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Dengue is the world’s rapidly transmitting mosquito-borne viral disease. It is mostly found in subtropical countries in the world.
The annual number of global deaths caused by dengue fever is about 25,000. The Sri Lanka dengue situation is also not different
to other countries. In the year 2019, dengue fever caused 120 deaths in Sri Lanka. Most of these deaths were reported from the
main administrative district Colombo. Health authorities have to pay their attention to control this new situation. Therefore,
identifying the hot spots in the country and implementing necessary actions to control the disease is an important task. This
study aims to develop a clustering technique to identify the dengue hot spots in Sri Lanka. Suitable risk factors are identified
using expert ideas and reviewing available literature. The weights are derived using Chang’s extent method. These weights are
used to prioritize the factors associated with dengue. Using the geometric mean, the interaction between the triggering variable
and other variables is calculated. According to the interaction matrices, five dengue risk clusters are identified. It is found that
high population movement in the area plays a dominant role to transmit the disease to other areas. Most of the districts in Sri
Lanka will reach to moderate risk cluster in the year 2022.

1. Introduction

TheWorld Health Organization (WHO) considered dengue as
one of the world’s top ten global health hazards in 2019 [1]. It
is a mosquito-borne viral disease, and this virus belongs to the
Flaviviridae family of viruses. Dengue virus appears as four
different, but closely associated serotypes of viruses, namely,
DENV-1, DENV-2, DENV-3, and DENV-4 [2]. Infected
female mosquitoes of the categories Aedes aegypti and Aedes
albopictus are found to be spreading the dengue virus. These
viruses are getting to healthy human bodies by infected mos-
quito bites. If a human being recovers from one serotype of
dengue, he will not have that type of dengue in future, but it
does not grant the cross protection to other serotypes. A con-
secutive contamination by different serotypes is a risk factor
for having severe forms of dengue, namely, Dengue Hemor-
rhagic Fever (DHF) and Dengue Shock Syndrome (DSS),
and these two forms are considered as life-threatening stages

of dengue [3]. High fever, headache, pain behind the eye, nau-
sea, vomiting, muscle and joint aches, different types of rashes,
bleeding from the nose and gums, and bruises and facial flush-
ing are the symptoms of dengue fever. In addition, widespread
bleeding, low blood pressure, and body organ such as liver and
kidney failure can occur in DHF and DSS stages. Things such
as used tires and food containers which can collect and store
water and poor collecting and disposing of garbage in urban
areas are some of the factors helping the breeding of the mos-
quitoes. Also, some rarely used water collecting methods such
as water tanks, wells, and poor access to sanitation facilities
help the breeding of the mosquitoes. Above all these, helpful
climate effects for mosquito breeding process is significant.

WHO statistics indicate the risk of exposure to dengue is
nearly half the world human population [1]. As an average,
390 million dengue cases were reported worldwide in every
past year [1]. The annual number of global deaths caused by
severe forms of dengue is about 20,000 [1]. Among the infected
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people of dengue, 90% of them are children and most of them
are from Asian and Latin American countries. The global den-
gue treatment expenditure is about 8 billion dollars [4].

The situation in Sri Lanka is also not different to other
countries. Colombo was the capital city and was the busiest
industrial area of Sri Lanka in 1965 to 1966. The first dengue
outbreak was reported in Colombo in the same period. Until
1989, the dengue virus progressed at a very slow rate and was
identified as a sporadic disease. During the period 1989 to
1990, the number of recorded DHF cases was 206 and that
is the first epidemic of dengue fever in Sri Lanka [5]. There-
after, the numbers of dengue cases and deaths have abruptly
increased. The year 2017 reported the largest outbreak of
dengue in Sri Lanka with 186,101 cases and 440 deaths [6,
7]. While the Colombo district reported 18,186 cases, the
Gampaha district reported 12,121 cases [8]. These two fig-
ures were the highest in the country. In recent decades, den-
gue becomes a leading public health problem in Sri Lanka,
because the annual number of patients was increased by this
disease. Not only that, it spreads to new areas due to infected
travelers. For instance, in 1965, the dengue cases are initially
found mostly in and around Colombo district, but they pro-
gressively spread to other districts and reached outbreak pro-
portions in several main districts such as Gampaha,
Kurunegala, Kalutara, Batticaloa, Kegalle, Ratnapura, Kandy,
Matara, Galle, and Trincomalee districts in 2017 [9].

Still, vaccine has not been developed by scientist to prevent
dengue attacks. Destroying mosquito breeding sites is of the
utmost importance to control spreading dengue. Therefore,
it is beneficial to identify the clusters with a similar risk of den-
gue transmission. This would facilitate the relevant authorities
to implement the same control strategies in similar risk areas
effectively. It also helps to allocate funds and resources effi-
ciently based on the intensity of dengue risk. Therefore, this
study is aimed at developing a multidimensional risk model
to cluster the dengue hot spots in urban areas of Sri Lanka
based on risk factors and predict the possible future hot spots
by identifying the variation of appropriate factors.

Several studies focused to develop clustering algorithms
to identify the area with a similar risk of dengue transmis-
sion. The study developed by Lowe et al. [10] proposed a
Bayesian inference-based model which is used to identify
the intensity of dengue risk in Brazil during the 2014 FIFA
World Cup season. The factors altitude, population density,
temperature, and rainfall were used to find the risk of dengue.
The results of their study revealed that the risk of dengue was
low in the selected cities for the football matches. A statistical
analysis was performed by Vicente et al. [11] to detect the
spatial variation of dengue temporal data in Brazil. They con-
sidered the relative risk of dengue, house index, population
density, and income for their analysis. According to their
study, there were 11 clusters in Vitória, Brazil. In the Sri Lan-
kan context, there were a very limited number of studies car-
ried out in this regard. Sumanasinghe et al. [12] developed a
geostatistical risk model to cluster the high-risk dengue areas
in Sri Lanka. The effect of rainfall and population density
were considered for their study. They identified five risk areas
using geographically weighted regression. Combining past
dengue records with climate data, a new two cluster model

was proposed by Sun et al. [13]. They used spatial-temporal
clustering method, to investigate the dengue clusters in Sri
Lanka from 2012 to 2016. All these Sri Lankan studies were
based on only climate factors and population density. There-
fore, it is worthwhile to build a multifactorial model consid-
ering social and climate factors to cluster the dengue risk
areas. These social and climate factors are highly uncertain,
and so, it is not possible to define the exact boundaries of
those factors. In the present study, the combined effect of
multifactors is used in an uncertain environment to find
the dengue risk of a given area which was not discussed in
the previous studies.

Defining multifactorial risk models is quite a sophisticated
task due to the uncertainty nature of such factors. Fuzzy math-
ematics which was invented in 1965 by Zadeh [14] is one path
to model the uncertainty situations. Therefore, fuzzy mathe-
matical concepts are used to develop the problem. The model
is constructed as a hierarchical process by including factors
and their risk categories in two different levels. The analytical
hierarchical process (AHP) is a mathematical tool which was
invented by Saaty in 1970 to handle hierarchical processes.
Using AHP, we can decompose the given decision problem
into different subproblems which can easily handle. Due to
the uncertainty of the factors in our problem, fuzzy analytical
hierarchical process (FAHP) is used to construct the model.
Finally, the dengue risk categories are constructed combining
the results of FAHP and Haddon matrices.

The remaining sections of this paper are organized as fol-
lows. Section 2 introduces mathematical approaches, includ-
ing basic definitions of fuzzy theory, the FAHP technique, the
concept of Haddon matrix, and geometric mean calculation
which we used to build the risk model. The model construc-
tion and factor selection processes are presented in Section 3.
The clustering algorithm, risk categories, and obtained
results with discussion are presented in Section 4. Finally,
the conclusion and remarks can be found.

2. Theoretical Background

In this section, we will look at some mathematical theories
including commonly used definitions in fuzzy theory, Chang’s
extent analysis method, geometric mean, and Haddon matrix.
These theories are gathered from the references [15–21].

Table 1: Linguistic variables used in the model construction and
their triangular fuzzy number representation.

Linguistic term
Triangular fuzzy

scale
Fuzzy scale for δ

= 0:5
Absolutely more
important

3 − δ, 3, 3 + δð Þ (5/2,3,7/2)

Very strongly more
important

5/2 − δ, 5/2, 5/2 + δð Þ (2,5/2,3)

Strongly more
important

2 − δ, 2, 2 + δð Þ (3/2,2,5/2)

Weakly more important 3/2 − δ, 3/2, 3/2 + δð Þ (1,3/2,2)

Equally important 1 − δ, 1, 1 + δð Þ (1/2,1,3/2)

Just equal (1,1,1) (1,1,1)
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Figure 1: The intersection of M1 and M2.

Table 2: Selected risk factors with their subcategories.

Risk factor
Risk level

High Moderate Low

T 30°C < T < 34°C 16°C≤T≤ 30°C
or 34°C≤T≤ 37°C

T < 16°C or T > 37°C

R 10mm < R < 30mm 5mm≤R≤ 10mm or 30mm≤R≤ 55mm
R < 5mm or
R > 55mm

D D > 4 2≤D≤ 4 D < 2
H H > 75 50≤H≤ 75 H < 50
G G > 100 50≤G≤ 100 G < 50
P P > 300 100≤ P≤ 300 P < 100
U U > 40 20≤U≤ 40 U < 20
M M > 200, 000 100, 000≤M≤ 200, 000 M < 100, 000

Dengue risk

Temperature
(T)

Rainfall
(R)

Number of
rainy days

(D)

Humidity
(H)

Garbage
(G)

Population
density

(P)

Urbanization
(U)

Population
movements

(M)

ModerateHigh Low

Figure 2: The proposed hierarchical model.

3BioMed Research International



2.1. Basic Definitions in Fuzzy Theory

Definition 1. A fuzzy set, A, in a universe of discourse, U , is a
function of the form

f A : U → 0, 1½ �: ð1Þ

The function f A is called the membership function of A,
and for any x in U , f AðxÞ in ½0, 1� represents the grade of
membership of x in A.

Definition 2 (triangular fuzzy number). A triangular fuzzy
number (TFN), A, can be defined by a triplet ðl,m, uÞ, where
l, m, u represent the smallest possible value, the most prom-
ising value, and the largest possible value of an event, respec-
tively. This representation is interpreted using the
membership function as follows:

f A xð Þ =

x − l
m − l

, if x ∈ l,m½ �
u − x
u −m

, if x ∈ m, u½ �
0, otherwise:

0
BBBB@ ð2Þ

Pairwise comparisons of
main factors and subfactors

Determine the fuzzy
pairwise comparison

matrices

Determine the weights
from Chang’s extent

analysis method

Model
validation

Sensitivity analysis
& find minimum
workable 𝛿

Construct interaction
matrices & risk strata

Sampling & model
calibration

Determine the
dengue risk of

different districts

Figure 3: The framework for dengue risk model development.

Table 3: Matrix to find the interaction between the trigger variable with the other variables [21].

Risk level of variables
Risk level of trigger variable (Ω)

High Moderate Low

Φ ;
i = 1, 2,⋯, 7

High ΩHigh ×ΦHigh ΩModerate ×ΦHigh ΩLow ×ΦHigh

Moderate ΩHigh ×ΦModerate ΩModerate ×ΦModerate ΩLow ×ΦModerate

Low ΩHigh ×ΦLow ΩModerate ×ΦLow ΩLow ×ΦLow

Table 4: Construct risk strata using GM values [21].

Φ Ω high Ω moderate Ω low

High RH,H =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩHigh ×ΦHigh
7

vuut RH,M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩModerate ×ΦHigh
7

vuut RH,L =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩLow ×ΦHigh
7

vuut

Moderate RM,H =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩHigh ×ΦModerate
7

vuut RM,M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩModerate ×ΦModerate
7

vuut RM,L =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩLow ×ΦModerate
7

vuut

Low RL,H =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩHigh ×ΦLow
7

vuut RL,M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩModerate ×ΦLow
7

vuut RL,L =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY7
i=1

ΩLow ×ΦLow
7

vuut

Table 5: The derived weights of sublevels of factors.

Factor
Risk level

High Moderate Low

T 0.5584 0.3446 0.0970

R 0.5905 0.2120 0.1975

D 0.4632 0.3905 0.1734

H 0.3694 0.3307 0.3000

G 0.5301 0.4480 0.0219

P 0.3694 0.3307 0.3000

U 0.5301 0.4480 0.0219

M 0.5905 0.2120 0.1975
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Definition 3 (basic operations). Assume that A and B are two
triangular fuzzy numbers with A = ðl1,m1, u1Þ and B = ðl2,
m2, u2Þ. The basic operations are:

(1) Addition

A ⊕ B = l1 + l2,m1 +m2, u1 + u2ð Þ: ð3Þ

(2) Multiplication

A ⊗ B = l1l2,m1m2, u1u2ð Þ: ð4Þ

(3) Inverse

A−1 ≈
1
u1

, 1
m1

, 1
l1

� �
: ð5Þ

2.2. Fuzzy Pair Wise Comparison Matrix. Let ~A represent a
fuzzified reciprocal n × n judgment matrix containing all
pairwise comparisons ~aij between elements i and j for all i, j
∈ 1, 2, 3,⋯, n.

~A =

c1

c2

⋮

cn

c1 c2 ⋯ cn

1, 1, 1ð Þ ~a12 ⋯ ~a1n

~a21 1, 1, 1ð Þ ⋯ ~a2n

⋮ ⋮ ⋱ ⋮

~an1 ~an2 ⋯ 1, 1, 1ð Þ

2
666666664

3
777777775
, ð6Þ

where ~aij = ð1, 1, 1Þ: ∀i = j, ~aji = ~a−1ij , n is the criteria number
to be evaluated, ci is the ith criteria, ~aij is the importance of
the ith criteria according to the jth criteria, and all ~aij are tri-
angular fuzzy numbers ~aij = ðlij,mij, uijÞ.

2.3. Linguistic Variable

Definition 4 (linguistic variable). A linguistic variable [14] is
characterized by a quintuple ðx, TðxÞ,U ,G, ~MÞ, in which x
is the name of the variable, TðxÞ denotes the term set of x,
that is, the set of names of linguistic values of x. Each of
these values is a fuzzy variable, denoted generically by X
and ranging over a universe of discourse U , which is asso-
ciated with the base variable u; G is a syntactic rule (which
usually has the form of a grammar) for generating the
name, X, of values of x. M is a semantic rule for associat-
ing with each X its meaning. Here, ~MðXÞ is a fuzzy subset
of U . A particular X, that is, a name generated by G, is
called a term.

For the analysis purposes, the expert judgments regarding
variables are processed using linguistic variables. Tradition-
ally, we represent these linguistic variables using numerical
scales. Commonly used numerical scales are 1 to 3, 1 to 5, 1
to 7, and 1 to 9. As we know, in the real scenario, these expert
judgments are uncertain. Therefore, in this study, these
uncertain ideas are analyzed using triangular fuzzy numbers.
The linguistic scale and their triangular fuzzy representation
are shown in Table 1.

2.4. Chang’s Extent Analysis Method. Let X = fx1, x2, x3,⋯,
xng be an object set and G = fg1, g2, g3,⋯, gng be a goal
set. Then, each object is taken and the extent analysis
for each goal is performed, respectively. There are m
extent analysis values for each object, and the values are
M1

gi
,M2

gi
,⋯,Mm

gi
, i = 1, 2,⋯, n where Mj

gi
ðj = 1, 2,⋯,mÞ

are TFNs. The steps of Chang’s extent analysis method
are as follows:

Population movements Urbanization Rainy days Rainfall Temperature Humidity
Factor

0

0.05

0.1

0.15

0.2

0.25
W

ei
gh

t

Population densitygarbage

Figure 4: Prioritized weights of the predictive factors.
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Figure 5: Continued.
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Step 1. The value of fuzzy synthetic extent with respect to the
ith object is

si = 〠
m

j=1
Mj

gi
⊗ 〠

n

i=1
〠
m

j=1
Mj

gi

" #−1
: ð7Þ

The value of ∑m
j=1 Mj

gi
is obtained using the “fuzzy

addition operation” of m extent analysis values for a par-

ticular matrix, and the value ½∑n
i=1 ∑m

j=1 Mj
gi
�−1 is obtained

using the “fuzzy addition operation” of Mj
gi
ðj = 1, 2,⋯,mÞ

values.

Step 2. The degree of possibility of two triangular fuzzy num-
bersM2 = ðl2,m2, u2Þ ≥M1 = ðl1,m1, u1Þ can be expressed as

follows:

V M2 ≥M1ð Þ =

1 if m2 ≥m1

0 if l1 ≥ u2

l1 − u2
m2 − u2ð Þ − m1 − l1ð Þ , otherwise:

0
BBBB@ ð8Þ

According to the values of VðM1 ≥M2Þ and VðM2 ≥M1Þ,
two triangular fuzzy numbers can be compared.

Step 3. Assume that

d′ Aið Þ =min V Si ≥ Skð Þ, ð9Þ

for k = 1, 2,⋯, n ; k ≠ i, where d′ is the ordinate of the highest
intersection point D between μM1

and μM2
, and it is shown in

Figure 1.
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Figure 5: Sensitivity of the weights of factors for different values of δ: (a) all predictive factors; (b) temperature; (c) rainfall; (d) number of
rainy days; (e) humidity; (f) garbage (g); population density; (h) urbanization.
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Step 4. Then, the weight vector is given by

W ′ = d′ A1ð Þ, d′ A2ð Þ,⋯, d′ Anð Þ
� �T

, ð10Þ

where Ai, ði = 1, 2,⋯, nÞ are n elements.

Step 5. Normalizing (10) can obtain the normalized weight
vector

W = d A1ð Þ, d A2ð Þ,⋯, d Anð Þð ÞT , ð11Þ

where dðAiÞ = ðd′ðAiÞÞ/ð∑n
i=1 d′ðA1ÞÞ. Now, W is a non-

fuzzy number.

2.5. Haddon Matrix. The concept of the Haddon matrix [22]
was invented by William Haddon in 1970. This was first
introduced as a tool to recognize the risk factors associated
with injury occurrences. This conceptual framework facili-
tates users to think about injury prevention activities and
their association with factors in three stages: before injury,
injury, and after injury. The cells of this matrix provide users
different approaches to prevent the injury.

2.6. Geometric Mean. Geometric mean (GM) [23] is used to
measure the central location of a given data set. For a given
set of positive random variables fxigNi=1, we can define GM
value as follows:

GM=

ffiffiffiffiffiffiffiffiffiffiffiffiYN
i=1

xi
N

vuut =
YN
i=1

xi

 !1
N

, ð12Þ

where N is the population (or sample) size. For the zero and
negative random variables, we can defineGM value consider-
ing the following three cases.

Case 1.GivenN is an odd number and all the random variables
fxigNi=1 are less than 0, in this situation, GM value is given by

GM=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN
i=1

−xið ÞN

vuut = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN
i=1

xij jN

vuut : ð13Þ

Case 2. Given N1 is the number of a negative random variable
in the given set of data and contains both positive and negative
values, then the GM value is given by

GM=

ffiffiffiffiffiffiffiffiffiffiffiffiYN
i=1

xi
N

vuut =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN1

i=1
x−i

YN
i=N1+1

x+i
N

vuut =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN1

i=1
x−i

N

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN
i=N1+1

x+i
N

vuut :

ð14Þ

According to (14), the total GM value is the multiplication
of GM of negative values and GM of positive values. Therefore,
this total GM value can be called as bigeometrical. In this case,
the total GM can be calculated as a weighted average, and it is
given by,

GM=W1G− +W2G+, ð15Þ

where G− =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN1

i=1 x−i
N

q
, G+ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN
i=N1+1 x+i

N
q

, W1 =N1/N, and
W2 =N2/N. Here,N2 is the number of positive values in the set.

Case 3.Given some of the random variable values are equal to
0, in this situation, we should consider about three different
GM values to compute the overall GM. Therefore, this GM
value is called as trigeometrical. In here, the overallGM value
is given by

GM=W1G− +W2G+ +W3G0, ð16Þ

where G− =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN1

i=1 x−i
N
q

, G+ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN2

i=N1+1 x+i
N
q

, G0 = 0, W1 =
N1/N , W2 =N2/N , and W3 =N3/N . Here, N2 is the number
of positive values in the set,N3 is the number of zero values in
the set, and N =N1 +N2 +N3.

3. Methodology

3.1. Selection of Predictive Factors. After reviewing the facts
of the national and international sources regarding the
dengue transmission, eight different predictive factors are
identified. They are the average value of daily temperature
(°C), average value of daily rainfall (mm), average number
of rainy days per week, average value of daily humidity
(%), average daily collection of garbage (Mt/Day),

Table 6: GM of different risk factor levels.

Cluster High Moderate Low

High 0.2833 0.1017 0.0948

Moderate 0.2059 0.0739 0.0689

Low 0.0622 0.0223 0.0208

Table 7: Proposed risk clusters with their color scheme.

Risk cluster GM Color

Very high 0.2833-1.0000 Maroon

High 0.2059-0.2833 Red

Moderate 0.0689-0.2059 Yellow

Low 0.0208-0.0689 Light green

Very low 0.0000-0.0208 Green
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population density (persons/km2), percentage of urbaniza-
tion, and number of population movements to the target
area. By considering the impact of these factors on dengue
severity, they are further subdivided into three risk levels,
namely, high, moderate, and low. Expert ideas and litera-
ture are used for this purpose [21, 24–26]. The selected
factors with their subcategories are given in Table 2. Using
all the above facts, the proposed hierarchical model is pre-
sented in Figure 2.

3.2. Constructing Multidimensional Dengue Risk Clusters.We
pursue the steps which are presented in Figure 3 to con-
struct the risk clusters. Using expert opinions in the field,
the subfactors are compared and constructed the fuzzy
pair-wise comparisons matrices. The weights of the factors
are derived using Chang’s extent analysis method. Accord-
ing to the derived weights, the factor with the highest
numerical value is defined as the trigger variable (Ω) in
the context of dengue transmission. Then, the interaction
between the variable Ω and the remaining seven factors
(Φ; i = 1, 2,⋯, 7) are calculated. These calculated interac-
tion values are stored in seven 3 × 3 matrices as in
Table 3 [21, 24]. Finally, these seven matrices are com-
bined using the GM values as in Table 4.

According to the output of Table 4 and using the concept
of the Haddon matrices, three risk clusters can be defined as
follows:

(1) Low-risk cluster. The value of RL,L is the lower limit,
and the value of RM,L is the upper limit of this cluster.

(2) Moderate risk cluster. The value of RM,H is the lower
limit, and the value of RM,L is the upper limit of this
cluster.

(3) High-risk cluster. The value of RM,H is the lower
limit, and the value of RH,H is the upper limit of
this cluster.

To find the risk clusters of districts membership values
of predictive factors are aggregated using GM. MATLAB
and R statistical softwares are used to carry out the
simulations.

4. Results

4.1. Algorithm

Step 1. Compare the predictive factors using expert ideas.
With the aid of expert ideas, pairwise comparison matri-

ces as in Table S1 to Table S9 (see Supplementary material
S1) are created.

Step 2. Prioritize the predictive factors.
Synthetic extent value of each factor is derived using (7)

and the results in Table S1 (see Supplementary material
S1). These derived values are given as follows:
ST = 0:0644,0:1062,0:1713ð Þ SR = 0:0577,0:1045,0:1798ð Þ
SD = 0:0601,0:1058,0:1854ð Þ SH = 0:0500,0:0794,0:1320ð Þ
SG = 0:1023,0:1749,0:2949ð Þ SP = 0:0527,0:0859,0:1545ð Þ
SU = 0:0953,0:1554,0:2584ð Þ SM = 0:1148,0:1878,0:2978ð Þ
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Figure 6: Model calibration with different samples.
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Then, to find the degrees of possibilities above, the values
are compared according to the condition given in (8). The
results are given as follows:
V ST ≥ SRð Þ = 1 V SR ≥ STð Þ = 0:9852 V SD ≥ STð Þ = 0:9964
V ST ≥ SDð Þ = 1 V SR ≥ SDð Þ = 0:9893 V SD ≥ SRð Þ = 1
V ST ≥ SHð Þ = 1 V SR ≥ SHð Þ = 1 V SD ≥ SHð Þ = 1
V ST ≥ SGð Þ = 0:5013 V SR ≥ SGð Þ = 0:5238 V SD ≥ SGð Þ = 0:5459
V ST ≥ SPð Þ = 1 V SR ≥ SPð Þ = 1 V SD ≥ SPð Þ = 1
V ST ≥ SUð Þ = 0:6071  V SR ≥ SUð Þ = 0:6238  V SD ≥ SUð Þ = 0:6447
V ST ≥ SMð Þ = 0:4095  V SR ≥ SMð Þ = 0:4382  V SD ≥ SMð Þ = 0:4626

V SH ≥ STð Þ = 0:7163 V SG ≥ STð Þ = 1 V SP ≥ STð Þ = 0:8161
V SH ≥ SRð Þ = 0:7479 V SG ≥ SRð Þ = 1 V SP ≥ SRð Þ = 0:8390
V SH ≥ SDð Þ = 0:7320 V SG ≥ SDð Þ = 1 V SP ≥ SDð Þ = 0:8262
V SH ≥ SGð Þ = 0:2372 V SG ≥ SHð Þ = 1 V SP ≥ SHð Þ = 1
V SH ≥ SPð Þ = 0:9245 V SG ≥ SPð Þ = 1 V SP ≥ SGð Þ = 0:3696
V SH ≥ SUð Þ = 0:3258 V SG ≥ SUð Þ = 1 V SP ≥ SUð Þ = 0:4599
V SH ≥ SMð Þ = 0:1374  V SG ≥ SMð Þ = 0:9329  V SP ≥ SMð Þ = 0:2805
V SU ≥ STð Þ = 1 V SM ≥ STð Þ = 1
V SU ≥ SRð Þ = 1 V SM ≥ SRð Þ = 1

Killinochchi

Mullaitivu

Mannar

Vavuniya

Anuradhapura Trincomalee

Polonnaruwa

Batticaloa

Jaffna

Puttalam

Kurunegala
Matale

Kandy

Kegalle
Gampaha

Colombo

Kalutara Ratnapura

Nuwara
Eliya

Badulla

Ampara

Moneragala

Hambantota

Matara
Galle

Figure 7: A map of the districts in Sri Lanka.
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V SU ≥ SDð Þ = 1 V SM ≥ SDð Þ = 1
V SU ≥ SHð Þ = 1 V SM ≥ SHð Þ = 1
V SU ≥ SGð Þ = 0:8893 V SM ≥ SGð Þ = 1
V SU ≥ SPð Þ = 1 V SM ≥ SPð Þ = 1
V SU ≥ SMð Þ = 0:8161 V SU ≥ STð Þ = 1

Then, using (10), the minimum degree of possibilities
is calculated. Normalizing these values according to (11),
the final weights of the factors are derived. Then, the final
weight vector of the predictive factors is

W = 0:0915,0:0979,0:1033,0:0307,0:2084,0:0627,0:1823,0:2234ð Þ:
ð17Þ

Similarly, we can derive the weights of the sublevel of
the factors, and these values are given in Table 5. Finally,
the derived weights are used to prioritize the predictive
factors as shown in Figure 4. According to the output of
Figure 4, the population movements in the area have the
highest weight. Therefore, the variable population move-
ments in the area are selected as Ω.

Step 3. Justification of selection of δ:
In this step, we carry out a sensitivity analysis. This is to

identify the impact of δ to the weights of the factors. In order
to identify this, we carry out simulations for different values
of δ, and these results are shown in Figure 5. According to
the simulated results, we can observe that some of the weights
are equal to 0 for some values of δ. Therefore, we must select
a value for δ which gives a weight value for all the factors. For
this study, we select this δ value as 0:5.

Step 4. Define dengue risk clusters.
Themultiplicative interaction between each predictive factor

with the subcategories of population movements is calculated
using the concept explained in Table 3. These results are shown
in Table S10 to Table S16 (see Supplementary material S2).

As explained in Table 4, the cells of Table S10 to
Table S16 (see Supplementary material S2) combined using
GM. The generated results are in Table 6. The proposed
risk clusters and their boundaries based on levels of dengue
risk with the proposed color scheme are shown in Table 7.

Step 5. Model calibration.
The random sampling technique is used to calibrate the

proposed model [21, 24]. For each sublevel of the trigger var-
iable, 36 random samples are generated. To generate these
samples, other variables are kept in three different probability
levels. These probability levels are 80%, 50%, and 20%. For
example, think that the trigger variable is in its high-risk sub-
level. Then, one variable is selected with 80% probability and
the remaining six variables selected with its complementary
probability of 20%. Likewise, 10 repeated samples are gener-
ated randomly for this selection. Then, using the GM value,
the risk cluster of each sample is generated. Then, the num-
ber of clusters with similar results are counted. Similarly, ran-
dom samples are generated for other sublevels of the trigger
variable, and the results are given in Figure 6.

As per Figure 6, we can identify the following three popula-
tion movement clusters.

(1) Cluster with high population movements

In Figure 6, the first twelve samples are generated with
high population movements. According to Figure 6, we can
see maroon, red, and yellow bars appear in this region. That
means, when there are high population movements, the den-
gue risk belong to very high, high, and moderate dengue
clusters.

(2) Cluster with moderate population movement

In Figure 6, the second set of twelve samples are gener-
ated with moderate population movements. According to
Figure 6, we can see yellow and light green bars appear in this
region. That means, when there are moderate population
movements, the dengue risk belongs to the moderate and
low dengue clusters.

(3) Cluster with low population movement

In Figure 6, the last set of twelve samples are generated
with low population movements. According to Figure 6, we
can see yellow, light green, and green bars appear in this
region. That means, when there are low population move-
ments, the dengue risk belongs to moderate, low, and very
low dengue clusters.

Table 8: Ranks of districts in Sri Lanka and their dengue categories.

District GM Risk cluster Relative dengue cases (%)

Ampara 0.0707 Moderate 0.53

Anuradhapura 0.0422 Low 1.66

Badulla 0.0488 Low 2.14

Batticaloa 0.0696 Moderate 3.20

Colombo 0.2230 High 19.57

Galle 0.0508 Low 3.58

Gampaha 0.1414 Moderate 18.07

Jaffna 0.0774 Moderate 3.47

Kalutara 0.1392 Moderate 6.26

Kandy 0.1414 Moderate 8.23

Kegalle 0.0488 Low 5.46

Kilinochchi 0.0793 Moderate 0.30

Kurunegala 0.1392 Moderate 6.43

Hambantota 0.0511 Low 2.04

Mannar 0.0711 Moderate 0.31

Matara 0.0462 Low 3.62

Mullaitivu 0.0700 Moderate 0.22

Nuwara Eliya 0.0462 Low 0.51

Puttalam 0.0488 Low 4.48

Ratnapura 0.0503 Low 6.45

Trincomalee 0.0619 Low 2.86

Vavuniya 0.0679 Low 0.61
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2008 2012 2017 2022
Mullaitivu
Kilinochchi
Mannar
Vavuniya
Ampara
Nuwara Eliya
Anuradhapura
Badulla
Puttalam
Hambantota
Jaffna
Batticaloa
Trincomalee
Kegalle
Matara
Galle
Kandy
Kurunegala
Ratnapura
Kalutara
Gampaha
Colombo

Year

52.65 58.5 65 74.75
56.7 63 70 80.5

46.98 52.2 58 66.7
48.6 54 60 69

115.43 128.25 142.5 163.875
46.98 52.2 58 66.7
52.41 58.23 64.7 74.405
61.24 68.04 75.6 86.94
71.2 79.11 87.9 101.085
40.5 45 50 57.5

63.59 70.65 78.5 90.275
110.16 122.4 136 156.4
101.25 112.5 125 143.75
53.06 58.95 65.5 75.325
74.52 82.8 92 105.8
87.08 96.75 107.5 123.625
169.7 188.55 209.5 240.925
91.53 101.7 113 129.95
71.28 79.2 88 101.2

102.47 113.85 126.5 145.475
302 335.25 373 428.375

1040 1155.6 1284 1476.6

High
Moderate
Low

(a) Garbage collection

62 35 40 41
124 89 103 105
54 50 57 58
90 88 99 101

148 147 167 171
439 409 443 447
121 120 138 140
305 285 306 309
264 248 282 287
224 230 259 262
649 570 654 641
203 185 215 219
143 139 163 165
479 497 520 524
647 634 670 675
657 644 688 695
728 709 757 765
332 336 366 369
340 332 356 360
709 765 806 816

1605 1662 1783 1817
3680 3325 3578 3628
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15 18.4 22.7 26.1

15.8 19.3 24.5 28.2
15 18.4 20.2 23.2

15.5 19 23.6 27.1
5 6.1 5.6 6.4

2.5 3.1 5.9 6.8
5.8 7.1 8.6 9.9
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20 24.5 28.7 33

13.2 16.2 22.4 25.8
1.8 2.2 1.9 2.2
6.9 8.5 11.9 13.7
9.1 11.1 12.5 14.4
10 12.2 12.4 14.3
2 2.4 1.9 2.2

4.7 5.7 9.1 10.5
8.7 10.6 8.9 10.2

11.9 14.6 15.6 17.9
44.6 54.6 77.6 89.2
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Figure 8: Heat maps of predictive factors.
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4.2. Model Validation. Twenty-two districts in Sri Lanka are
selected for the model validation. The selected districts are
Ampara, Anuradhapura, Badulla, Batticaloa, Colombo,
Galle, Gampaha, Jaffna, Kalutara, Kandy, Kegalle, Kilinoch-
chi, Kurunegala, Hambantota, Mannar, Matara, Mullaitivu,
Nuwara Eliya, Puttalam, Ratnapura, Trincomalee, and Vavu-
niya. These districts are shown in Figure 7. Three districts,
namely, Matale, Moneragala, and Polonnaruwa, are
neglected from the study due to the unavailability of data.
The risk factor details of these districts are collected from
the Department of Census and Statistics, Epidemiology Unit
of Health Ministry, Department of Meteorology, and Central
Bank of Sri Lanka websites.

Using the proposed model, GM value of each district is
generated. The obtained results and risk categories of dis-
tricts are given in Table 8. Then, the generated risk categories
are compared with the percentage relative value of dengue
cases considering the year 2017 and the risk clusters
announced by the International Federation of Red Cross
and Red Crescent Societies [9]. According to the results, the
model accuracy level is 72.73%.

The results revealed that the Colombo districts have the
highest risk in terms of dengue in the year 2017, and it
belongs to the high-risk cluster. Since Colombo is the main
administrative district in Sri Lanka, main industries, schools,
and universities are situated in this area. It also a highly dense
area in Sri Lanka. Due to these reasons, there is a high dengue
transmission in the Colombo district. Gampaha, Kalutara,
Kurunegala, Kandy, Batticaloa, Jaffna, Ampara, Mannar,
Kilinochchi, and Mullaitivu belong to moderate-risk cluster
in the context of dengue transmission. The districts in the
low-risk cluster are Anuradhapura, Badulla, Galle, Hamban-
tota, Kegalle, Matara, Nuwara Eliya, Puttalam, Ratnapura,
Trincomalee, and Vavuniya.

4.3. Capture the Future Risk Clusters of Dengue in Sri Lanka.
It is important to predict the future dengue risk cluster in dis-

tricts. In order to recognize the increasing trend of dengue
clusters, 2008, 2012, and 2017 epidemic years are considered.
The dengue risk prediction is carried out considering the year
2022. In order to simulate the results, we assumed that there
is no change in the climate factors, the garbage increasing
rate is 10%, the urbanization rate is 10%, and the population
movements increase in selected areas by 10%. The annual
population growth rates of the selected districts are obtained
from the Department of Census and Statistics [27]. Figure 8
shows the heat maps generated for dengue risk factors.
Figure 9 shows the heat map generated to visualize the past
and future risk clusters of different Sri Lankan districts.

5. Discussion

This study presents the multifactorial model to determine the
dengue risk of cities in an uncertain environment. Eight dif-
ferent social and climate factors are considered for the model
development process. The developed mathematical model
was applied to Sri Lankan districts. According to the results
of the present study, we identified the population movements
in the area as a significant factor to increase the dengue risk.
This result agrees with the findings of the literature [28, 29].
The model predicted the dengue risk in selected districts with
72.73% accuracy level. Out of 22 districts, 16 district risk
clusters have been predicted accurately by the developed
model. Correctly predicted districts are Anuradhapura,
Badulla, Batticaloa, Colombo, Gampaha, Hambantota,
Jaffna, Kalutara, Kandy, Kilinochchi, Kurunegala, Mannar,
Mullaitivu, Nuwara Eliya, Puttalam, and Vavuniya.

Variables such as garbage collection, urbanization per-
centage, and population movements considered in this
research are novel factors for dengue risk prediction
models because the literature contains the results consider-
ing only the climate factors and population density. Most
of the models in the literature were developed considering
the statistical concepts like logistic regression [30, 31].

Very high

Moderate
High Very low

Low

Not selected

2008 2012 2017 2022

Figure 9: Dengue risk maps for the years 2008, 2012, 2017, and 2022.
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However, when we are dealing with more factors, there is
an uncertainty of the model. In order to handle this
uncertainty, a fuzzy theory-based mathematical model is
developed. Also, in the proposed model, dengue risk clus-
ters are defined by intervals. Hence, small changes in fac-
tors do not show a drastic change in the results. Further,
this study considers the effect of multifactors and their
interaction to predict the dengue risk. This also helps to
increase the predictive effect of the present study com-
pared to the existing studies.

6. Conclusions

In this research, a multidimensional risk-based model was
introduced to cluster the dengue hot spots in Sri Lanka.
The model incorporates the social and climate factors includ-
ing the eight different variables which can be easily assessed
and analyzed. Since these variables are highly uncertain,
FAHP was used to prioritize the variables. The interactions
of the variables were calculated using GM. Considering the
concept of Haddon matrices, five dengue risk clusters were
identified. High population movement to target district plays
a dominant role to transmit the disease.

Due to the limited resources, we selected only a few risk
factors of dengue for model construction. Therefore, it is nec-
essary to include social variables such as school density, fac-
tory density, household density, conditions of houses, and
infrastructure facilities in the area to the model, considering
more number of factors will help to recognize the dengue
transmission risk in districts more accurately. Here, we mea-
sure the interaction between two variables. But there may be
multidimensional interaction between the dengue risk fac-
tors. It would be necessary to incorporate these multifactor
interactions to the model in future studies. In this study,
the obtained weights do not depend on time. However, in
the real scenario, the selected factors such as rainfall, temper-
ature, and humidity heavily depend on time. Hence, in the
future studies, we can consider the time-dependent FAHP
model to prioritize the variable. Note that the developed risk
clustering algorithm can be used to identify future dengue
hotspots in the country. This will facilitate the government
and relevant authorities to develop control strategies. It also
provides information to people to make correct decisions
when they travel places with a high risk of dengue.
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