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Abstract 

T he adv ent of high-throughput sequencing has made it possible to measure the e xpression of genes at relativ ely lo w cost. Ho w e v er, direct 
measurement of regulatory mec hanisms, suc h as transcription factor (TF) activity is still not readily feasible in a high-throughput manner. Con- 
sequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In 
this w ork, w e present a noisy B oolean logic B a y esian model f or TF activity inf erence from diff erential gene expression data and causal graphs. 
Our approach provides a flexible framework to incorporate biologically motivated TF–gene regulation logic models. Using simulations and con- 
trolled o v er-e xpression e xperiments in cell cultures, w e demonstrate that our method can accurately identify TF activity. Moreo v er, w e apply 
our method to bulk and single cell transcriptomics measurements to in v estigate transcriptional regulation of fibroblast phenotypic plasticity. 
Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene 
expression data: https:// umbibio.math.umb.edu/ nlbayes/ . 

I

G  

c  

m  

t  

t  

r  

o  

s  

a  

v  

g  

g  

a  

s  

i  

(  

o  

t  

p  

s  

p  

i  

c  

m
 

t  

o  

u  

a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
(
o

ntroduction 

ene regulation plays an essential role in many cellular pro-
esses, including metabolism, signal transduction, develop-
ent and cell fate ( 1 ,2 ). At the transcriptional level, regula-

ion of genes is orchestrated by the concerted action between
ranscription factors (TFs), histone modifiers, and distal cis -
egulatory elements to finely tune and modulate expression
f genes ( 3 ). Sequence specific TFs, which have affinity for
pecific DNA sequences, may bind to cis -regulatory elements
t the enhancer or promoter region of genes to either acti-
ate (upregulate) or repress (downregulate) the expression of
enes. Aberration in TF activity and the dysregulation of tar-
et genes have been implicated in many pathological states
nd human disease ( 4 ). Activity of TFs can be triggered down-
tream of signaling events, which in turn may be activated
n response to environmental and molecular perturbations
 5 ). Perturbations in TF activity often result in modulation
f gene expression. The technological advancements in high-
hroughput sequencing have made it possible to measure ex-
ression of genes at relatively low cost. However, direct mea-
urement of regulatory mechanisms, such as TF protein ex-
ression and functional activity in a high-throughput manner
s still not readily available. Consequently, there is a need for
omputational approaches that can identify active regulatory
echanisms from observable gene expression data. 
The scientific community has proposed several computa-

ional algorithms and biophysical models to study the impact
f TF activity on gene expression. Some of these algorithms
se statistical and probabilistic approaches to infer TF activity
nd dynamics directly from gene expression data ( 6–11 ), and
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more recently ( 12–17 ), while others rely on biophysical ap-
proaches to model expression of genes based on known TF–
gene interactions ( 18 ,19 ). Boolean networks and probabilis-
tic extensions have also been used to model gene regulation
( 9 ,20–23 ). In logic models, genes are assumed to be either ON
or OFF and Boolean logic (AND, OR, NOR, etc.) is utilized
to model combinatorial regulation. For example, Bulashevska
and Eils ( 9 ) introduced a Bayesian approach to generalize the
Boolean logic to incorporate noise and utilized their approach
to reconstruct gene regulatory networks in yeast. 

Another class of algorithms use prior biological knowledge
on biomolecular interactions to link a differential gene expres-
sion (DGE) profile to upstream regulators (e.g. TFs) ( 24–30 ).
The essential ingredients of these type of algorithms are (i)
an input DGE profile, (ii) a network of biomolecular interac-
tions or pre-defined gene sets and (iii) an inference algorithm
to query the network. The output is a set of candidate regula-
tors, pathways, or biological processes with associated prob-
abilities or significance P -values. The DGE profile as obtained
from RNA-Seq or microarrays studies is the observable in-
put that quantifies the difference in transcript abundance be-
tween two conditions (e.g. healthy versus disease, stimulated
versus not stimulated, etc.). The network of biomolecular in-
teractions encapsulates the prior biological knowledge. The
inference algorithms typically map the DGE profile to the net-
work to identify drivers (nodes, terms, or paths in the graph)
of the observed transcriptional changes. SI Table 2 lists a few
representative methods for inference of TF activity and recon-
struction of gene regulatory networks and their corresponding
descriptions ( 12 , 14 , 15 , 25 , 30–34 ). 
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Despite the popularity and success of these methods, sev-
eral challenges remain to be sufficiently addressed. For ex-
ample, biophysical models are computationally expensive and
are suitable for small scale applications or simulation stud-
ies. Boolean logic models, although simple to implement, can-
not directly account for noise in gene expression data. On the
other hand, probabilistic models for inference of gene regula-
tory networks typically overlook the context of experiment.
Regulatory networks may be noisy or contain interactions
that are applicable in a specific context only. Properly mod-
eling any dependencies on the biological context in active reg-
ulator inference and enrichment analysis algorithms can lead
to more accurate inference of the regulatory mechanisms spe-
cific to that context. Utilizing causality and information on
mode of regulation (activation versus repression) can also sig-
nificantly reduce false positive predictions, resulting in more
interpretable models. Moreover, biologically motivated TF–
gene interaction logic models (e.g. combinatorial effects of
activators and repressors on gene expression) must be taken
into consideration when inferring transcriptional regulatory
programs. To address these challenges, we have developed a
Noisy-Logic Bayesian (NLBayes) TF activity inference model
that accounts for these factors in a unified manner. Given an
input DGE profile, our model incorporates the prior infor-
mation on causal regulatory interactions and makes posterior
adjustments to further account for noise and determine the
context-specific posterior network structure and active regu-
lators through a Gibbs sampling procedure. 

We evaluate the performance of our model using simula-
tion studies as well as over-expression datasets and demon-
strate that our method can accurately identify active tran-
scriptional regulators from gene expression data and causal
graphs. We benchmark our algorithm against VIPER, a closely
related method that is widely used for identification of regu-
lon activity ( 15 ). Both methods are able to identify relevant
TFs in the corresponding experiments, with several TFs iden-
tified by both methods at the intersection, indicating that the
algorithms complement each other. Our method can be used
for novel biological discoveries. To illustrate this, we apply
our method to investigate transcriptional regulation of fibrob-
last phenotypic plasticity in response to signaling molecules
TGF β and CXCL12. This study utilizes differential expres-
sion profiles from bulk RNA-Seq experiment using prostate
cell lines ( 35 ), stimulated with TGF β and CXCL12. Our anal-
ysis recovers several TFs, including YAP1 as the top predic-
tion, which has been identified as a driver of myofibroblast
differentiation in multiple tissue phenotypes ( 36–45 ). Addi-
tionally, we present new single cell gene expression data from
the same prostate cell lines as well as three additional human
prostate fibroblast cell lines. We characterize the cell lines at
the transcriptional level and apply our algorithm to identify
major transcriptional regulators in each cell line and study
the impact of immortalization on transcriptional regulation.
Our algorithm provides a general framework and a widely
applicable tool to study transcriptional regulators of differen-
tial gene expression. To facilitate wider use, we provide R and
Python packages, and a web-interface for running inference
experiments. Figure 1 summarizes the overall approach. 

Materials and methods 

Noisy logic-based gene regulation graphical model 

As a starting point, we construct a causal graph from the TF–
gene interaction network as follows. The causal graph is a
triplet ( G, E, S ) , where G represent the nodes, E represent 
the edges (pairs of nodes) and S represent signs associated with 

each edge ( + , −) . Figure 2 shows a graphical representation 

of the proposed model. The nodes in the graph consist of the 
following layers: 

• Transcript nodes Y = { Y 1 , . . . , Y m 

} : These are the termi- 
nal nodes in the network and represent the transcripts.
The domain of these nodes is D(Y ) = { (−) , (0) , (+) } ,
representing downregulated, not regulated and upregu- 
lated respectively. The value of these nodes will be pop- 
ulated from the input gene expression data. 

• True states nodes H = { H 1 , · · · , H m 

} : These nodes rep- 
resent the true unobserved state of the transcript nodes,
and are incorporated to account for noise in input data.
These nodes have domain D(H) = D(Y ) and are central 
in the implementation of noisy logic gates. 

• Regulator state nodes X = { X 1 , · · · , X n } : These nodes 
represent the activation state of TFs in the network.
Here, we use D(X) = { (0) , (+) } , for no activation or ac- 
tivation respectively. 

• TF activity noise nodes θ = { θ1 , · · · , θn } . For each X i in 

the network, we assign a node θi , representing a continu- 
ous random variable with domain D( θi ) = [ 0 , 1 ] . These 
nodes represent the probability of activation for the cor- 
responding node X i and are modeled by a beta distribu- 
tion. 

• Mode of regulation S = { S 11 , . . . , S 1 m 

, . . . , S i j , . . . , S nm 

} .
These nodes represent the mode of action (activa- 
tion versus repression) between parent TF node X i 

and true state node H j . These nodes have a domain 

D(S ) = { (I) , ( NA ) , (A ) } , representing inhibition (I), non- 
applicable (NA) and activation (A) respectively. We use 
one-hot encoding for this variable, i.e. S i j is a vector of 
size 3 with components S (I) 

i j , S 
( NA ) 
i j , S (A ) 

i j ∈ { 0 , 1 } . 

Transcriptional logic 

In our model, we incorporate logic gates as in ( 9 ) to explicitly 
account for combinatorial effects using Boolean logic while 
accounting for uncertainty. In this work, we consider a combi- 
nation of noisy OR and NOR gates. We consider two models 
as follows. 

OR model 

This model is used to describe the likelihood of downregula- 
tion of a gene by a set of TFs. In this model, the presence of 
one active inhibitor is sufficient to downregulate the gene. The 
probability mass function is modeled as a Bernoulli trial with 

probability of success 

P 
(
H j = ( −) | �) = 1 −

n ∏ 

i =1 

( 1 − θi ) 
X i S 

( I ) 
i j , 

where � = { X, θ, S } represents all model parameters involving 
H nodes. Although this model seems like a sensible choice,
it assumes that all the genes targeted by a TF should strictly 
follow its influence. However, target regulation depends on 

many other factors, and we should expect only a fraction of 
targets to be effectively regulated by a given TF. To make our 
model more flexible, we incorporate a hyper-parameter ξ , that 
allows the likelihood model to tolerate more zero-genes in the 
evidence data. The OR model above is now 

p 
(
H j = ( −) | �) = 

[ 

1 −
n ∏ 

i =1 

[ ( 1 − ξ ) ( 1 − θi ) ] 
X i S 

( I ) 
i j 

] (
1 − ξn ) + ξn q −, 
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Figure 1 . Sc hematic diagram of the NLB a y es inference pipeline. T he starting point is gene expression data from two conditions, from which a differential 
gene expression profile is calculated by discretizing gene values to –1 (down regulated), 0 (not regulated) or 1 (up regulated) using cutoff thresholds on 
P -values and / or foldchange. A TF–gene interaction network is used to build the graphical model. Values for gene nodes are populated from the 
differential expression profile. NLBayes runs a probabilistic query on the causal network and outputs the posterior distribution of TFs, from which the 
activation state of the TFs is determined. 

Figure 2. The proposed graphical model for each interaction i → j . 
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here q − represents a prior probability of finding a down-
egulated gene in the evidence data. For convenience, let us
efine ζ = ( 1 − ξ ) , and let ζ deg and ζ non −deg denote two dif-
erent values for the ζ parameter that are set depending on
hether the current gene has been observed as modulated or
ot, respectively. The value of the parameter ζ is set close but
greater than zero, for non-differentially expressed genes, e.g.
0 < ζ non −deg ≤ 0 . 1 , while for differentially expressed genes it
may be set close or equal to one. Additionally, an extra ( 1 − ξ )
term is now multiplying ( 1 − θi ) , effectively increasing the sen-
sitivity of these TF–gene interactions. This has proven ben-
eficial to improve specificity of the inference results. We set
ζ deg = 0 . 99 and ζ non −deg is set to be proportional to N ed ges → d eg ,
i.e. the number of edges in the network that point to genes that
are observed as differentially expressed. More specifically, we
have used the following relation: 

ζ non −deg = 

1 

10 

N ed ges → d eg 

N edges 
, 

where N edges is the total number of edges in the network. 

OR-NOR model for gene activation 

This model offers a relatively simple way for describing com-
binatorial effects of both up- and down-regulation within the
same interaction network. The rationale is that for a target
gene to be activated, at least one of its upstream activators
must be activated (OR gate), while at the same time none of
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Table 1. Conditional probability of False positive and False negative in the 
true state given the observed state 

P ( Y = ·| H = ·) H = (−) H = (0) H = (+) 

Y = (−) 0.945 0.050 0.005 
Y = (0) 0.050 0.900 0.050 
Y = (+) 0.005 0.050 0.945 

 

 

 

, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

its inhibitors is active (NOR gate). In this case the target gene
up-regulation event is modeled as a Bernoulli trial with prob-
ability of success 

P 
(
H j = ( + ) | �)

= 

[ [ 
1 −

n ∏ 

i =1 

[ ( 1 − ξ ) ( 1 − θi ) ] 
X i S 

( A ) 
i j 

] 
n ∏ 

i =1 

[ ( 1 − ξ ) ( 1 − θi ) ] 
X i S 

( I ) 
i j 

] 
( 1 − ξn ) + ξn q +

where q + 

is the prior probability of finding an upregulated
gene in the evidence data. Target gene activation state is re-
garded as a multinomial trial with three possible outcomes:
upregulation, downregulation, or not changed. This is con-
gruent with discretized differential expression data and allows
building a complete model likelihood. Correspondingly, the
complementary outcome likelihood is then represented by a
NOR–NOR model. 

P 
(
H j = ( 0 ) | �) = 

[ 
n ∏ 

i =1 

[ ( 1 − ξ ) ( 1 − θi ) ] 
X i S 

( A ) 
i j 

n ∏ 

i =1 

[ ( 1 − ξ ) ( 1 − θi ) ] 
X i S 

( I ) 
i j 

] 
( 1 − ξn ) + ξn q 0 ,

Here, q 0 is the prior probability of finding a non-
differentially expressed gene in the observed data. 

The model likelihood 

The posterior probability of model parameters given the ob-
served data is given by: 

P 
(
�| Y j = y j 

) = 

P 
(
Y j = y j | �

)
P ( �) 

P 
(
Y j = y j 

)

= 

∑ 

h P 
(
Y j = y j | H j = h 

)
P( H j = h | � X , � θ, � S j ) P 

(
� X 

)
P 

(
� θ
)

P 
(
� S j 

)
∑ 

h P 
(
Y j = y j | H j = h 

)
P 

(
H j = h 

) , 

where P(Y | H) is the conditional probability of the observed
expression value Y given the true state. This conditional prob-
ability models the true positive and false positive rate in input
gene expression data. Table 1 shows the values used in our
implementation. These values are estimations based on typi-
cal experimental errors. This component of the model may en-
compass several sources of uncertainty, such as dropped reads
during RNA sequencing or type I errors in the statistical analy-
sis made for computation of differential gene expression. This
may be treated as a prior probability, representing our belief
that we would observe these rates. 

Fitting the model 

The next task is to find the set of model parameters that
maximize the model likelihood. Given the large scale of the
parameter space, this problem is intractable analytically. A
widely used approach for inferring posterior probability in
large scale Bayesian networks is Markov Chain Monte Carlo
(MCMC) sampling. In particular, Gibbs sampling is a suitable
MCMC method to approximate the posterior distribution of
the model parameters given the observed data. In Gibbs sam-
pling, we sequentially sample from each random variable, con-
ditioned on the current state of its Markov blanket. To assess
the convergence to the posterior distribution of the model pa-
rameters, we run at least three independent sampling chains 
and periodically compute the Gelman–Rubin statistic for each 

random variable ( 46 ). We stop the process after this diagnos- 
tic statistic is less than 1.1 for every random variable in the 
model. The core of the sampling algorithm has been imple- 
mented using C++, and user-friendly R and Python packages 
developed. 

Algorithm 

In this section, we present Algorithm 1, which was used 

throughout this work, along with a detailed description of 
each of the steps. 

Algorithm 1. Sample model’s posterior distribution. 

• Step 1: Data preprocessing. The input differential gene 
expression data should contain the computed P -values 
and fold-change scores for all genes. In this step, we select 
thresholds for P -values and fold change. The aim is to 

limit the input data to include only the most significant 
DEGs, totaling to ⇐ 800 as a rule of thumb. 

• Step 2: Populate the causal graph. Here we assign the 
observed values (evidence) for the differential expression 

of each gene to the corresponding Y nodes in the graph.
These values will remain fixed during the sampling pro- 
cess. 

• Step 3: We create N independent copies of the graph, al- 
lowing us to store separate states of N Markov chains to 

sample. The use of multiple Markov chains provides a 
way to compare independent results and enables early 
stopping. Ideally, all N chains should converge to the 
same posterior distribution for all random variables in 

the model. 
• Step 4: Gibbs sampling. For each random variable we 

retrieve the current state of its Markov blanket, which 

is given by the current values of the children nodes, the 
parent nodes, and the children of the parent nodes. Then,
given this Markov blanket, we compute the conditioned 

probability of the random variable, from which a new 

sample is drawn. The sampled value is stored and we 
move the next random variable and repeat the process.
After completing the sampling process for all variables,
we start over from the first random variable. This pro- 
cess is repeated for each of the N graph replicas created 

in Step 3. To assess convergence of the posterior distri- 
bution, we pause the sampling process after completing 
k rounds to compute the Gelman-Rubin statistics de- 
scribed in the next Step of the algorithm. The choice of k,
the period in which convergence is checked, is arbitrary 
and has been set to k = 20 in our implementation. 
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• Step 5: Maximum Gelman–Rubin statistic computation.
During the Markov chains sampling process, we need
to determine whether the sampled distributions for the
random variables in the model have converged to their
respective posterior distributions. For this purpose, we
compare the N Markov chain distributions for every
single variable in the model by means of the Gelman–
Rubin statistic R , which is a dimensionless score that
combines the between chain and within chain variances
of the random variables. The statistic approaches R = 1
as the sampled distributions converge to a steady state.
This score is computed for all random variables and we
keep the maximum value obtained. 

• Step 6: Convergence assessment. Convergence of the
sampling process is called when max (R ) < 1 . 1 for every
random variable. If this condition has not been satisfied,
we continue the sampling process in Step 4. 

• Step 7: At this point the sampling process is complete,
and the mean value for each random variable is returned.

imulations 

o assess the impact of noise on model performance, we simu-
ated interaction networks and input differential gene expres-
ion data (see section: Results, Simulation studies). First, a ran-
om interaction network was generated by selecting a total
umber of N X 

TFs and a total number of N Y genes in the net-
ork. For each TF, its number of target genes was sampled

ccording to a negative binomial distribution. Target genes
ere assigned randomly using a uniform distribution among
ll genes in the network. Finally for each interaction edge a
ign of regulation was assigned with 0.65 probability of being
ctivation (+) and 0.35 probability for repression (–). Subse-
uently differential gene expression data was simulated as fol-
ows. First, we select a random set of TFs that are assigned as
ctive. This set of TFs constitutes the ground truth. For each
ctive TF, we select 10% of its target genes and assign differen-
ial expression according to the sign of regulation as predicted
y the graph: +1 if target is upregulated by TF, –1 if downreg-
lated. For genes targeted by multiple active TFs, we perform
he algebraic sum of all incoming interactions and take the net
ign. 

The parameters for network simulation were chosen to
imic some characteristics of the biologically derived ‘three-

issue network’ described below. These parameters include the
roportion of TFs to Genes, the node degree distribution for
Fs, and the average number of TFs that target the same gene.
o assess the robustness of our method against the network
opology, we generated several additional networks with dif-
erent combinations of these parameters (See Supplementary
nformation File, Supplementary Table S4). 

F–gene interaction networks 

he TF–gene interaction network was obtained from ( 30 )
n which interaction network were constructed from di-
ect experimental evidence, integrating data ( 47 ) from ChIP-
tlas and The Genotype-Tissue Expression (GTEx) databases

 48 ,49 ). Integration was achieved through a regularized Gaus-
ian Graphical model that softly integrated TF–gene interac-
ions derived from ChIP-Seq data into gene expression derived
rom tissues, resulting in 15 tissue specific TF–gene interaction
etworks as well as a ‘merged network’ obtained by overlap-
ing tissue-specific networks. In the present work we use the
merged network containing interactions that are consistent in
at least three tissue types, resulting in 338680 TF–gene inter-
actions from 750 TF molecules (see section: Results, Over-
expression datasets). 

For the benchmark experiments (see section: Results,
Benchmarks), we used the Human Breast Carcinoma con-
text specific network termed ‘regulonbrca’, that has been con-
structed with ARACNe and made available by Lachmann
et.al. ( 33 ). The regulon object has been filtered to retain only
transcription factor molecules, similar to the approach fol-
lowed by the authors of VIPER ( 15 ): DNA-binding tran-
scription factors (GO:0003700), and DNA-binding molecules
(GO:0003677) annotated as ‘transcription regulator activity’
(GO:0140110) or ‘regulation of DNA-templated transcrip-
tion’ (GO:0006355). This results in a network with 1693 TF
molecules and 200 336 TF–gene interactions. For use in the
NLBayes inference, we further filtered out interaction edges
with likelihood < 0.5, resulting in 73 639 TF–gene interac-
tions. 

Differential gene expression data 

DNA microarray-based gene expression profiles for over-
expression studies in human primary mammary epithelial
cell cultures ( 50 ), were obtained from the GEO repository
(GSE3151) by using the GEO2R tool for sample selection
( 51 ). Differential expression was computed using the limma
R package ( 52 ). We limited the number of differentially ex-
pressed genes by applying cutoff thresholds for the adjusted
P -values ( P ≤ 0 . 01 ) and log2-foldchange ( f c ≥ 1 ) for E2F3
and MYC datasets. For the RAS dataset these cutoff values
produced 2226 differentially expressed genes. To further limit
the number of DEGs in this experiment, we increased the log 2 -
foldchange cutoff threshold to 2. 

Additionally, we used data from a study on fibroblast-
to-myofibroblast phenotypic conversion in response to pro-
fibrotic signaling molecules TGF β and CXCL12 ( 35 , 53 , 54 )
(see section: Results, Fibroblast phenotypic plasticity). Differ-
ential expression for TGF β and CXCL12 treated fibroblasts
were generated using the R package edgeR ( 55 ). 

Single cell RNA sequencing 

Following Trypsin digestion, cells were collected in a 50mL
conical tube and washed and resuspended in PBS to a fi-
nal concentration of ∼700 cells / ul. After gentle resuspension,
2.3 ul ( ∼1610 cells) per sample was combined with nuclease
free water and master mix per 10 × recommendations for a
targeted recovery of ∼1000 cells per sample. 

The samples were loaded onto a 10 × Chromium Chip
A (PN230027, deprecated) (N1 and SFT1) or Chip G (PN
2000177) (pHPF and iHPF) and run through the 10X
Chromium controller instrument and manufacturer proto-
cols for RNA recovery and library preparation. Briefly, cells
were partitioned into individual lipid droplets, lysed to re-
lease RNA and tagged with UMIs (unique molecular iden-
tifiers) for cell of origin. mRNA was isolated with dT oligo
beads then reverse transcribed to DNA, ligated with Illumina-
compatible sequencing adapters with multiplex capable bar-
codes (PN-120262 for N1 / SFT1 (deprecated), PN-1000213
for pHPF / iHPF), for sample of origin, and PCR ampli-
fied for 13 cycles. N1 and SFT1 samples were prepared
with Chromium v2 Library and gel bead kit (PN-120267,
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Table 2. Gene markers used for classification of single cells in the 
prostate tissue single cell dataset by Henry et al. ( 58 ) 

Tissue type Gene markers 

Basal Epithelia KRT14, DST, KRT15, KRT5, RGCC 

Luminal Epithelia MSMB, KLK3, ACPP, PLA2G2A, KLK2 
Other Epithelia 1 SCGB3A1, LCN2, PIGR, WFDC2, FCGBP 
Other Epithelia 2 KRT13, APOBEC3A, CSTB, LYPD3, SERPINB1 
Fibroblast APOD, FBLN1, PTGDS, CFD, DCN 

Smooth muscle TPM2, ACTA2, RGS5, MT1A, MYH11 

These are the same markers used in that study. 

 

deprecated) while pHPF and iHPF were prepared with v3 (PN
1000128). 

Following library preparation, samples were assessed by
Agilent 2100 Bioanalyzer using High Sensitivity chips and
reagents (PN 5067–4626) to confirm a normal size distri-
bution to minimize bias, quantified by qPCR with Illumina
adapter compatible primers and Sybr Green (Kapa ROX Low
Universal Library Quant kit PN KK4873) and molarity cal-
culated by size-correcting to the bioanalyzer average size. N1
and SFT1 samples were pooled together while pHPF and iHPF
were pooled together separately. 

The samples were sequenced on a Hiseq 2500 in Rapid
Run mode in the CPCT Genomics Core, using paired-end on
board clustering (PN PE-402-4002) and sequencing by syn-
thesis (SBS) reagents (PN FC-402-4021). Twenty-eight bases
were sequenced in read 1 to capture the UMIs, 8 bases for the
single indexes, and 91 bases in Read 2 to capture transcripts,
yielding ∼100 million total sequencing reads per sample. 

RNA-Seq alignment 

Reads were aligned to human genome version GRCh38 using
the 10 × cellranger v4.0.0 pipeline (cellranger mkref, and cell-
ranger count) using default parameters. Over 93% of reads
were mapped to the genome for all 4 datasets. Mapping rates
were 93.6%, 93.3%, 96.3% and 96.3% for N1, SFT1, iHPF
and pHPF, respectively. To improve the quality of the data, the
resulting count matrices were reanalyzed to force the number
of cells accepted, to those with highest UMI counts. 

Single cell data analysis 

Count data from single cell alignment were processed using
the Seurat R package ( 56 ,57 ). Seurat objects were created
from the filtered matrices resulting from the alignment step.
Low quality cells were filtered out, by removing those with
large mitochondria contamination and cells with either too
few or too many unique genes or total RNA count. Cell cy-
cle scores were assigned to each cell with the method CellCy-
cleScoring using default parameters and cell cycle genes pro-
vided by Seurat package. Datasets N1, SFT1, pHPF and iHPF
were combined by using Seurat’s merge function and normal-
ized with SCTransform using 3000 variable features and no
centering. Batch effect was removed by considering the num-
ber of genes, RNA counts and mitochondrial RNA contam-
ination as unwanted sources of variation. Dimensionality re-
duction was performed through principal component analysis
(PCA) and Uniform Manifold Approximation & Projection
(UMAP) as implemented in Seurat package, with functions
RunPCA (30 PCs) and RunUMAP respectively. Cells were
then filtered to work with G1 cells only. Differential expres-
sion was computed with respect to pHPF, by using the Find-
Markers method. All Seurat methods were used with default
parameters, unless otherwise stated. 

Prostate tissue single cell data was retrieved from ( 58 ).
This corresponds to FACS sorted cells, containing fibroblasts,
smooth muscle, endothelial and epithelial cells. Here we ig-
nore FACS sorting labels as we run our own classification
process. This dataset was preprocessed using Seurat and its
SCTransform pipeline, same as with cell lines data. Cells were
clustered by using methods FindNeighbors and FindClusters.
Each cluster was classified by looking into cell type markers
taken from ( 58 ), to assign labels: fibroblast, smooth muscle,
endothelia, basal epithelia, luminal epithelia, and other ep-
ithelia 1 and 2. Cells in G1 cell cycle phase were retained for 
downstream analysis. Table 2 shows the markers used for the 
tissue cells classification. 

Cell lines data and tissue data were combined by using Seu- 
rat’s integration pipeline with SCTransform, using 3000 fea- 
tures, k.anchor = 6, and reduction = ‘rpca’. 

Results 

To test our approach, we performed a series of experiments 
including simulations studies, benchmarks against an alterna- 
tive approach, and inference of TF activity on novel datasets. 

The core of the algorithm uses an OR-NOR transcriptional 
regulation logic to predict TF activity. In this logic two con- 
ditions must be satisfied for gene activation: 1) at least one 
activator is targeting the gene and 2) no inhibitor is target- 
ing the gene. On the other hand, for down regulation of genes 
we use a simple OR transcriptional regulation logic model: at 
least one inhibitor must target the genes. 

The algorithm outputs posterior probabilities for each TF 

activation state. The prior probability for TF activation is 
set to a small value ( P 0 = 0 . 01 ), and as such we consider 
a TF with posterior probability P ≥ 0 . 2 as potentially rel- 
evant. We then define three thresholds to classify inferred 

active TFs: High-confidence ( P ≥ 0 . 8 ) Mid-confidence ( P ≥
0 . 5 ), and Low-confidence ( P ≥ 0 . 2 ). 

Simulation studies 

We performed several simulation studies to assess the ability 
of our algorithm in recovering active transcriptional regula- 
tors from gene expression data and to test the robustness of 
the inference process to noise in gene expression data and the 
causal graph of TF–gene interactions. For this analysis we gen- 
erated a random interaction network consisting of 250 TFs 
and 5000 downstream target genes. The downstream targets 
of each TF were picked at random from a binomial distribu- 
tion, resulting in ∼30000 interactions (edges) in the network.
The edges of the network were randomly set as activation 

(65%) and inhibition (35%). 
We randomly selected 10 TFs and assigned them as ac- 

tive (the ground truth) and simulated downstream differen- 
tial gene expression data by assigning + 1 or -1 to 10% of 
the target genes according to the causal graph. For genes tar- 
geted by multiple active TFs, we calculated the algebraic sum 

of all incoming interactions and took the net sign. This pro- 
duced an average of 120 differentially expressed genes. Each 

experiment was repeated 20 times. 

Impact of data randomization 

For this analysis, we randomized a fraction of the input data 
(0, 0.25, 0.5, 0.75, 1.00) by randomly toggling the values. At 
0% the data is not randomized, while at 100% the input data 



NAR Genomics and Bioinformatics , 2023, Vol. 5, No. 4 7 

Figure 3. Performance evaluation of the model before and after randomization of data. ROC curves and Precision vs Recall curves are shown for 
randomization simulation in input gene expression (A, B) and TF–gene interaction network (C, D) . p indicates the corresponding fraction of 
randomization used. AUC scores are displa y ed in the legend. (E) The posterior distributions for TF activity is sho wn. T he colors indicate the ground truth, 
i.e. whether the TF was set to active in the simulation. (F) The impact of the number of target genes on the inference results for the case of 25% 

randomization of data. 
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s completely random. The inference procedure was run on
ach input data set. Figure 3 A and B shows the ROC and
recision-recall curves for each randomization experiment re-
pectively. Figure 3 E illustrates the sampled posterior distri-
utions for active TFs at different randomization levels. As
xpected, at 100% the model fails to recover active TFs. How-
ver, up to 75% randomization the algorithm is still able to re-
over active TFs, with significant increase in accuracy at lower
evels of noise. 

To assess the impact of the number of target genes regulated
y a TF on the posterior probability of the TF’s activity, we ran
ultiple simulations and plotted the posterior probability vs

he number of genes regulated by TFs, color coded by TF ac-
ivity (Figure 3 F). For these simulations, we used noisy data
t 25% randomization. We observe that for active TFs with
ess than 30 target genes, the posterior probability is low. This
s expected as in these simulations, only 10% of target genes
re set as differentially expressed, yielding an average of only
hree target genes that are modulated. This information is too
mall to shift the posterior probability. However, as the total
umber of target genes increase, we observe a threshold effect,
here posterior probabilities stabilize, and the total number
f targets does not have an impact on the inference. These
xperiments were repeated for several other randomly gener-
ted networks with consistent results (SI File Supplementary
able S4). 

mpact of network randomization 

or this analysis, we select a fraction (0, 0.25, 0.5, 0.75, 1.00)
f the edges in the network and randomly reassign them to dif-
erent target genes. The inference was run using unperturbed
input gene expression data and randomized networks. Figure
3 C and D shows the ROC and precision-recall curves for each
randomization experiment. A similar picture as in data ran-
domization emerges. 

These results demonstrate the robustness of our algorithm
at 25% randomization level in both the gene expression data
as well as the input network, while still retaining some predic-
tion power at the 50% and 75% randomization levels. 

Over-expression datasets 

To test the ability of our algorithm in recovering known active
regulators, we used three publicly available over-expression
datasets (GSE3151), performed on human primary mammary
epithelial cell cultures, each generated by over-expression of
an oncogene: E2F3, c-Myc and H-Ras ( 50 ). For these infer-
ence experiments, we utilized a TF–gene interaction network
generated by Farahmand et al. ( 30 ). The network was gener-
ated using several high-throughput datasets, and a Gaussian
Graphical Model. We chose to use this network as it showed
consistently high predictive power across several datasets ( 30 ).
In each experiment, differentially expressed genes were deter-
mined compared to the control sample and inputted into the
TF activity inference algorithm. Tables 3 and 4 summarize
the inference results. Inferred active regulators are split into
three categories based on posterior probability p of inferred
activity: High-confidence ( P ≥ 0 . 8 ) Mid-confidence ( P ≥ 0 . 5 ),
and Low-confidence ( P ≥ 0 . 2 ). Percentage of differentially ex-
pressed genes targeted (explained) by at least one inferred ac-
tive regulator is also presented in the table. 

For the E2F3 expression data, the E2F1 is returned as
the top regulator. E2F1 and E2F3 have a similar function
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Table 3. Predicted active TFs from 3 over-expression experiments: E2F, MYC and RAS 

E2F3 c-MYC H-RAS 

Name Enrichment Inference Name Enrichment Inference Name Enrichment Inference 

E2F1 3.7E-06 1.00 TCF3 4.9E-01 1.00 E2F3 6.1E-01 1.00 
FLI1 2.7E-02 1.00 HDAC2 1.0E + 00 0.90 PPARG 4.0E-01 1.00 
FOXA2 7.0E-01 1.00 TP53 1.2E-02 0.85 TEAD4 4.9E-01 1.00 
HOXA4 7.0E-01 1.00 − − − KLF5 2.2E-02 1.00 
MXI1 2.6E-01 1.00 − − − FOSL1 2.4E-06 1.00 
BCOR 2.2E-02 1.00 − − − RELA 1.4E-01 1.00 
AR 1.4E-02 1.00 − − − ASCL1 1.0E + 00 0.99 
FOXF1 7.9E-01 1.00 − − − ST A T3 6.1E-01 0.99 
TCF3 8.6E-01 1.00 − − − PRKDC 1.0E + 00 0.97 
MBD3 1.0E + 00 0.99 − − − JUND 1.4E-01 0.97 
SOX2 7.3E-01 0.97 − − − NFKB2 1.2E-02 0.96 
− − − − − − SOX2 5.3E-01 0.96 
− − − − − − CTCFL 1.0E + 00 0.94 
− − − − − − GA T A3 9.0E-01 0.92 
− − − − − − KDM6B 3.2E-03 0.86 

HNF1B 1.0E + 00 0.77 SIX2 1.0E + 00 0.77 MYC 2.1E-01 0.75 
FOXM1 1.7E-02 0.76 ETV1 1.0E + 00 0.73 NME2 1.0E + 00 0.66 
NR5A2 9.2E-01 0.72 KLF11 1.0E + 00 0.54 ESRRA 1.0E + 00 0.65 
HNF4A 1.0E + 00 0.71 ILF3 2.9E-01 0.51 SREBF1 1.8E-01 0.64 
POU5F1 7.0E-01 0.69 − − − MBD2 9.7E-01 0.64 
GA T A3 1.5E-01 0.68 − − − − − −
TCF21 1.0E + 00 0.50 − − − − − −

PGR 8.6E-01 0.39 PAX5 1.0E + 00 0.49 PBX4 1.0E + 00 0.41 
TEAD1 1.0E + 00 0.39 TFAP4 2.0E-01 0.49 HOXB13 1.0E + 00 0.37 
GA T A6 1.0E + 00 0.39 ZC3H8 5.0E-01 0.45 FOXF1 3.6E-03 0.36 
VEZF1 1.0E + 00 0.30 PPARG 7.6E-01 0.44 KLF6 1.8E-02 0.34 
EGR1 7.0E-01 0.29 PDX1 6.9E-01 0.42 BCOR 9.7E-01 0.33 
NKX2-1 1.0E + 00 0.29 TEAD4 2.9E-01 0.37 HNF1B 1.0E + 00 0.32 
HOXA9 4.3E-01 0.26 BATF 7.3E-01 0.37 SRF 9.0E-01 0.31 
HOXC5 1.0E + 00 0.26 THAP11 1.0E + 00 0.36 GA T A4 1.0E + 00 0.27 
− − − SMARCC2 1.0E + 00 0.33 CEBPB 4.1E-02 0.24 
− − − NCOA1 1.0E + 00 0.33 MAFF 3.6E-03 0.22 
− − − TRIM28 2.9E-01 0.24 − − −
− − − MYB 1.0E + 00 0.21 − − −
The panel lists the inferred regulators, split into three categories, high-confidence (top), mid-confidence (middle) and low-confidence (bottom). For each TF, 

enrichment scores are computed from the number of target genes that are differentially expressed. 

Table 4. Summary of o v er-e xpression e xperiments 

E2F3 c-MYC H-RAS 

max P -value = 0.01 max P -value = 0.01 max P -value = 0.01 
min abs(log2 f old-c hange) = 1.00 min abs(log 2 f old-c hange) = 1.00 min abs(log 2 f old-c hange) = 2.00 

DEG Increased Decreased DEG Increased Decreased DEG Increased Decreased 

418 321 97 127 75 52 409 163 246 
Confidence 
level 

DEG explained Confidence level DEG 

explained 
Confidence 
level 

DEG explained 

0.80 53% 0.80 32% 0.80 58% 

0.50 61% 0.50 49% 0.50 64% 

0.20 65% 0.20 70% 0.20 71% 

Top: Thresholds for P -values and log-foldchange for each experiment are shown, and their respective total number of Differentially Expressed Genes (DEGs) 
and the number of genes with increased and decreased RNA expression. For the RAS over-expression experiment, a higher log-foldchange threshold was used 
to limit the number of DEGs for inference. Bottom: proportion of explained DEGs by at least one inferred regulator at the indicated confidence level. 

 

 

 

 

 

 

 

 

in control of the cell cycle and are similarly implicated
in cancer ( 59 ). E2F3 also regulates expression of FLI1, an
ETS domain transcription factor and proto-oncogene ( 60 ),
as well as the FOXA2 transcription factor that promotes
aggressive prostate cancer ( 61 ) and HOXA4, a transcrip-
tion factor important for embryonic development but often
over-expressed in human colorectal ( 62 ) and ovarian ( 63 )
cancers. 
The MYC and RAS oncogenic proteins transcriptionally ac- 
tivate multiple genes associated with tumor progression and 

prognosis. MYC transcriptionally activates TCF3, HDAC2 

and TP53. The TCF3 transcription factor was recently found 

to promote gastric ( 64 ) and endometrial ( 65 ) cancers, among 
others. HDAC2 has been reported to promote metastasis in 

pancreatic ( 66 ) and breast ( 67 ) cancers. MYC also regulates 
transcription of the well-known TP53 tumor suppressor gene.
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Table 5. Predicted active TFs upon TGF β (left) and CXCL12 induction (right) 

TGF β CXCL12 

Top DE genes Top DE genes 

200 400 600 800 200 400 600 800 

Max P -value 4.7E-133 2.6E-95 1.6E-71 8.0E-53 Max P -value 6.0E-132 4.6E-94 1.2E-72 4.1E-58 
YAP1 1.00 1.00 1.00 1.00 YAP1 1.00 1.00 1.00 1.00 
RBPJ 1.00 1.00 0.53 1.00 BCLAF1 1.00 1.00 1.00 1.00 
KMT2C 1.00 1.00 0.96 0.61 BPTF 1.00 1.00 0.82 0.04 
ELF1 1.00 1.00 0.07 0.75 RBPJ 0.99 1.00 1.00 1.00 
ST A T1 0.96 0.96 1.00 0.80 KMT2C 0.98 0.91 0.07 0.62 
BPTF 0.92 0.02 1.00 0.95 GABPA 0.98 0.28 1.00 1.00 
HIF1A 0.90 1.00 0.05 0.12 ST A T1 0.96 0.99 1.00 0.82 
BRCA1 0.63 RB1 0.91 0.95 0.99 1.00 
YY2 0.50 LIN9 0.89 0.57 0.83 0.99 
JMJD1C 0.08 0.90 PRDM1 0.33 0.10 0.02 
VEZF1 0.06 0.89 0.09 0.22 CBFB 1.00 0.78 0.17 
ERG 0.84 AHR 0.01 0.68 
TCF12 0.82 0.86 0.91 SP4 0.45 
ZNF12 0.57 0.90 0.25 ATF2 0.37 0.02 1.00 
LIN9 0.15 0.33 0.97 0.90 MYBL2 0.02 0.30 0.01 
BACH1 0.98 0.85 BACH1 0.27 0.24 0.45 
RB1 0.02 0.97 1.00 ELF1 0.05 0.13 0.94 0.38 
GABPA 0.09 0.96 1.00 CHD1 0.40 0.10 
BCLAF1 0.15 0.96 0.97 ELK4 0.01 0.10 0.74 
TCF4 0.93 TCF4 0.63 
MEF2A 0.01 0.01 0.48 0.38 PIAS1 0.04 0.59 
SETX 0.02 0.03 0.94 SMAD4 0.01 0.17 0.47 
ATF2 0.16 0.34 SETX 0.02 0.29 
PIAS1 0.05 0.25 
IRF1 0.04 0.04 0.20 

The top row shows total number of DEGs using four different P -value cutoff thresholds (Max P -value). Bottom panel lists the inferred regulators. Posterior 
probabilities greater than or equal to 0.20 are highlighted in bold font face, and those equal to zero are left blank. 
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AS proteins activate transcription of E2F3 itself, as well as
PARG and TEAD4. Modulation of PPARG activity has been
ntensively examined as an anti-cancer therapeutic target ( 68 ),
nd TEAD4 which is known to modulate different cellular
rocesses in cancer via its transcriptional output ( 69 ). 
Taken together, these results demonstrate that the algorithm

an accurately detect modulated transcriptional signals from
NA binding proteins. 

enchmarks 

e compared the performance of our algorithm against
IPER ( 15 ), a widely used method for inference of regulon
ctivity from input gene expression data and causal graphs.
or this benchmark, we used the Human Breast Carcinoma
ontext specific network from ARACNe interactome, named
regulonbrca’ ( 33 ). This network is appropriate for the over-
xpression datasets as they used human breast cell cultures
nd allows a fair comparison. Figure 3 summarizes the over-
ap between the two algorithms. For all three experiments,
 fisher exact test reveals positive correlation between NL-
ayes and VIPER with P -values 0.034, 0.001 and 0.09 for the
2F3, MYC and H-RAS overexpression experiments respec-
ively. Overall, there is good agreement between the methods
s well as regulators recovered only by one algorithm, demon-
trating the viability of both methods in recovering modulated
Fs. Each algorithm predicts TF activity that is not shared by

he other algorithm. While individually predicted TFs by each
ethod may be important and can provide useful clues to the
nderlying biology, there is higher confidence in predictions at

he intersection of both methods.  
As an additional benchmark, we have compared the infer-
ence results by NLBayes and VIPER on the MYC overex-
pression experiment, with two other methods for TF activ-
ity inference: Gene Set Enrichment Analysis (GSEA) ( 26 ,70 )
and Univariate Linear Model (ULM) ( 70 ). To run these two
methods, we used the DecoupleR Python package ( 70 ), to
which we provided the log-fold changes of the correspond-
ing overexpression experiment. Genes with differential ex-
pression P -values over 0.05 were set as not differentially ex-
pressed (fold-change set to 0). Resulting P -values for each in-
ference method were FDR corrected and TFs with adjusted
P -values below 0.05 were labeled as active. Figure 5 high-
lights the overlaps between the 4 different methods. Subsets
with TFs inferred active by NLBayes are shown in blue. Here
we observe that of the 23 TFs inferred as active by NLBayes,
12 are supported by at least one other method. This analysis
illustrates how NLBayes tends to provide a shorter list of ac-
tive TFs when compared to other methods. This is because
the proposed method seeks to find only the best combina-
tion of TFs that explain the observed differential expression
pattern. 

Fibroblast phenotypic plasticity 

To demonstrate the utility of our methodology in discovery of
novel biology, we applied our algorithm to study fibroblast-
to-myofibroblast phenotypic conversion in response to pro-
fibrotic signaling molecules TGF β and CXCL12 ( 35 , 53 , 54 ).
In this experiment, patient derived, immortalized prostate
N1 cells were treated with the pro-fibrotic proteins TGF β

and CXCL12, both of which are known to promote
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Figure 4. Comparison of active TF predictions by our method (y axis) and VIPER (x axis), in three separate overexpression experiments. Input network 
used is the BRCA derived regulon from ( 15 ). Jointly predicted regulators are colored in red. Top predictions specific to one algorithm are labeled in black. 
Gray dots show low confidence predictions by both algorithms. 

Figure 5. Overlap of inference results by four different methods. Subsets containing TFs inferred active by NLBayes are highlighted in blue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

collagen expression ( 53 ). TGF β acts upon TGF / TGFR signal-
ing axis and activates multiple Smad proteins, while CXCL12
acts upon CX CL12 / CX CR4-axis, which transactivates EGFR
and downstream signaling through MEK / ERK and PI3K / Akt
pathways. Both signaling axes converge in the nucleus and
promote the expression of multiple collagen genes ( 35 ,54 ).
RNA-Seq data was processed and compared to the back-
ground model to generate differential gene expression pro-
files as previously described ( 53 ). Differential gene expression
data from TGF β and CXCL12 treated cells were identified at
fold change ≥ 2 and four cutoff thresholds for P -value. The
different cutoffs for P -value were applied to examine the im-
pact of stringency in significance on the inference results, and
were chosen such that only 200, 400, 600 or 800 top differ-
entially expressed genes are considered. To achieve this, we
sorted the table of differentially expressed genes by P -values
in ascending order and took the top rows for the analysis.
Both datasets were used as input to the TF activity inference
algorithm. For these experiments (and the remaining experi-
ments), we used the 3-tissue TF–gene interaction network gen-
erated by Farahmand et. al. This network contains interaction
edges that are common in at least three of the tissues used
in that work and showed consistent performance across mul-
tiple datasets ( 30 ). Table 5 summarizes the results. Inferred
active regulators upon CXCL12 induction are largely similar
to that of TGF β. This is expected as transcriptional profiles
induced by TGF β and CXCL12 are 75% similar ( 53 ). The 
top predicted regulators for TGF β and CXCL12 for the top 

200 DEGs are YAP1, RBPJ, KMT2C, ELF1, STAT1 and BPTF.
YAP1 is known to play a role in the development and pro- 
gression of multiple cancers as a transcriptional regulator of 
this signaling pathway and may function as a potential target 
for cancer treatment ( 71 ). Moreover, YAP1 has been identified 

as a driver of myofibroblast differentiation in several tissue 
phenotypes, like skin, heart, lung, pharynx, liver and kidney 
( 36–45 ). ST A T1 is a member of the ST A T protein family. In re-
sponse to cytokines and growth factors, ST A T family members 
are phosphorylated by the receptor associated kinases, and 

then form homo- or heterodimers that translocate to the cell 
nucleus where they act as transcription activators. The protein 

encoded by this gene can be activated by various ligands in- 
cluding interferon-alpha, interferon-gamma, EGF, PDGF and 

IL6. This protein mediates the expression of a variety of genes,
which is thought to be important for cell viability in response 
to different cell stimuli ( 72 ). RB1 is a negative regulator of the 
cell cycle. The active, hypophosphorylated form of the protein 

binds transcription factors from the E2F family, which forms 
a transcription factor heterodimer that controls the transcrip- 
tion of cell cycle regulatory genes. RB-E2F and MuvB com- 
plexes (which contain LIN9) regulate the expression of G1 / S 
and G2 / M genes. G1 / S genes are repressed during G0 and 

early G1 by RB-E2F and DREAM complexes that interact 
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hrough the DNA binding domains (DBD) of E2F / DP with
2F promoter sites ( 73 ). 
We note that all these predicted active TFs appear as top

egulators for the top 400, 600 and 800 DEGs, indicating the
obustness of the algorithm to the number of DEGs used as
nput. 

ibroblast heterogeneity: single cell experiments 

e performed several scRNA-seq experiments to further in-
estigate the phenotypic plasticity of human prostate fibrob-
asts and characterize heterogeneity in cell populations. For
his study, we utilized 4 human prostate cell lines: N1, SFT1,
HPF and iHPF (For more information, see SI File Supple-
entary Table S1). N1 cells are HPV E6 / E7-immortalized
rostate stromal fibroblasts originally explanted and grown
rom a stromal N odule of benign prostatic hyperplasia ( 74 ).
hey exhibit a fibroblastic morphology, and express fibrob-

astic markers vimentin and calponin. These cells demonstrate
ecretion and proliferation profiles consistent with aging pri-
ary prostate fibroblasts. SFT1 cells are spontaneously im-
ortalized prostate fibroblasts grown from a prostate of a pa-

ient with a S olitary F ibrous T umor of the prostate ( 75 ). These
ells carry an uncommon NAB2 / ST A T6 fusion gene that is
ssociated with solitary fibrous tumors and likely accounted
or cellular immortalization. pHPF cells are primary H uman
 rostate F ibroblasts, purchased at passage 3 from Lifeline Cell
echnology, harvested from young adult male. Finally, iHPF
ells are created through transduction from pHPF cells with
n EF1 α-driven hTERT Lentivirus construct and have grown
ontinuously in culture > 30 passages. 

We applied scRNA-seq to all 4 cell lines. Figure 6 A shows
he UMAP projection of the cell lines. The N1 and SFT1 form
istinct clusters in close proximity. Most of the cells are in G1
hase. pHPF cells also form a single cluster, mostly consist-
ng of cells in G1 phase. Interestingly the iHPF cells cluster in
wo groups (A and B) that surround the primary pHPF cells.
he majority of cells in iHPF_A cluster are in G1 phase, while

HPF_B consists of a mix of cells in G1, G2, S and M phases.
o further investigate the identity of these cells, we merged
he data with FACS sorted single cell expression data derived
rom prostate tissue generated by Henry et al. ( 58 ). Figure
 B shows that the RNA expression profiles of the five human
rostate fibroblast cell lines N1, SFT1, iHPF_A and iHPF_B,
nd primary pHPF cells, cluster as expected with that of tissue-
erived human prostate fibroblasts. As seen in Figure 6 C, the
ve human prostate fibroblast cell lines share a large signature
f highly and commonly expressed genes, likely reflecting their
ommon fibroblastic cell type. In particular, all five cell lines
xpress COL1A1 (collagen 1) and VIM (vimentin). Examina-
ion of the top 10 differentially expressed genes in the four im-
ortalized cell lines compared to primary human fibroblasts

hows that N1 and SFT1 demonstrate a high degree of overlap
nd commonly express several inflammation-associated genes
CX CL1, ZNF AS1, CHI3L1). The iHPF_A and iHPF_B share
 common gene signature as well that includes gene encod-
ng signaling proteins (BEX1, WNT5A), growth factors and
athways (EREG, IGFBP5), and a gene over-expressed in the
utoimmune disease, rheumatoid arthritis (TGM2). However,
HPF_B cells also highly express genes that are not expressed
y iHPF_A, including several associated with vasculogenesis
r angiogenesis (ANGPT1, F3, ADAMT1) or connective tissue
and bone growth (TNFRSF11B). This suggests that iHPF_B
cells may phenotypically resemble endothelial cells, which can
differentiate from fibroblasts ( 76 ). Figure 6 E quantifies the av-
erage log FC of top expressed markers (Figure 6 C) compared
to the background (pHPF). Taken together, these data sug-
gest that a seemingly homogenous culture of primary stromal
prostate fibroblasts may comprise several subpopulations as
have recently been shown for dermal fibroblasts ( 77 ). 

Next, we sought to quantitatively characterize similarities
between cell lines at the transcriptional level. We first per-
formed a differential gene expression analysis using the pHPF
cell line as the background. Figure 7 A shows a bar plot of to-
tal number of upregulated and downregulated genes in each
cell line compared to pHPF cells. We performed a gene set
enrichment analysis on up & down regulated genes (Figure
7 B). As expected, the N1 and SFT1 cells demonstrate a high
level of similarity, as we have previously shown that they re-
spond similarly to stimulation with pro-fibrotics ( 54 ). Con-
versely, although immortalized from the pHPF cells, iHPF_A
and iHPF_B demonstrate a higher-than-expected dissimilarity,
potentially reflecting fibroblast heterogeneity in the primary
cell culture from which they were derived. 

Next, we applied our algorithm to the DEG profiles from
each cell line to quantify similarity in transcriptional gene reg-
ulation. Figure 8 shows top inferred regulators in each cell line
(left panel bar plots), along with their RNA expression level
(middle panel bar plots), and the corresponding enrichment of
the differentially expressed target genes (right panel bar plots).
The enrichment analysis was performed by quantifying the
overlap between the targets of the TF and DEGs using Fisher’s
exact test. This analysis was performed for comparison of
enrichment-based methods with our approach. Enrichment-
based approaches do not consider the global topology of the
TF–gene interaction network into consideration and yield re-
sults that are purely based on the local overlap of TF targets
and the set of DEGs. In Figure 8 , we observe that many TFs
inferred by our method have low enrichment scores. More-
over, some of these show no RNA expression, which suggests
that these are false positives. 

Among the TF regulators identified, HAND2 was shared
across 2 cell lines. The protein encoded by this gene belongs to
the basic helix-loop-helix family of transcription factors and,
among many other development-related functions, is required
for vascular development and regulation of angiogenesis, pos-
sibly through a VEGF signaling pathway ( 78 ). 

The N1 and SFT1 cell lines shared expression of CEBPD,
GTF2F1 and MXI1. CEBPD is an intron-less gene that en-
codes a bZIP transcription factor which can bind as a homod-
imer to certain DNA regulatory regions. It can also form het-
erodimers with the related protein CEBP-alpha. The encoded
protein is important in the regulation of genes involved in im-
mune and inflammatory responses and may be involved in the
regulation of genes associated with activation and / or differ-
entiation of macrophages. It may also be involved in the early
stages of adipogenesis ( 79 ,80 ). 

GTF2F1 encodes TFIIF, a general transcription initiation
factor that binds to RNA polymerase II and helps to re-
cruit it to the initiation complex in collaboration with TFIIB.
It is also a JNK1 / 3-binding partner and may modulate c-
JUN-mediated MAPK signaling in cell proliferation, differ-
entiation, migration, senescence and apoptosis ( 81 ). MXI1
encodes a basic helix-loop-helix protein that inhibits the
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Figure 6. Single cell gene expression data from four prostate cell lines. (A) UMAP projection of cell lines. iHPF shows two separate phenotypes here 
termed iHPF_A and iHPF_B. Cell cycle phase G1 is prominent in N1 and SFT1, but pHPF cells show significant number of cells in S and G2 / M phases. 
(B) Integration single prostate tissue data ( 58 ), showing clusters for Fibroblasts (Fib), Smooth Muscle (SM), Basal Epithelia (BE), Luminal Epithelia (LE) 
and Other Epithelia (OE1, OE2). All 4 cell lines, N1, SFT1, pHPF and iHPF, appear as interconnected clusters, lying between epithelial and fibroblast cells. 
(C) Top expressed genes. Overall, all 5 cell classes share the same highly expressed genes including COL1A1. (D) Top 10 differentially expressed genes 
with respect to pHPF as a reference. Smallest and largest P -values are 1E-128 and 1E-26 respectively. See SI File Tables S2 and S3 for a list of top genes 
for each cell line, as shown in (C) and (D); full list of differentially expressed genes is available in SI Table 1 . (E) Differential expression with respect to 
pHPF, for the highly expressed genes shown in (C). FC of genes in panel C compared to pHPF. Notably, even though collagen expression high in across 
all groups, it is downregulated in N1 when compared to pHPF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transcriptional activity of MYC by sequestering MAX, thus
preventing the formation of MYC-MAX heterodimers, and
by competing with MYC-MAX heterodimers for binding to
target sites ( 82 ). 

The iHPF_A and iHPF_B cell lines shared expression of the
TF regulators PPARG and TCF21. PPARG encodes a member
of the peroxisome proliferator-activated receptor (PPAR) sub-
family of nuclear receptors. PPARs form heterodimers with
retinoid X receptors (RXRs) and these heterodimers regu-
late transcription of various genes that regulate adipocyte dif-
ferentiation and, pathologically, the development or progres-
sion of obesity, diabetes, atherosclerosis and cancer ( 83 ,84 ).
TCF21 encodes a transcription factor of the basic helix-loop-
helix family. The TCF21 product is mesoderm specific, and
expressed in embryonic epicardium, mesenchyme-derived tis-
sues of lung, gut, gonad, and both mesenchymal and glomeru-
lar epithelial cells in the kidney. It is involved in the differen- 
tiation of mesenchymal cells to fibroblasts ( 85 ). 

Of note, many of these transcriptional regulators are basic 
helix-loop-helix TFs, and three TF regulators in particular—
CEBPD, TCF21 and HAND2 have been identified as pro- 
motors of mesenchymal cell differentiation towards the fi- 
broblast lineage (as opposed to the smooth muscle cell lin- 
eage). This suggests that the immortalized fibroblast cell 
lines express TF regulators that function to maintain the 
fibroblast phenotype as well as those that may extend 

this phenotype towards that of immune / inflammatory cells 
(CEBPD), adipocytes (CEBPD , PP ARG) or vascular cells 
(HAND2). This suggests that fibroblast phenotypic plasticity 
is perhaps a common rather than exceptional cellular state 
that may be identified by the expression of particular TF 

regulators. 
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Figure 7. (A) Total number of DEGs compared to the background model (pHPF). (B) GO term Enrichment analysis of up regulated genes in each cell line 
(columns). See SI File Fig S1 for the GO term Enrichment analysis on down regulated genes. 
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Figure 8. A ctiv e TF inference f or each cluster of immortaliz ed cells. Gene mark ers w ere identified b y comparison with pHPF and f ed into the inf erence 
algorithm. In each data set, the left panel bar plots show the inferred probability of regulator activity by the algorithm. Vertical lines mark 0.2, 0.5 and 0.8 
probability thresholds. The right panel bar plots show the Enrichment Analysis of DE targets (Fisher’s Exact test) for comparison. Significant P -values 
( < 0.05) are highlighted in pink. The middle panel bar plots show mean RNA expression across single cells. TFs with expression above 25-percentile are 
highlighted in red. TFs with inference posterior probability P > 0 . 2 , 0 . 5 , 0 . 8 that also show significant enrichment and RNA expression are highlighted in 
y ello w, blue, and green respectively. TFs with posterior probability P > 0 . 2 , but the expression level below the 25 percentile are highlighted in gray. TFs 
with P < 0 . 2 are shown with a dotted pattern. The bottom panel shows active TFs inferred in each cell line (rows) by the algorithm. N1 and SFT show a 
similar pattern of TF activity. 
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iscussion 

n this work, we presented an algorithm for inference of TF
ctivity from differential gene expression profiles and causal
raphs. The algorithm incorporates transcriptional logic in the
ontext of Bayesian networks, allowing for probabilistic devi-
tion from deterministic logic rules. The probabilistic frame-
ork provides the flexibility for ‘plug-and-play’ integration
f various logic models. In this study, we focused on one such
odel (OR-NOR logic). As a future direction we plan to ex-

end the packages so users can choose the logic prior to run-
ing the inference. 
The queries are run on causal graphs of TF–gene inter-

ctions. We provide several options for such graphs assem-
led from small-scale curated databases ( 86 ,87 ), large-scale
ublic databases ( 88–90 ), as well as de novo reconstructed
raphs from high-throughput experiments ( 30 ). We note that
he quality and the coverage of the causal graph has a ma-
or impact on the ability of regulator activity inference mod-
ls. Most curated publicly available network of transcriptional
egulation with annotation on mode of regulation are small
nd very limited in their coverage while other higher coverage
etworks may consist of noisy inferred interactions. Unlike
tandard enrichment analysis methods, our framework has
een designed to account for noise (applicability of interac-
ions and noise in direction of regulation). 

Bayesian Networks are Directed Acyclic Graphs (DAGs)
nd as such, feedback loops cannot be directly modeled in
his context, which is a limitation of this approach. Another
imitation of our approach is that it is designed to detect TF
ctivation, but not TF deactivation. Moreover, since we only
onsider the OR-NOR transcriptional regulatory logic, results
roduced by this approach may miss TFs with alternative reg-
latory relationships. Since the approach is Bayesian and takes
he entire topology of the network into account, by design it
utputs a minimal number of TFs whose activation can ex-
lain the gene expression data. This is an advantage of our al-
orithm over enrichment analysis methods that typically con-
ain a large proportion of false positives. The disadvantage
ay be that sometimes not all true positives get high posteri-
rs probabilities, especially if there are many active regulators
resent. This can be observed in the validation and bench-
ark subsections, where we used overexpression experiments

s input for the inference algorithm (see Table 4 and Figure
 ). In the MYC overexpression data set, MYC itself was re-
overed as an active regulator. Although this was not the case
or other over-expression data sets, the predicted results col-
ectively point to the relevant biology. It should be noted that
ver-expression experiments may contain many off-target ef-
ects that will confound the inference results. Moreover, the
etwork may not sufficiently capture the regulatory interac-
ion in the context of the biological experiment. Indeed, in the
ase of MYC, we observe that the ‘regulonbrca’ network con-
ains many interactions between MYC and downstream genes
hat are not present in the three-tissue network. On the other
and, the three-tissue network provides better performance
n other experiments. The main difference between the three-
issue and ‘regulonbrca’ networks is that the former attempts
o represent a universal non-context specific network, while
he latter is a breast cancer-specific network. The ability of
egulator inference algorithms to recover upstream regulators
epends on multiple factors, including sufficiency of evidence
n the input gene expression data, noise, and importantly en-
capsulation of the regulatory interaction in the network. Since
regulatory networks are dynamic and context-dependent, it is
unlikely for any universal network or methodology to cap-
ture the exact modulators. However, tools such as ours can be
tried with multiple networks and the predictions made by the
network should point to the relevant biology. We have pro-
vided multiple networks for users to try in our web applica-
tion. Moreover, users can try custom networks within the web
app, or by using the provided Python and R packages. It is
worth noting that predicted TFs that show no expression in
the data (see Figure 8 ), should be considered false positives.
If desired, information about the expression of TFs may be
used to filter the network prior to the inference analysis, which
might reveal an alternative set TFs that explain the input data.

For the inference process, we utilized Gibbs Sampling, an
MCMC algorithm that is widely used in Bayesian networks.
A drawback from MCMC models in Bayesian networks is
the convergence time. We implemented the core of the infer-
ence in C++ to reduce the wait time. Convergence time mainly
depends on the number of interactions in the network used.
For the 3-tissue network which has approximately 250 thou-
sand TF–gene interactions, the run time is of the order of
20 minutes. For the used ARACNe network ‘regulonbrca’,
which after filtering contains around 74 thousand TF–gene
interactions, the run time is about 2 minutes. Other strate-
gies can be taken to speed up processing time. For instance,
an enrichment-based test can be run a priori to exclude TFs
with insufficient differentially expressed targets, effectively re-
ducing the network size. This will result in a significant speed
up in convergence time, albeit some border line cases may be
lost. 

Our tool is an exploratory discovery tool that provides a
narrow list of potentially relevant TFs, summarizing the ob-
served differential gene expression data. This is similar to stan-
dard GO term and pathway enrichment analysis that are also
typically applied to summarize differential gene expression
data. The focus of our tool is transcriptional regulation and
our algorithm can be used as a complementary tool in con-
junction with enrichment analysis methods. 

To increase the utility of our algorithm, we provide user-
friendly R and Python packages as well as a web-based
platform with integrated interactive visualization. The pre-
processing steps for speeding up the algorithm are imple-
mented as default in the webserver. As databases of causal
transcriptional regulatory interactions become more avail-
able, we will integrate them in the web-platform and accord-
ingly optimize the inference algorithm for each network. 

Data and software availability 

‘scRNAseq of Primary and Immortalized Human Prostate Fi-
broblast Cell Lines’ 

BioProject Accession number: PRJNA881605 

Study Accession number: SRP397809 

SRA Accession numbers: SRX17617080, SRX17617081,
SRX17617082, SRX17617083 

Use NCBI’s SRA toolkit to download the 4 datasets above.
For further instructions, see: 

https:// www.ncbi.nlm.nih.gov/ sra/ docs/ sradownload 

We make our inference algorithm available to use through
the following web application: 

https:// umbibio.math.umb.edu/ nlbayes 

https://www.ncbi.nlm.nih.gov/sra/docs/sradownload
https://umbibio.math.umb.edu/nlbayes
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Open-source R and Python packages are available at
Github: 

https:// github.com/ umbibio/ nlbayes-r 
(doi:10.5281 / zenodo.7105306) 

https:// github.com/ umbibio/ nlbayes-python 

(doi:10.5281 / zenodo.7105233) 
We have used R version 4.1.3 and Python 3.10 to develop

and test the corresponding packages. Detailed instructions
and examples are available in each corresponding repository.

All figures presented in this work can be reproduced by fol-
lowing instructions available at the GitHub repository: 

https:// github.com/ argearriojas/ nlbayes-reproducibility 
(doi: 10.5281 / zenodo.10116763) 

Corresponding files needed for generating the figures are
made available at Zenodo: 

https:// zenodo.org/ records/ 10116664 (doi:
10.5281 / zenodo.10116663). 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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