective)	33	4	Placebo: 32 Midazolam: 33	Placebo: 15 Midazolam: 7	
Ali et al. (23) (Prospective)	30	EA: 5	Ketofol: 30 Placebo: 30	Ketofol: 8 Placebo: 27	
Al-Zaben et al. (21) (Prospective)	B-D _{cau} : 25 B-D _{IV} : 25	B-D _{cau} : 0 B-D _{IV} : 2	B: 25	8	
Eldeek et al. (77) (Prospective)	55	0	Ketamine: 55	2	
Lin et al. (40) (Prospective)	1 μg/kg: 30 2 μg/kg: 30	1 μg/kg: 7 2 μg/kg: 3	Placebo: 30	24	
Makkar et al. (41) (Prospective)	32	3	Propofol: 36 Placebo: 32	Propofol: 5 Placebo: 13	
Song et al. (53) (Prospective)	0.25 μg/kg: 25 0.5 μg/kg: 25 μg/kg: 28	0.25 μg/kg: 12 0.5 μg/kg: 11 1.0 μg/kg: 6	Placebo: 28	15	
El-Hamid and Yassin (28) (Prospective)	43	3	Placebo: 43	25	
Ezz (78) (Prospective)	45	3	Ketamine: 45	3	
Prabhu and Mehandale (68) (Prospective)	45	2	Midazolam: 45	18	
Keles and Kocaturk (36) (Retrospective)	50	6	Placebo: 50	12	
Park et al. (73) (Prospective)	28	5	Fentanyl: 29	8	
Riveros et al. (46) (Retrospective)	331	48	Placebo: 322	44	
Yuen et al. (81) (Prospective)	87	4	Chloral hydrate: 107	5	
Abdel-Ghaffar et al. (60) (Prospective)	30	2	Ketamine: 30 Midazolam: 30	Ketamine: 6 Midazolam: 12	
Li et al. (38) (Prospective)	40	6	Placebo: 40	33	
Long et al. (66) (Retrospective)	26	0	Midazolam: 26	5	
Tsiotou et al. (54) (Prospective)	31	15	Placebo: 29	6	
Abdel-Ghaffar et al. (20) (Prospective)	0.5 μg/kg: 30 1 μg/kg: 30	0.5 μg/kg: 18 1 μg/kg: 16	Placebo: 30	15	
Bi et al. (24) (Prospective)	20	5	Placebo: 20	14	
Cho et al. (24) (Prospective)	34	9	Midazolam: 32	10	
Sajid et al. (69) (Prospective)	40	9	Midazolam: 40	32	
Sharma et al. (49) (Prospective)	30	2	Placebo: 30	30	
Shi et al. (50) (Prospective)	45	14	Placebo: 45	24	
Ye et al. (57) (Prospective)	RD: 20	4	RB: 20 F: 20	RB: 7 F: 17	
Zhang et al. (83) (Prospective)	67	6	Placebo: 67	13	

45, 53, 56). We chose the dexmedetomidine dosage with the highest incidence of EA or ED. We evaluated the effect of dexmedetomidine administration on EA or ED compared with placebo (19–59), midazolam (19, 59–71), opioids (29, 45, 72–74), propofol (or pentobarbital) (22, 25, 42, 75, 76), ketamine (26, 60, 77–79), and other sedatives (clonidine, chloral hydrate, melatonin) or ketofol (23, 59, 80, 81).

The random-effect model with OR was selected due to high I^2 in the groups of placebo ($I^2 = 75\%$), midazolam ($I^2 = 57\%$), and propofol (or pentobarbital) ($I^2 = 58\%$), whereas the fixed-effect

model with OR was selected because of low I^2 in the group of opioids ($I^2 = 0\%$) and ketamine ($I^2 = 0\%$).

The pooled results demonstrated significant difference in the incidence of EA or ED after anesthesia in the groups of placebo $[OR = 0.22, 95\% \text{ CI:} (0.16, 0.32), I^2 = 75\%, P \text{ for effect} < 0.00001]$ (**Figure 2**), midazolam $[OR = 0.36, 95\% \text{ CI:} (0.21, 0.63), I^2 = 57\%, P \text{ for effect} = 0.0003]$ (**Figure 3**), and opioids $[OR = 0.55, 95\% \text{ CI:} (0.33, 0.91), I^2 = 0, P \text{ for effect} = 0.02]$ (**Figure 4**). However, no significant difference was exhibited in the groups of propofol (or pentobarbital) [OR = 0.56, 95% CI: (0.15, 2.14),

	Dexmedeton	nidine	Place	00		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Abdelaziz 2016	4	33	15	32	2.6%	0.16 [0.04, 0.55]	
Abdel – Ghaffar 2019	18	30	15	30	2.9%	1.50 [0.54, 4.17]	
Al-Zaben 2016	2	25	8	25	2.1%	0.18 [0.03, 0.98]	
Ali 2013	2	40	7	40	2.1%	0.25 [0.05, 1.28]	
Ali 2016	5	30	27	30	2.3%	0.02 [0.00, 0.10]	←
Bi 2019	5	20	14	20	2.4%	0.14 [0.04, 0.57]	
Bong 2015	3	40	2	41	1.9%	1.58 [0.25, 10.00]	
Chen 2013	3	27	11	24	2.4%	0.15 (0.03, 0.63)	
Cho 2015	3	40	18	40	2.5%	0.10 [0.03, 0.38]	
El-Hamid 2017	3	43	25	43	2.5%	0.05 [0.01, 0.20]	
Erdil 2009	5	30	14	30	2.7%	0.23 [0.07, 0.76]	
Guler 2005	5	30	17	30	2.7%	0.15 (0.05, 0.51)	
Gupta 2013	0	18	4	18	1.1%	0.09 (0.00, 1.75)	· · · · · · · · · · · · · · · · · · ·
Hauber 2015	69	193	125	189	3.5%	0.28 [0.19, 0.43]	
He 2013	5	29	11	26	2.6%	0.28 (0.08, 0.98)	
lbacache 2004	6	30	4	30	2.4%	1.63 [0.41, 6.47]	
lsik 2006	1	21	10	21	1.6%	0.06 [0.01, 0.49]	
Keles 2017	6	50	12	50	2.8%	0.43 [0.15, 1.26]	
Kim 2013	1	20	11	20	1.6%	0.04 [0.00, 0.39]	·
Kim 2014	7	47	33	47	2.9%	0.07 [0.03, 0.21]	
Li 2018	6	40	33	40	2.7%	0.04 [0.01, 0.12]	
Lin 2016	7	30	24	30	2.6%	0.08 [0.02, 0.26]	
Lundblad 2015	0	22	4	21	1.1%	0.09 [0.00, 1.71]	· · · · · · · · · · · · · · · · · · ·
Makkar 2016	3	32	13	32	2.4%	0.15 [0.04, 0.60]	
Meng 2012	6	40	8	40	2.7%	0.71 [0.22, 2.26]	
Peng 2015	3	20	18	20	1.9%	0.02 [0.00, 0.13]	·
Pestieau 2011	9	28	11	27	2.8%	0.69 [0.23, 2.08]	
Riveros 2017	48	331	44	322	3.5%	1.07 [0.69, 1.67]	+
Saadawy 2009	3	30	9	30	2.4%	0.26 [0.06, 1.08]	
Sato 2010	11	39	27	42	3.0%	0.22 [0.09, 0.56]	
Sharma 2019	2	30	30	30	1.0%	0.00 [0.00, 0.03]	←
Shi 2019	14	45	24	45	3.1%	0.40 [0.17, 0.93]	
Shukry 2005	6	23	16	23	2.5%	0.15 [0.04, 0.56]	
Soliman 2015	8	75	23	75	3.0%	0.27 [0.11, 0.65]	
Song 2016	12	25	15	28	2.8%	0.80 [0.27, 2.36]	
Tsiotou 2018	15	31	6	29	2.7%	3.59 [1.15, 11.26]	
Xu 2012	3	30	13	30	2.4%	0.15 [0.04, 0.59]	
Yao 2015	5	30	14	29	2.6%	0.21 [0.06, 0.72]	
Ye 2019	4	20	7	20	2.4%	0.46 [0.11, 1.94]	
Zhang 2019	6	67	13	67	2.9%	0.41 [0.15, 1.15]	
Özcengiz 2011	2	25	8	25	2.1%	0.18 [0.03, 0.98]	
fotal (95% CI)		1809		1791	100.0%	0.22 [0.16, 0.32]	◆
Total events	326		743			•	
Heterogeneity: Tau ² = 0	.95; Chi ² = 156	.96, df=	40 (P < 0	.00001	l); l² = 759	6	
Test for overall effect: Z	= 7.96 (P < 0.0	0001)					U.U1 U.1 1 10 100 Favours (dexmedetomidine) Favours (placebo)

 $I^2 = 58\%$, *P* for effect = 0.39] (**Figure 5**) and ketamine [OR = 0.43, 95% CI: (0.19, 1.00), $I^2 = 0$, *P* for effect = 0.05] (**Figure 6**).

With regard to other control sedatives or drug combination, no heterogenicity was presented because only one literature was retrieved for each group. The results did not demonstrate significant difference in the incidence of EA or ED after anesthesia when comparing dexmedetomidine with clonidine [OR = 0.54, 95% CI: (0.20, 1.45), *P* for effect = 0.22], chloral hydrate [OR = 0.98, 95% CI: (0.26, 3.78), *P* for effect = 0.98], melatonin [OR = 1.0, 95% CI: (0.13, 7.72), *P* for effect = 1.00], and ketofol [OR = 0.55, 95% CI: (0.16, 1.93), *P* for effect = 0.35].

Sensitivity Analysis

Meta-regression was performed to investigate the heterogeneity sources by assessing the potential factors including the year of publication, study methods, the country of authors, the time of drug administration, the type of surgery, routes of drug administration, the bias risk of the study, and the range of patients' age for the groups of placebo and midazolam. Unexpectedly, all *P*-values of these risk factors were over 0.05 (**Supplementary Tables 4**, 5). Afterward, the method of one-by-one literature removal was used. Seven trials (20, 23, 39, 44, 46, 49, 54) were found to be the main sources of heterogeneity in the placebo group (I^2 dropped from 75 to 36%) and two trials (61, 69) in the midazolam group (I^2 dropped from 57 to 28%). Due to a small number of included trials in the group of propofol (or pentobarbital), the method of one-by-one literature removal was directly used to lower the heterogeneity. When we removed the retrospective trial from Mason et al. (76), the value of I^2 in the propofol (or pentobarbital) group dropped from 58 to 13%, and

	Dexmedeton	nidine	Midazo	lam		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Abdelaziz 2016	4	33	7	33	7.6%	0.51 [0.13, 1.95]	
Abdel – Ghaffar 2018	2	30	12	30	6.4%	0.11 [0.02, 0.54]	
Akin 2012	8	45	5	45	8.3%	1.73 [0.52, 5.76]	
Aydogan 2013	1	16	4	16	4.1%	0.20 [0.02, 2.03]	
Bhadla 2013	7	30	14	30	8.9%	0.35 [0.11, 1.05]	
Cho 2019	9	34	10	32	9.1%	0.79 [0.27, 2.30]	
Jiang 2015	14	77	31	97	11.1%	0.47 [0.23, 0.97]	
Long 2018	0	26	5	26	2.8%	0.07 [0.00, 1.41]	· · · · · · · · · · · · · · · · · · ·
Mountain 2011	3	22	5	19	6.5%	0.44 [0.09, 2.17]	
Prabhu 2017	2	45	18	45	6.7%	0.07 [0.01, 0.32]	
Sajid 2019	9	40	32	40	9.1%	0.07 [0.02, 0.21]	
Sheta 2014	4	36	11	36	8.0%	0.28 [0.08, 1.00]	
Talon 2009	5	50	5	50	7.8%	1.00 [0.27, 3.69]	
Özcengiz 2011	2	25	1	25	3.7%	2.09 [0.18, 24.61]	
Total (95% Cl)		509		524	100.0%	0.36 [0.21, 0.63]	◆
Total events	70		160				
Heterogeneity: Tau ² = I	0.59; Chi ² = 30.	48, df = 1	3 (P = 0.	004); I ^z	= 57%		
Test for overall effect: 2	Z = 3.61 (P = 0.0)	003)					U.UT U.T 1 10 10L
	v	,					Favours (dexmedetomidine) - Favours (midazolami)

FIGURE 3 | Comparison of pediatric EA or ED between dexmedetomidine and midazolam groups.

FIGURE 4 | Comparison of pediatric EA or ED between dexmedetomidine and opioids groups.

the changes suggested that this retrospective trial was the main source of significant heterogeneity.

DISCUSSION

The *post hoc* analysis was performed by the fixed-effects model with OR, and the pooled results were consistent with those prior to the sensitivity analysis—placebo group: [OR = 0.24, 95% CI: (0.18, 0.31), $I^2 = 36\%$, *P* for effect <0.00001] (**Figure 7**); midazolam group: [OR = 0.37, 95% CI: (0.26, 0.52), $I^2 = 28\%$, *P* for effect <0.00001] (**Figure 8**); propofol (or pentobarbital) group: [OR = 1.06, 95% CI: (0.39, 2.85), $I^2 = 13\%$, *P* for effect = 0.92] (**Figure 9**).

This meta-analysis included 58 RCTs and 5 CCTs that compared the prophylactic effect of dexmedetomidine vs. placebo or other sedatives on post-anesthesia EA or ED in pediatric patients undergoing medical procedures. The results showed that dexmedetomidine strikingly decreased the incidence of post-anesthesia EA or ED compared with placebo, midazolam, or opioids, whereas the significant difference was not exhibited compared with propofol (or

	Dexmedetom	idine	Ketam	ine		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Abdel – Ghaffar 2018	2	30	6	30	31.8%	0.29 [0.05, 1.55]	
Chen 2013	3	27	6	27	30.2%	0.44 [0.10, 1.97]	
Eldeek 2016	0	55	2	55	14.0%	0.19 [0.01, 4.11]	• • •
Ezz 2017	3	45	3	45	15.9%	1.00 [0.19, 5.24]	
Koruk 2010	0	9	1	9	8.1%	0.30 [0.01, 8.35]	
Total (95% CI)		166		166	100.0%	0.43 [0.19, 1.00]	-
Total events	8		18				
Heterogeneity: Chi ² = 1.	53, df = 4 (P = 1	0.82); I ^z	= 0%				
Test for overall effect: Z	= 1.96 (P = 0.0	5)					Favours [dexmedetomidine] Favours [ketamine]

FIGURE 6 | Comparison of pediatric EA or ED between dexmedetomidine and ketamine groups.

	Dexmedeton	nidine	Place	bo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Abdelaziz 2016	4	33	15	32	3.0%	0.16 [0.04, 0.55]	
Abdel – Ghaffar 2019	18	30	15	30	0.0%	1.50 [0.54, 4.17]	
Al-Zaben 2016	2	25	8	25	2.0%	0.18 [0.03, 0.98]	
Ali 2013	2	40	7	40	2.0%	0.25 [0.05, 1.28]	
Ali 2016	5	30	27	30	0.0%	0.02 [0.00, 0.10]	
Bi 2019	5	20	14	20	2.6%	0.14 [0.04, 0.57]	
Bong 2015	3	40	2	41	1.7%	1.58 [0.25, 10.00]	
Chen 2013	3	27	11	24	2.5%	0.15 [0.03, 0.63]	
Cho 2015	3	40	18	40	2.8%	0.10 [0.03, 0.38]	
El-Hamid 2017	3	43	25	43	2.8%	0.05 [0.01, 0.20]	
Erdil 2009	5	30	14	30	3.2%	0.23 [0.07, 0.76]	
Guler 2005	5	30	17	30	3.2%	0.15 [0.05, 0.51]	
Gupta 2013	0	18	4	18	0.7%	0.09 [0.00, 1.75]	· · · · · · · · · · · · · · · · · · ·
Hauber 2015	69	193	125	189	7.5%	0.28 [0.19, 0.43]	
He 2013	5	29	11	26	3.1%	0.28 (0.08, 0.98)	
lbacache 2004	6	30	4	30	2.6%	1.63 [0.41, 6.47]	
lsik 2006	1	21	10	21	1.3%	0.06 [0.01, 0.49]	
Keles 2017	6	50	12	50	3.7%	0.43 [0.15, 1.26]	
Kim 2013	1	20	11	20	1.3%	0.04 [0.00, 0.39]	·
Kim 2014	7	47	33	47	3.9%	0.07 [0.03, 0.21]	
Li 2018	6	40	33	40	0.0%	0.04 [0.01, 0.12]	
Lin 2016	7	30	24	30	3.1%	0.08 (0.02, 0.26)	
Lundblad 2015	0	22	4	21	0.7%	0.09 [0.00, 1.71]	· · · · · · · · · · · · · · · · · · ·
Makkar 2016	3	32	13	32	2.6%	0.15 [0.04, 0.60]	
Mena 2012	6	40	8	40	3.3%	0.71 [0.22, 2.26]	
Pena 2015	3	20	18	20	0.0%	0.02 [0.00, 0.13]	
Pestieau 2011	9	28	11	27	3.6%	0.69 [0.23, 2.08]	
Riveros 2017	48	331	44	322	0.0%	1.07 [0.69, 1.67]	
Saadawy 2009	3	30	9	30	2.5%	0.26 [0.06, 1.08]	
Sato 2010	11	39	27	42	4.3%	0.22 (0.09, 0.56)	
Sharma 2019	2	30	30	30	0.0%	0.00 [0.00, 0.03]	
Shi 2019	14	45	24	45	4.7%	0.40 [0.17, 0.93]	
Shukry 2005	6	23	16	23	2.9%	0.15 [0.04, 0.56]	
Soliman 2015	8	75	23	75	4.6%	0.27 [0.11, 0.65]	
Song 2016	12	25	15	28	3.7%	0.80 [0.27, 2.36]	
Tsintou 2018	15	31	6	29	0.0%	3 59 [1 15 11 26]	
Xu 2012	3	30	13	30	2.6%	0.15 (0.04 0.59)	
Yan 2015	5	30	14	29	3.2%		
Ye 2019	4	20	7	20	2.5%	0.46 [0.11 1 94]	
7hang 2019	e e	67	13	67	3.8%	0.40 [0.11, 1.04]	
Özcengiz 2011	2	25	8	25	2.0%	0.18 [0.03, 0.98]	
Total (95% CD		1207		1200	100 0%	0.24 [0.49.0.34]	•
Total (95% CI)	220	1297	570	1290	100.0%	0.24 [0.10, 0.31]	•
Hotorogoneity Tou? - 1	229 1 20: Chiz - 54	55 df - 1	010 02/0-0	021-12-	- 2604		
Test for overall effect: 2	C= 10.56 (P < 0	.00001)	os (r° = 0.	02); 1* =	- 30%		0.01 0.1 1 10 100 Favours (dexmedetomidine) Favours (placebo)
Test for overall effect: 2	C= 10.56 (P < 0	.00001)					Favours (dexmedetomidine) Favours (placebo)

FIGURE 7 | Comparison of pediatric EA or ED between dexmedetomidine and placebo groups after sensitivity analysis.

	Dexmedetomidine		Midazolam		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Abdelaziz 2016	4	33	7	33	5.9%	0.51 [0.13, 1.95]	
Abdel – Ghaffar 2018	2	30	12	30	10.7%	0.11 [0.02, 0.54]	
Akin 2012	8	45	5	45	0.0%	1.73 [0.52, 5.76]	
Aydogan 2013	1	16	4	16	3.6%	0.20 [0.02, 2.03]	
Bhadla 2013	7	30	14	30	10.3%	0.35 [0.11, 1.05]	
Cho 2019	9	34	10	32	7.3%	0.79 [0.27, 2.30]	
Jiang 2015	14	77	31	97	21.5%	0.47 [0.23, 0.97]	
Long 2018	0	26	5	26	5.2%	0.07 [0.00, 1.41]	· · · · · · · · · · · · · · · · · · ·
Mountain 2011	3	22	5	19	4.4%	0.44 [0.09, 2.17]	
Prabhu 2017	2	45	18	45	16.5%	0.07 [0.01, 0.32]	
Sajid 2019	9	40	32	40	0.0%	0.07 [0.02, 0.21]	
Sheta 2014	4	36	11	36	9.4%	0.28 [0.08, 1.00]	
Talon 2009	5	50	5	50	4.3%	1.00 [0.27, 3.69]	
Özcengiz 2011	2	25	1	25	0.9%	2.09 [0.18, 24.61]	
Total (95% CI)		424		439	100.0%	0.37 [0.26, 0.52]	•
Total events	53		123				
Heterogeneity: Chi ² = 15.22, df = 11 (P = 0.17); I ² = 28%							
Test for overall effect: Z = 5.49 (P < 0.00001)						U.UT U.T T 1U 1UU	
							Favours (dexmedetomidne) - Favours (midazolam)

FIGURE 8 | Comparison of pediatric EA or ED between dexmedetomidine and midazolam groups after sensitivity analysis.

pentobarbital), ketamine, clonidine, chloral hydrate, melatonin, and ketofol, respectively.

Currently, the specific predisposing causes of EA or ED following medical procedures in children remain unclear. Children undergoing general anesthesia are prone to suffer post-anesthesia EA or ED due to their immature central nervous system, preoperative fear and anxiety about unfamiliar surroundings, and postoperative pain (84–86). In addition, the children undergoing inhalation anesthesia through sevoflurane, isoflurane, or desflurane may suffer from a high incidence of post-anesthesia EA or ED (87, 88). Various medications have been used to prevent EA or ED in pediatric patients, like benzodiazepines, opioids, propofol, ketamine, clonidine, dexmedetomidine, and so on (11, 89–93).

Dexmedetomidine, as a highly selective α_2 adrenergic receptor agonist, can produce pharmacological effects of antianxiety, sedation, and analgesia without overt respiratory and circulatory inhibition in a routine dose (94, 95). Meanwhile, dexmedetomidine can improve the cognitive function in children during recovery from general anesthesia (96) and contributes to dose-dependent inhibition of EA or ED after medical procedures (97). The optimal dose (ED₉₅) of dexmedetomidine for preventing EA was 0.30 µg/kg (95% CI: 0.21–1.00 µg/kg) (83). An animal experiment demonstrated that dexmedetomidine could enhance spatial learning and memory in neonatal rats under physiological conditions through promoting hippocampal neurogenesis (98). In this meta-analysis, nine trials had different dexmedetomidine groups according to different dosages (20, 33, 34, 40, 43, 45, 53, 56) or administration routes of this drug (21). Patients in the control groups of these nine trials were treated with a placebo (20, 21, 33, 34, 40, 43, 45, 53, 56), and patients in another control group in the study from Pestieau et al. received fentanyl treatment (45). We chose the dexmedetomidine group with higher incidence of EA or ED. Therefore, the pooled results were more convincing in the powerful prophylactic effect of dexmedetomidine on the occurrence of EA or ED in children compared with placebo and opioids.

Dexmedetomidine can be administered in a variety of ways, like intravenous, transnasal, oral, inhalation, caudal or nerve block, and so on; thus, pediatric patients can easily accept it. The pooled results of 53 trials comparing dexmedetomidine with placebo and midazolam showed that dexmedetomidine could work in various ways and was superior to placebo or midazolam in inhibiting EA or ED in children. However, compared with propofol (or pentobarbital) or ketamine, dexmedetomidine did not demonstrate its superiority in reducing pediatric EA or ED following anesthesia. The possible explanations included the following: (1) the efficacy of propofol (or pentobarbital) or ketamine in suppressing EA or ED occurrence was no less than that of dexmedetomidine; and (2) the number of relevant prospective studies needed to be further increased. Because only one article was included, we could not perform meta-analysis for trials in the group of clonidine, chloral hydrate, melatonin, or ketofol.

In this meta-analysis, high heterogenicity was detected in trials comparing dexmedetomidine with placebo ($I^2 = 75\%$), midazolam ($I^2 = 57\%$), and propofol (or pentobarbital) ($I^2 =$ 58%), respectively. Subgroup analysis is an effective method to solve large heterogenicity among studies (99). We suggested some possible risk factors associated with overt heterogenicity including the year of publication, study methods, the country of authors, the time of drug administration, the type of surgery, routes of drug administration, the bias risk of the study, and the range of patients' age. Meta-regression was used to identify heterogenicity sources. If the P-value of meta-regression was <0.05 through analyzing one risk factor, the subgroup analysis was performed based on this risk factor (99, 100). However, in this meta-analysis, all P-values of meta-regression were more than 0.05 through analyzing all possible risk factors in the placebo and midazolam groups. Hence, we considered that significant heterogeneity may be the result of a combination of multiple factors. The meta-analysis by a random-effect model can decrease the effect of significant heterogeneity on the results, although this method does not solve heterogeneity (101). In addition, the method of trial exclusion is also an effective method to solve large heterogenicity for meta-analysis (102). When we excluded seven trials (20, 23, 39, 44, 46, 49, 54) in the placebo group, two trials (61, 69) in the midazolam group, and one trial (76) in the propofol (or pentobarbital) group, all values of I^2 dropped to below 40%. Interestingly, the pooled results were consistent with those prior to sensitivity analysis.

It is necessary to elaborate the strengths and limitations of our meta-analysis. Firstly, this meta-analysis presented a comprehensive and up-to-date analysis of dexmedetomidine vs. placebo or other sedatives in pediatric patients. Sixty-three included trials with unlimited study methods (RCTs and CCTs) and various administration routes and dosages were grouped according to control drugs; thus, the pooled outcomes revealed the effect of dexmedetomidine on pediatric EA or ED more comprehensively. Secondly, sensitivity analysis was conducted in groups with high heterogeneity to remove the influence of heterogeneity on the overall results. Thirdly, this meta-analysis provided several directions for future clinical studies about the effect of dexmedetomidine on EA or ED in children. In addition, some limitations should be taken into account in this metaanalysis. Foremost, 39 RCTs and 2 CCTs in 63 included trials were assessed to be high bias risk, and so many trials with high-risk bias would affect the results. Additionally, the age gap of participants in 9 trials (46, 52, 54, 58, 64, 71, 72, 75, 79) was over 10 years, and a large age gap might be an important risk factor associated with the unreliability of outcomes. Lastly,

REFERENCES

 American Psychiatric Association. *Diagnostic and Statistical Manual* of *Mental Disorders*. 4th ed. Arlington, VA: American Psychiatric Publishing (2000). non-uniform definitions of EA or ED were an additional limitation of this meta-analysis. There were five strategies diagnosing EA or ED in included trials, i.e., three-point scale, four-point scale, five-point scale, pediatric Anesthesia Emergence Delirium (PAED) scale, and the Confusion Assessment Method for the ICU.

CONCLUSION

In conclusion, compared with placebo, midazolam, and opioids, dexmedetomidine significantly decreased the incidence of post-anesthesia EA or ED in pediatric patients. However, dexmedetomidine did not exhibit this superiority when compared with propofol and ketamine. With regard to clonidine, chloral hydrate, melatonin, or ketofol, the results needed to be further tested due to the fact that there was only one trial in each study.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the article/**Supplementary Material**.

AUTHOR CONTRIBUTIONS

XW and JL designed this meta-analysis and supervised the acquisition and analysis of the data. YR, RZ, and XJ were independently responsible for reviewing the titles, abstracts, or both and summarized the data of the included literatures. RZ and XJ conducted statistical analysis of the data. YR wrote the manuscript. All authors contributed to the article and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fped. 2020.00329/full#supplementary-material

Supplementary Figure 1 | Risk of bias graph: review authors' judgments about each risk of bias item presented as percentages across all included studies.

Supplementary Figure 2 | Risk of bias summary: review authors' judgments about each risk of bias item for each included study.

Supplementary Table 1 | The guidelines of the 2009 PRISMA (Preferred Reporting Items for Systematic reviews and Meta-analyses).

Supplementary Table 2 | The Newcastle-Otawa Quality Assessment Scale (NOS).

Supplementary Table 3 | The bias risk of CCTs by Newcastle-Otawa Quality Assessment Scale (NOS).

Supplementary Table 4 | Meta-regression (dexmedetomidine vs. placebo): estimate of between-study variance % residual variation due to heterogeneity.

Supplementary Table 5 | Meta-regression (dexmedetomidine vs. midazolam): estimate of between-study variance % residual variation due to heterogeneity.

- Voepel-Lewis T, Malviya S, Tait AR. A prospective cohort study of emergence agitation in the pediatric postanesthesia care unit. *Anesth Analg.* (2003) 96:1625–30. doi: 10.1213/01.ANE.0000062522.21048.61
- 3. Vlajkovic GP, Sindjelic RP. Emergence delirium in children: many questions, few answers. Anesth Analg.

(2007) 104:84–91. doi: 10.1213/01.ane.0000250914.91

- Dexter F, Macario A, Manberg PJ, Lubarsky DA. Computer simulation to determine how rapid anesthetic recovery protocols to decrease the time for emergence or increase the phase I postanesthesia care unit bypass rate affect staffing of an ambulatory surgery center. *Anesth Analg.* (1999) 88:1053–63. doi: 10.1097/0000539-199905000-00016
- Cho EJ, Yoon SZ, Cho JE, Lee HW. Comparison of the effects of 0.03 and 0.05 mg/kg midazolam with placebo on prevention of emergence agitation in children having strabismus surgery. *Anesthesiology*. (2014) 120:1354–61. doi: 10.1097/ALN.00000000000181
- Aouad MT, Yazbeck-Karam VG, Nasr VG, El-Khatib MF, Kanazi GE, Bleik JH. A single dose of propofol at the end of surgery for the prevention of emergence agitation in children undergoing strabismus surgery during sevoflurane anesthesia. *Anesthesiology*. (2007) 107:733–8. doi: 10.1097/01.anes.0000287009.46896.a7
- Ng KT, Sarode D, Lai YS, Teoh WY, Wang CY. The effect of ketamine on emergence agitation in children: a systematic review and meta-analysis. *Paediatr Anaesth.* (2019) 29:1163–72. doi: 10.1111/pan.13752
- Pickard A, Davies P, Birnie K, Beringer R. Systematic review and meta-analysis of the effect of intraoperative α-adrenergic agonists on postoperative behaviour in children. Br J Anaesth. (2014) 112:982–90. doi: 10.1093/bja/aeu093
- Nguyen V, Tiemann D, Park E, Salehi A. Alpha-2 Agonists. Anesthesiol Clin. (2017) 35:233–45. doi: 10.1016/j.anclin.2017.01.009
- Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. *Brain Behav Immun.* (2017) 64:195–207. doi: 10.1016/j.bbi.2017.03.006
- Ydemann M, Nielsen BN, Henneberg S, Jakobsen JC, Wetterslev J, Lauritsen T, et al. Intraoperative clonidine for prevention of postoperative agitation in children anaesthetised with sevoflurane (PREVENT AGITATION): a randomised, placebo-controlled, double-blind trial. *Lancet Child Adolesc Health*. (2018) 2:15–24. doi: 10.1016/S2352-4642(17)30127-X
- Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. *Clin Pharmacokinet.* (2017) 56:893–913. doi: 10.1007/s40262-017-0507-7
- Virtanen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. *Eur J Pharmacol.* (1988) 150:9–14. doi: 10.1016/0014-2999(88)90744-3
- Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. *PLoS Med.* (2009) 6:e1000097. doi: 10.1371/journal.pmed.1000097
- Koster G, Wetterslev J, Gluud C, Zijlstra JG, Scheeren TW, van der Horst IC, et al. Effects of levosimendan for low cardiac output syndrome in critically ill patients: systematic review with meta-analysis and trial sequential analysis. *Intensive Care Med.* (2015) 41:203–21. doi: 10.1007/s00134-014-3604-1
- Trifan A, Stanciu C, Girleanu I, Stoica OC, Singeap AM, Maxim R, et al. Proton pump inhibitors therapy and risk of *Clostridium difficile* infection: systematic review and meta-analysis. *World J Gastroenterol.* (2017) 23:6500– 15. doi: 10.3748/wjg.v23.i35.6500
- Aziz O, Athanasiou T, Darzi A. Minimally invasive conduit harvesting: a systematic review. *Eur J Cardiothorac Surg.* (2006) 29:324–3. doi: 10.1016/j.ejcts.2005.11.032
- Chen P, Wu X, Wang Z, Li Z, Tian X, Wang J, et al. Effects of levosimendan on mortality in patients undergoing cardiac surgery: a systematic review and meta-analysis. J Card Surg. (2018) 33:322–9. doi: 10.1111/jocs.13716
- Abdelaziz HMM, Bakr RH, Kasem AA. Effect of intranasal dexmedetomidine or intranasal midazolam on prevention of emergence agitation in pediatric strabismus surgery: a randomized controlled study. *Egypt J Anaesth.* (2016) 32:285–91. doi: 10.1016/j.egja.2015.11.009
- Abdel-Ghaffar HS, Abdel-Wahab AH, Roushdy MM. Oral trans-mucosal dexmedetomidine for controlling of emergence agitation in children undergoing tonsillectomy: a randomized controlled trial. *Rev Bras Anestesiol.* (2019) 69:469–76. doi: 10.1016/j.bjane.2019.07.001

- Al-Zaben KR, Qudaisat IY, Alja'bari AN, Ababneh OA, Yousef AM, Al-Shudifat AM. The effects of caudal or intravenous dexmedetomidine on postoperative analgesia produced by caudal bupivacaine in children: a randomized controlled double-blinded study. J Clin Anesth. (2016) 33:386–94. doi: 10.1016/j.jclinane.2016.04.049
- Ali MA, Abdellatif AA. Prevention of sevoflurane related emergence agitation in children undergoing adenotonsillectomy: a comparison of dexmedetomidine and propofol. *Saudi J Anaesth.* (2013) 7:296–300. doi: 10.4103/1658-354X.115363
- Ali WA, Mohammed AK, Elshorbagy HM. Dexmedetomidine versus ketofol effect on the incidence of emergence agitation associated with sevofluranebased anesthesia in children undergoing orthopedic surgery. *Egypt J Anaesth.* (2016) 32:277–84. doi: 10.1016/j.egja.2016.01.004
- 24. Bi Y, Ma Y, Ni J, Wu L. Efficacy of premedication with intranasal dexmedetomidine for removal of inhaled foreign bodies in children by flexible fiberoptic bronchoscopy: a randomized, double-blind, placebo-controlled clinical trial. *BMC Anesthesiol.* (2019) 19:219. doi: 10.1186/s12871-019-0892-6
- Bong CL, Lim E, Allen JC, Choo WL, Siow YN, Teo PB, et al. A comparison of single-dose dexmedetomidine or propofol on the incidence of emergence delirium in children undergoing general anaesthesia for magnetic resonance imaging. *Anaesthesia*. (2015) 70:393–9. doi: 10.1111/anae.12867
- Chen JY, Jia JE, Liu TJ, Qin MJ, Li WX. Comparison of the effects of dexmedetomidine, ketamine, and placebo on emergence agitation after strabismus surgery in children. *Can J Anaesth.* (2013) 60:385–92. doi: 10.1007/s12630-013-9886-x
- Cho JE, Kim JY, Park SJ, Kil HK. The effect of 1 μg/kg dexmedetomidine combined with high-volume/low-concentration caudal ropivacaine in children undergoing ambulatory orchiopexy. *Biol Pharm Bull.* (2015) 38:1020–25. doi: 10.1248/bpb.b15-00086
- El-Hamid AMA, Yassin HM. Effect of intranasal dexmedetomidine on emergence agitation after sevoflurane anesthesia in children undergoing tonsillectomy and/or adenoidectomy. *Saudi J Anaesth.* (2017) 11:137–43. doi: 10.4103/1658-354X.203020
- Erdil F, Demirbilek S, Begec Z, Ozturk E, Ulger MH, Ersoy MO. The effects of dexmedetomidine and fentanyl on emergence characteristics after adenoidectomy in children. *Anaesth Intensive Care.* (2009) 37:571–6. doi: 10.1177/0310057X0903700405
- Guler G, Akin A, Tosun Z, Ors S, Esmaoglu A, Boyaci A. Singledose dexmedetomidine reduces agitation and provides smooth extubation after pediatric adenotonsillectomy. *Paediatr Anaesth.* (2005) 15:762–6. doi: 10.1111/j.1460-9592.2004.01541.x
- Gupta N, Rath GP, Prabhakar H, Dash HH. Effect of intraoperative dexmedetomidine on postoperative recovery profile of children undergoing surgery for spinal dysraphism. *J Neurosurg Anesthesiol.* (2013) 25:271–8. doi: 10.1097/ANA.0b013e31828cb6c0
- Hauber JA, Davis PJ, Bendel LP, Martyn SV, McCarthy DL, Evans MC, et al. Dexmedetomidine as a rapid bolus for treatment and prophylactic prevention of emergence agitation in anesthetized children. *Anesthesia Anal.* (2015) 121:1308–15. doi: 10.1213/ANE.00000000000931
- 33. He L, Wang X, Zheng S, Shi Y. Effects of dexmedetomidine infusion on laryngeal mask airway removal and postoperative recovery in children anaesthetised with sevoflurane. *Anaesth Intensive Care.* (2013) 41:328–33. doi: 10.1177/0310057X1304100309
- Ibacache ME, Munoz HR, Brandes V, Morales AL. Single-dose dexmedetomidine reduces agitation after sevoflurane anesthesia in children. *Anesth Analg.* (2004) 98:60–3. doi: 10.1213/01.ANE.0000094947.20838.8E
- Isik B, Arslan M, Tunga AD, Kurtipek O. Dexmedetomidine decreases emergence agitation in pediatric patients after sevoflurane anesthesia without surgery. *Paediatr Anaesth.* (2006) 16:748–53. doi: 10.1111/j.1460-9592.2006.01845.x
- 36. Keles S, Kocaturk O. The effect of oral dexmedetomidine premedication on preoperative cooperation and emergence delirium in children undergoing dental procedures. *Biomed Res Int.* (2017) 2017:6742183. doi: 10.1155/2017/6742183
- Kim JM, Koo BN. Low dose-dexmedetomidine reduces emergence agitation in children after desflurane anesthesia undergoing strabismus surgery. *Eur J Anaesthesiol.* (2013) 30:158. doi: 10.1097/00003643-201306001-00492

- Kim NY, Kim SY, Yoon HJ, Kil HK. Effect of dexmedetomidine on sevoflurane requirements and emergence agitation in children undergoing ambulatory surgery. *Yonsei Med J.* (2014) 55:209–15. doi: 10.3349/ymj.2014.55.1.209
- Li H, Zhang L, Shi M, Yang S, Li S, Gao S. Impact of dexmedetomidine on pediatric agitation in the postanesthesia care unit. J Perianesth Nurs. (2018) 33:53–7. doi: 10.1016/j.jopan.2016.03.005
- 40. Lin Y, Chen Y, Huang J, Chen H, Shen W, Guo W, et al. Efficacy of premedication with intranasal dexmedetomidine on inhalational induction and postoperative emergence agitation in pediatric undergoing cataract surgery with sevoflurane. J Clin Anesth. (2016) 33:289–95. doi: 10.1016/j.jclinane.2016.04.027
- Lundblad M, Marhofer D, Eksborg S, Lönnqvist PA. Dexmedetomidine as adjunct to ilioinguinal/iliohypogastric nerve blocks for pediatric inguinal hernia repair: an exploratory randomized controlled trial. *Paediatr Anaesth*. (2015) 25:897–905. doi: 10.1111/pan.12704
- Makkar JK, Bhatia N, Bala I, Dwivedi D, Singh PM. A comparison of single dose dexmedetomidine with propofol for the prevention of emergence delirium after desflurane anaesthesia in children. *Anaesthesia*. (2016) 71:50– 7. doi: 10.1111/anae.13230
- Meng QT, Xia ZY, Luo T, Wu Y, Tang LH, Zhao B, et al. Dexmedetomidine reduces emergence agitation after tonsillectomy in children by sevoflurane anesthesia: a case-control study. *Int J Pediatr Otorhinolaryngol.* (2012) 76:1036–41. doi: 10.1016/j.ijporl.2012.03.028
- Peng W, Zhang T. Dexmedetomidine decreases the emergence agitation in infant patients undergoing cleft palate repair surgery after general anesthesia. *BMC Anesthesiol.* (2015) 15:145. doi: 10.1186/s12871-015-0124-7
- Pestieau SR, Quezado ZM, Johnson YJ, Anderson JL, Cheng YI, McCarter RJ, et al. The effect of dexmedetomidine during myringotomy and pressureequalizing tube placement in children. *Paediatr Anaesth*. (2011) 21:1128–35. doi: 10.1111/j.1460-9592.2011.03615.x
- Riveros R, Makarova N, Riveros-Perez E, Chodavarapu P, Saasouh W, Yilmaz HO, et al. Utility and clinical profile of dexmedetomidine in pediatric cardiac catheterization procedures: a matched controlled analysis. *Semin Cardiothor Vasc Anesth.* (2017) 21:330–40. doi: 10.1177/10892532177 08035
- 47. Saadawy I, Boker A, Elshahawy MA, Almazrooa A, Melibary S, Abdellatif AA, et al. Effect of dexmedetomidine on the characteristics of bupivacaine in a caudal block in pediatrics. *Acta Anaesthesiol Scand.* (2009) 53:251–6. doi: 10.1111/j.1399-6576.2008.01818.x
- Sato M, Shirakami G, Tazuke-Nishimura M, Matsuura S, Tanimoto K, Fukuda K. Effect of single-dose dexmedetomidine on emergence agitation and recovery profiles after sevoflurane anesthesia in pediatric ambulatory surgery. J Anesth. (2010) 24:675–82. doi: 10.1007/s00540-010-0976-4
- Sharma K, Kumar M, Gandhi R. Effect of single-dose dexmedetomidine on intraoperative hemodynamics and postoperative recovery during pediatric adenotonsillectomy. *Anesth Essays Res.* (2019) 13:63–7. doi: 10.4103/aer.AER_178_18
- 50. Shi M, Miao S, Gu T, Wang D, Zhang H, Liu J. Dexmedetomidine for the prevention of emergence delirium and postoperative behavioral changes in pediatric patients with sevoflurane anesthesia: a double-blind, randomized trial. *Drug Des Devel Ther*. (2019) 13:897–905. doi: 10.2147/DDDT.S196075
- Shukry M, Clyde MC, Kalarickal PL, Ramadhyani U. Does dexmedetomidine prevent emergence delirium in children after sevoflurane-based general anesthesia? *Paediatr Anaesth.* (2005) 15:1098–4. doi: 10.1111/j.1460-9592.2005.01660.x
- Soliman R, Alshehri A. Effect of dexmedetomidine on emergence agitation in children undergoing adenotonsillectomy under sevoflurane anesthesia: a randomized controlled study. *Egyptian Journal of Anaesthesia*. (2015) 31:283–9. doi: 10.1016/j.egja.2015.04.006
- 53. Song IA, Seo KS, Oh AY, Baik JS, Kim JH, Hwang JW, et al. Dexmedetomidine injection during strabismus surgery reduces emergence agitation without increasing the oculocardiac reflex in children: a randomized controlled trial. *PLoS ONE.* (2016) 11:e0162785. doi: 10.1371/journal.pone.0162785
- 54. Tsiotou AG, Malisiova A, Kouptsova E, Mavri M, Anagnostopoulou M, Kalliardou E. Dexmedetomidine for the reduction of emergence delirium in children undergoing tonsillectomy with propofol anesthesia:

a double-blind, randomized study. Paediatr Anaesth. (2018) 28:632-638. doi: 10.1111/pan.13397

- Xu L, Shen J, Zhou H. The application of dexmedetomidine in children undergoing vitreoretinal surgery. J Anesth. (2012) 26:556–61. doi: 10.1007/s00540-012-1354-1
- 56. Yao Y, Qian B, Lin Y, Wu W, Ye H, Chen Y. Intranasal dexmedetomidine premedication reduces minimum alveolar concentration of sevoflurane for laryngeal mask airway insertion and emergence delirium in children: a prospective, randomized, double-blind, placebo-controlled trial. *Paediatr Anaesth.* (2015) 25:492–8. doi: 10.1111/pan.12574
- Ye W, Hu Y, Wu Y, Zhu Z, Jin X, Hu Z. Retrobulbar dexmedetomidine in pediatric vitreoretinal surgery eliminates the need for intraoperative fentanyl and postoperative analgesia: a randomized controlled study. *Indian J Ophthalmol.* (2019) 67:922–27. doi: 10.4103/ijo.IJO_1905_18
- Zhang S, Zhang R, Cai M, Zhang K, Zhang M, Zheng J. Intranasal dexmedetomidine premedication in children with recent upper respiratory tract infection undergoing interventional cardiac catheterisation: a randomised controlled trial. *Eur J Anaesthesiol.* (2020) 37:85–90. doi: 10.1097/EJA.000000000001097
- Özcengiz D, Gunes Y, Ozmete O. Oral melatonin, dexmedetomidine, and midazolam for prevention of postoperative agitation in children. J Anesthesia. (2011) 25:184–8. doi: 10.1007/s00540-011-1099-2
- Abdel-Ghaffar HS, Kamal SM, El Sherif FA, Mohamed SA. Comparison of nebulised dexmedetomidine, ketamine, or midazolam for premedication in preschool children undergoing bone marrow biopsy. *BMC Anesthesiol.* (2018) 121:445–52. doi: 10.1016/j.bja.2018.03.039
- Akin A, Bayram A, Esmaoglu A, Tosun Z, Aksu R, Altuntas R, et al. Dexmedetomidine vs midazolam for premedication of pediatric patients undergoing anesthesia. *Paediatr Anaesth.* (2012) 22:871–6. doi: 10.1111/j.1460-9592.2012.03802.x
- Aydogan MS, Korkmaz MF, Ozgül U, Erdogan MA, Yucel A, Karaman A, et al. Pain, fentanyl consumption, and delirium in adolescents after scoliosis surgery: dexmedetomidine vs midazolam. *Paediatr Anaesth.* (2013) 23:446–52. doi: 10.1111/pan.12128
- Bhadla S, Prajapati D, Louis T, Puri G, Panchal S, Bhuva M. Comparison between dexmedetomidine and midazolam premedication in pediatric patients undergoing ophthalmic day-care surgeries. *Anesth Essays Res.* (2013) 7:248–56. doi: 10.4103/0259-1162.118982
- 64. Cho EA, Cha YB, Shim JG, Ahn JH, Lee SH, Ryu KH. Comparison of single minimum dose administration of dexmedetomidine and midazolam for prevention of emergence delirium in children: a randomized controlled trial. J Anesth. (2019) 34:59–65. doi: 10.1007/s00540-019-02705-6
- 65. Jiang L, Ding S, Yan H, Li Y, Zhang L, Chen X, et al. A retrospective comparison of dexmedetomidine versus midazolam for pediatric patients with congenital heart disease requiring postoperative sedation. *Pediatr Cardiol.* (2015) 36:993–9. doi: 10.1007/s00246-015-1110-z
- Long D, Keles S, Kocaturk O. Comparison of oral dexmedetomidine and midazolam for premedication and emergence delirium in children after dental procedures under general anesthesia: a retrospective study. *BMJ Open*. (2018) 12:647–53. doi: 10.2147/DDDT.S163828
- 67. Mountain BW, Smithson L, Cramolini M, Wyatt TH, Newman M. Dexmedetomidine as a pediatric anesthetic premedication to reduce anxiety and to deter emergence delirium. *Aana J.* (2011) 79:219–24.
- Prabhu MK, Mehandale SG. Comparison of oral dexmedetomidine versus oral midazolam as premedication to prevent emergence agitation after sevoflurane anaesthesia in paediatric patients. *Indian J Anaesth.* (2017) 61:131–6. doi: 10.4103/0019-5049.199852
- Sajid B, Mohamed T, Jumaila M. A comparison of oral dexmedetomidine and oral midazolam as premedicants in children. J Anaesthesiol Clin Pharmacol. (2019) 35:36–40. doi: 10.4103/joacp.JOACP_20_18
- Sheta SA, Al-Sarheed MA, Abdelhalim AA. Intranasal dexmedetomidine vs midazolam for premedication in children undergoing complete dental rehabilitation: a double-blinded randomized controlled trial. *Paediatr Anaesth.* (2014) 24:181–9. doi: 10.1111/pan.12287
- Talon MD, Woodson LC, Sherwood ER, Aarsland A, McRae L, Benham T. Intranasal dexmedetomidine premedication is comparable with midazolam in burn children undergoing reconstructive surgery. *J Burn Care Res.* (2009) 30:599–605. doi: 10.1097/BCR.0b013e3181abff90

- Bedirli N, Akcabay M, Emik U. The effects of intraoperative single dosage tramadol or dexmedetomidine on postoperative analgesia, sedation and emerge reactions in pediatric patients undergoing adenotonsillectomy. *Reg Anesth Pain Med.* (2011) 36:E152.
- Park SJ, Shin S, Kim SH, Kim HW, Kim SH, Do HY, et al. Comparison of dexmedetomidine and fentanyl as an adjuvant to ropivacaine for postoperative epidural analgesia in pediatric orthopedic surgery. *Yonsei Med* J. (2017) 58:650–7. doi: 10.3349/ymj.2017.58.3.650
- 74. Patel A, Davidson M, Tran MCJ, Quraishi H, Schoenberg C, Sant M, et al. Dexmedetomidine infusion for analgesia and prevention of emergence agitation in children with obstructive sleep apnea syndrome undergoing tonsillectomy and adenoidectomy. *Anesth Analg.* (2010) 111:1004–10. doi: 10.1213/ANE.0b013e3181ee82fa
- Hasanin AS, Sira AM. Dexmedetomidine versus propofol for sedation during gastrointestinal endoscopy in pediatric patients. *Egypt J Anaesth.* (2014) 30:21–6. doi: 10.1016/j.egja.2013.09.006
- Mason KP, Prescilla R, Fontaine PJ, Zurakowski D. Pediatric CT sedation: comparison of dexmedetomidine and pentobarbital. *AJR Am J Roentgenol.* (2011) 196:W194–8. doi: 10.2214/AJR.10.5045
- Eldeek AM, Elfawal SM, Allam MG. Sedation in children undergoing magnetic resonance imaging comparative study between dexmedetomidine and ketamine. *Egypt J Anaesth.* (2016) 32:263–8. doi: 10.1016/j.egja.2016.04.007
- Ezz HAA. Preoperative intranasal dexmedetomidine versus intranasal ketamine for prevention of emergence agitation after sevoflurane in myringotomy patients: a randomized clinical trial. *Egypt J Anaesth.* (2017) 33:141–6. doi: 10.1016/j.egja.2017.03.001
- 79. Koruk S, Mizrak A, Kaya Ugur B, Ilhan O, Baspinar O, Oner U. Propofol/dexmedetomidine and propofol/ketamine combinations for anesthesia in pediatric patients undergoing transcatheter atrial septal defect closure: a prospective randomized study. *Clin Ther.* (2010) 32:701–9. doi: 10.1016/j.clinthera.2010.04.010
- Mukherjee A, Das A, Basunia SR, Chattopadhyay S, Kundu R, Bhattacharyya R. Emergence agitation prevention in paediatric ambulatory surgery: a comparison between intranasal Dexmedetomidine and Clonidine. J Res Pharm Pract. (2015) 4:24–30. doi: 10.4103/2279-042X.1 50051
- Yuen VM, Li BL, Cheuk DK, Leung MKM, Hui TWC, Wong IC, et al. A randomised controlled trial of oral chloral hydrate vs. intranasal dexmedetomidine before computerised tomography in children. *Anaesthesia*. (2017) 72:1191–5. doi: 10.1111/anae.13981
- Olsen RW. Analysis of γ-aminobutyric acid (GABA) type A receptor subtypes using isosteric and allosteric ligands. *Neurochem Res.* (2014) 39:1924–41. doi: 10.1007/s11064-014-1382-3
- Zhang YZ, Wang X, Wu JM, Song CY, Cui XG. Optimal dexmedetomidine dose to prevent emergence agitation under sevoflurane and remifentanil anesthesia during pediatric tonsillectomy and adenoidectomy. *Front Pharmacol.* (2019) 10:1091. doi: 10.3389/fphar.2019. 01091
- Porter S, Holly C, Echevarria M. Infants with delirium: a primer on prevention, recognition, and management. *Pediatr Nurs.* (2016) 42:223–9.
- Banchs RJ, Lerman J. Preoperative anxiety management, emergence delirium, and postoperative behavior. *Anesthesiol Clin.* (2014) 32:1–23. doi: 10.1016/j.anclin.2013.10.011
- Kim JS, Lee HS, Park DH, Seok S, Kim TK, Lee HS, et al. Effect of size and location of nevi on postoperative pain and emergence agitation in children undergoing nevi excision. J Clin Med. (2019) 8:E106. doi: 10.3390/jcm8010106
- Costi D, Cyna AM, Ahmed S, Stephens K, Strickland P, Ellwood J, et al. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. *Cochrane Database Syst Rev.* (2014) 2014:CD007084. doi: 10.1002/14651858.CD007084.pub2
- Jildenstål PK, Rawal N, Hallén JL, Berggren L, Jakobsson JG. Routines for reducing the occurrence of emergence agitation during awakening in children, a national survey. *Springerplus.* (2014) 3:572. doi: 10.1186/2193-1801-3-572

- Anderson BJ, Exarchos H, Lee K, Brown TC. Oral premedication in children: a comparison of chloral hydrate, diazepam, alprazolam, midazolam and placebo for day surgery. *Anaesth Intensive Care.* (1990) 18:185–93. doi: 10.1177/0310057X9001800205
- Cray SH, Dixon JL, Heard CM, Selsby DS. Oral midazolam premedication for paediatric day case patients. *Paediatr Anaesth.* (1996) 6:265–70. doi: 10.1111/j.1460-9592.1996.tb00448.x
- Bilgen S, Köner Ö, Karacay S, Sancar NK, Kaspar EC, Sözübir S. Effect of ketamine versus alfentanil following midazolam in preventing emergence agitation in children after sevoflurane anaesthesia: a prospective randomized clinical trial. J Int Med Res. (2014) 42:1262–71. doi: 10.1177/0300060514543039
- Wu X, Cao J, Shan C, Peng B, Zhang R, Cao J, et al. Efficacy and safety of propofol in preventing emergence agitation after sevoflurane anesthesia for children. *Exp Ther Med.* (2019) 17:3136–40. doi: 10.3892/etm.2019.7289
- 93. Fang XZ, Gao J, Ge YL, Zhou LJ, Zhang Y. Network meta-analysis on the efficacy of dexmedetomidine, midazolam, ketamine, propofol, and fentanyl for the prevention of sevoflurane-related emergence agitation in children. *Am J Ther.* (2016) 23:e1032–42. doi: 10.1097/MJT.000000000000321
- Faritus SZ, Khazaee-Koohpar M, Ziyaeifard M, Mehrabanian MJ. Oral dexmedetomidine versus midazolam as anesthetic premedication in children undergoing congenital heart surgery. *Anesth Pain Med.* (2015) 5:e25032. doi: 10.5812/aapm.5(3)2015.25032
- Bellon M, Le Bot A, Michelet D, Hilly J, Maesani M, Brasher C, et al. Efficacy of intraoperative dexmedetomidine compared with placebo for postoperative pain management: a meta-analysis of published studies. *Pain Ther.* (2016) 5:63–80. doi: 10.1007/s40122-016-0045-2
- 96. Jia ZM, Hao HN, Huang ML, Ma DF, Jia XL, Ma B. Influence of dexmedetomidine to cognitive function during recovery period for children with general anesthesia. *Eur Rev Med Pharmacol Sci.* (2017) 21:1106–11.
- Chen F, Wang C, Lu Y, Huang M, Fu Z. Efficacy of different doses of dexmedetomidine as a rapid bolus for children: a doubleblind, prospective, randomized study. *BMC Anesthesiol.* (2018) 18:103. doi: 10.1186/s12871-018-0562-0
- Zhang Y, Gao Q, Wu Z, Xue H, Liu B, Zhao P. Dexmedetomidine promotes hippocampal neurogenesis and improves spatial learning and memory in neonatal rats. *Drug Des Devel Ther.* (2019) 13:4439–49. doi: 10.2147/DDDT.S228220
- Brunetti ND, Santoro F, Correale M, De Gennaro L, Conte G, Di Biase M. Incidence of atrial fibrillation is associated with age and gender in subjects practicing physical exercise: a meta-analysis and meta-regression analysis. *Int J Cardiol.* (2016) 221:1056–60. doi: 10.1016/j.ijcard.2016.07.133
- 100. Weymann A, Sabashnikov A, Ali-Hasan-Al-Saegh S, Popov AF, Jalil Mirhosseini S, Baker WL, et al. Predictive role of coagulation, fibrinolytic, and endothelial markers in patients with atrial fibrillation, stroke, and thromboembolism: a meta-analysis, meta-regression, and systematic review. *Med Sci Monit Basic Res.* (2017) 23:97–140. doi: 10.12659/MSMBR.902557
- Moreno E, Vázquez-Polo FJ, Negrín MA. Bayesian meta-analysis: the role of the between-sample heterogeneity. *Stat Methods Med Res.* (2018) 27:3643– 3657. doi: 10.1177/0962280217709837
- 102. Swan JT, Riche DM, Riche KD, Majithia V. Systematic review and meta-analysis of immunosuppressant therapy clinical trials in membranous lupus nephritis. J Investig Med. (2011) 59:246–58. doi: 10.2310/JIM.0b013e318204c965

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Rao, Zeng, Jiang, Li and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.