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Global histone modification fingerprinting in human cells
using epigenetic reverse phase protein array
Marina Partolina1, Hazel C Thoms1, Kenneth G MacLeod2, Giovanny Rodriguez-Blanco1, Matthew N Clarke1, Anuroop V Venkatasubramani1,3,
Rima Beesoo4, Vladimir Larionov5, Vidushi S Neergheen-Bhujun4, Bryan Serrels2, Hiroshi Kimura6, Neil O Carragher2

and Alexander Kagansky1,7

The balance between acetylation and deacetylation of histone proteins plays a critical role in the regulation of genomic functions.
Aberrations in global levels of histone modifications are linked to carcinogenesis and are currently the focus of intense scrutiny and
translational research investments to develop new therapies, which can modify complex disease pathophysiology through
epigenetic control. However, despite significant progress in our understanding of the molecular mechanisms of epigenetic
machinery in various genomic contexts and cell types, the links between epigenetic modifications and cellular phenotypes are far
from being clear. For example, enzymes controlling histone modifications utilize key cellular metabolites associated with intra- and
extracellular feedback loops, adding a further layer of complexity to this process. Meanwhile, it has become increasingly evident
that new assay technologies which provide robust and precise measurement of global histone modifications are required, for at
least two pressing reasons: firstly, many approved drugs are known to influence histone modifications and new cancer therapies
are increasingly being developed towards targeting histone deacetylases (HDACs) and other epigenetic readers and writers.
Therefore, robust assays for fingerprinting the global effects of such drugs on preclinical cell, organoid and in vivo models is
required; and secondly, robust histone-fingerprinting assays applicable to patient samples may afford the development of next-
generation diagnostic and prognostic tools. In our study, we have used a panel of monoclonal antibodies to determine the relative
changes in the global abundance of post-translational modifications on histones purified from cancer cell lines treated with HDAC
inhibitors using a novel technique, called epigenetic reverse phase protein array. We observed a robust increase in acetylation
levels within 2–24 h after inhibition of HDACs in different cancer cell lines. Moreover, when these cells were treated with N-
acetylated amino acids in addition to HDACs, we detected a further increase in histone acetylation, demonstrating that these
molecules could be utilized as donors of the acetyl moiety for protein acetylation. Consequently, this study not only offers a novel
assay for diagnostics and drug screening but also warrants further research of the novel class of inexpensive, non-toxic natural
compounds that could potentiate the effects of HDAC inhibitors and is therefore of interest for cancer therapeutics.
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INTRODUCTION
Post-translational modifications of proteins are one of the major
determinants of genomic functions, allowing a swift, controlled
and reversible response to environmental signals.1 Such changes
may be induced by phosphorylation, nitrosylation, methylation,
ubiquitination and sumoylation, but arguably the most studied of
all the modifications is acetylation.2 Addition of acetyl groups to
lysine residues within a protein alters the charge and structure of
the molecule, leading to a change in its function.3 In the past two
decades, particular interest has been given to the acetylation of
histone molecules, which have been shown to be involved in
complex combinatorial regulation of local genome properties
such as transcription, DNA repair and other chromosome
transactions.4 Histones are abundant cellular proteins required

for packaging the DNA into nucleosomes and, as they contain
proportionally more lysine residues than other proteins, they
account for a high number of these residues within the total
protein pool. When lysine residues are acetylated, the positive
charge of the histone molecule is neutralized and the DNA
becomes less tightly associated with the nucleosome, allowing the
transcriptional machinery unhindered access to the transcription
factor binding sites.5 Furthermore, acetylation also influences the
interaction of histones with other proteins, as specialized binding
domains (e.g. bromodomain) can specifically distinguish between
acetylated and non-acetylated forms of the protein.6

Over the last decade, massive government and commercial
investment into global projects, including ENCODE, Epigenome,
and Epigenesys, led to the refinement of methods related to ChIP-
on-chip, ChIP-seq and the introduction of new combined
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methods, such as ChIA-PET.7 The resultant mapping of a number
of histone acetylations, methylations and phosphorylations onto
model genomes produced overwhelmingly detailed databases
that shed light on the potential genomic contexts related to the
functional and structural make-up of the genome in health and
disease. Despite an ongoing debate concerning the substantiation
of the original histone code hypothesis for cell fate,8 and the
difficulty in assaying causal links between locus-specific changes
in histone marks and pathological chromatin changes in cancer
and other diseases, the analysis of global histone modifications
linked to intracellular pH and carbon metabolism represent a
compelling, yet under-investigated task. It has been clearly
demonstrated that the patterns of global H3 and H4 acetylations
correlate with the severity of prostate and other cancers,9 while
global methylation patterns may have a diagnostic and prognostic
potential for a range of different tumours.10

Histone acetylation and deacetylation is a well-studied process
involving the turnover of the acetyl CoA moiety by specialist
enzymes, namely histone/lysine acetyltransferases (HATs/KATs)
and histone deacetylases (HDACs), which contribute differentially
in specific tissues and genomic contexts.11,12 It has long been
established that many cancers are characterized by global
hypoacetylation of histones.13 Overexpression of individual HDACs
is associated with reduced survival rates in numerous tumours,
including cancers of the colon, breast, lung and prostate.14

Furthermore, genetic knockdown of specific HDACs within these
tumours induced cell cycle arrest and apoptosis. As a conse-
quence, numerous HDAC inhibitors have undergone clinical trials
and several have recently been approved by the FDA for use in
various human cancers.15 It is hoped that these HDAC inhibitors
can be used in tumours that have either developed resistance to
conventional therapies or following relapse of the primary
cancer.16 It has been clearly demonstrated that the patterns of
global H3 and H4 acetylations correlate with the severity of
prostate and other cancers,9 while global methylation patterns
may have a diagnostic and prognostic potential for a range of
different tumours.10

Furthermore, the global levels of a number of histone modifi-
cations have been independently proven to correlate with
diagnosis and prognosis in lung, kidney, breast, ovary and
pancreatic cancers.17 Therefore, the development of robust,
high-throughput assays capable of accurately fingerprinting a
subset of specific histone modifications within preclinical disease
models or a patient biopsy warrants advancement in order to
support the development of new epigenetic modifying therapies
and to appropriately inform clinical decisions on the choice and
course of such therapy.
Currently, the methodologies most frequently employed to

investigate histone modifications are western blot analysis and
immunofluorescent microscopy. However, these techniques do
not lend themselves to efficient identification of histone marks, as
they suffer from chromatin preparation challenges and an
inaccessibility of target epitopes respectively. Furthermore, they
are not readily amenable to either standardization or quantitation,
and neither protocol can be efficiently scaled-up to yield high-
throughput analysis of preclinical and clinical samples.
Advances in the analysis of post-translational modifications of

histones and other molecules are promised by the ongoing boom
in mass spectrometry. Continuing mass spectrometry studies will
support the discovery of new functionally significant histone
and other post-translational marks to add to current list of
cancer biomarkers. Mass spectrometry studies also promises to
elucidate chemical co-dependencies of epigenetic marks with
metabolomics18,19 to unveil comprehensive mechanisms of
biochemical programming at and beyond cellular and tissue
homoeostasis levels. However, despite being the proteomics
champion at the forefront of new discoveries, mass spectrometry
is a complex and resource extensive methodology unsuitable for

routine screening applications in preclinical drug discovery or
clinical diagnostic settings. Therefore, there is a pressing need for
the development of other proteomic methods to quantitatively
fingerprint global histone acetylation and methylations levels in
preclinical and patient samples at scale.

Epigenetic reverse phase protein array (eRPPA): Proteomic methods
referred to as reverse phase protein array (RPPA) represents a
highly efficient, sensitive and cost-effective high-throughput
immunoassay,20 in which protein extracts are immobilized on
the solid phase (usually nitrocellulose) and subsequently probed
with the antibodies toward targets of interest. An advantage
of the RPPA format over other multiplex ELISA assays is that
detection antibodies are physically separated from one another
resulting in no cross reactivity and unlimited multiplexing
capability. In addition, the concentration and buffer conditions
can be optimized for each antibody and/or analyte to ensure
optimal results. In this article we describe the development of a
universal RPPA method for simultaneously quantifying a panel of
global histone modifications across multiple samples using
automated sample printing, antibody detection and data analysis
platforms. We have chosen a panel of thoroughly characterized
and standardized mouse monoclonal antibodies raised against
acetylations and methylations of histones H3 and H4, developed
by Hiroshi Kimura.21,22 We have first assessed employing
conventional way for preparing the cell extracts, but have not
been able to obtain reproducible results using a variety of lysis/
extraction buffers at any starting material amount tested (0.01–
0.5 g, data not shown). We first considered isolating purified
histones using specialized kits produced by Eurogentec and Active
Motif, none of which satisfied us with either the course of the
procedure or the output.
We incorporated the protocol previously used for histone isolation,

followed by the identification of histone modifications by mass
spectrometry23 into the eRPPA workflow described in this article. The
methodology was rapid, robust and preserved the labile histone
modifications intact. We present proof-of-concept data measuring
increases in histone acetylations following testing of the human
colorectal cancer cell line HCT116 with known HDAC inhibitors and
N-acetylated amino acids and describe the eRPPA protocol in full.

RESULTS
The aim of this study was to develop and validate a robust
method for quantifying global changes in histone acetylation from
biological samples in an assay format suitable for scale-up high-
throughput application across preclinical or clinical samples. To
select for appropriate positive control compounds for assay
development and validation, we initially screened a mini-library of
known HDAC inhibitors using a human HeLa cell line with multiple
integrations comprising silenced GFP transgenes.24 Exposure of
these cells to agents that induce bulk increase of acetylation leads
to de-repression of the silenced GFP transgenes, resulting in GFP
expression24 (Figure 1a). Our screen showed that several HDAC
inhibitors from our mini-library were able to de-repress silenced
GFP expression (Figure 1b). Of these agents, HC toxin and
CAY10603 exhibited GFP expression that was comparable to the
levels observed following exposure to TSA, which served as a
positive control (Figures 1a and b).
While the eRPPA assay protocol is applicable to any cancer

cell line or other cell types that can be propagated in vitro
development, we chose HCT116 human colorectal cell line
because HDACs are currently undergoing clinical trials for color-
ectal cancer (CRC),25 and HCT116 is among most commonly used
human colorectal cell lines. We examined the effects of our
selected drugs on histone acetylation/methylation using the new
high-throughput assay devised to examine multiple histones
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concurrently, and we call it eRPPA. This method allows the
simultaneous and quantitative analysis of histone modifications
across multiple moieties, thereby enabling us to determine
precisely which lysine's are altered following a treatment
(Figure 2a). As expected, we found that global histone acetylation
was dramatically increased following treatment with the various
HDAC inhibitors (Figure 2b). While CAY10603 is HDAC6 specific,
and TSA is a poor inhibitor of HDAC8, we have decided to further
focus on HC toxin, since from the literature we assume it inhibits
most HDACs in the human cells.
Western blots with pan-acetyl-lysine, H4K8ac and H4K12ac mouse

monoclonal antibodies showed striking increase in acetylation on
protein lysines, H4K8ac, and H4K12ac in drug-treated samples
compared with DMSO-treated samples (data not shown).
We used two criteria to determine assay robustness and

suitability for screening: (i) we checked for reproducibility across
replicates and (ii) determined signal-to-noise between negative
and positive controls to calculate coefficient of variance (CV) and
Z′ factor, respectively.

Acetyl L-carnitine (ALCAR) was previously reported to serve as
the donor of acetyl moiety for the acetylation of histones.26 The
cleavage of the N′-acetyl group from amino acids is processed by
the single enzyme, amino acylase, Acy1. We tested, if the observed
decrease in ALCAR was due to the increased expression of Acy1,
due to the HC toxin treatment, and hence, hyperacetylation of the
Acy1 promoter. However our thorough analyses of the levels
of Acy1 transcript (Supplementary Figure S2) and protein (not
shown), in response to the treatment with HC toxin, do not
support this hypothesis.
We then determined possible synergetic effects of N-acetylated

amino acids in combination with HC toxin with respect to histone
acetylation (Figures 3a–h). The results suggest that most histone
acetylations tested increase further, when HC Toxin is supple-
mented with the N′-acetylated amino acids. This result suggests
that these non-toxic and inexpensive compounds have the
potential to augment the therapeutic effect of HDAC inhibitors
for cancer treatment, and support further research towards
exploring the potential for the combination of HDAC inhibitors

Figure 1. The effect of HDAC inhibitors on de-repression of GFP transgenes (a and b) HeLa-GFP cells were treated with 10 μM of a panel of
different HDAC inhibitors for 24 h (a). The percentage of GFP-positive cells (green) was then calculated as a percentage of total cells (DAPI)
using fluorescent microscopy. Cells treated with vehicle alone (DMSO) served as a negative control, whereas HeLa cells transfected with an
empty vector acted as null controls. TSA (10 μM), which was a different batch to the one in the panel, was used as a positive control. The ‘top
hits’ from the screen in (a) (CAY10603, HC toxin and TSA) were then used to treat HeLa-GFP cells for 24 h at a concentration of 500 nM and the
effects on GFP silencing were examined by fluorescence microscopy: five biological replicates with three technical replicates each time.
(b) The same three chemicals were then used to treat colorectal cancer cells HCT116 for 2 h at a concentration of 500 nM and the effects on
acetylation of isolated histones were examined by RPPA: three biological replicates with three technical replicates each time.
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and acetylated amino acids in various cancers. To our knowledge,
such combinatorial approaches have not been explored in clinical
studies. Hypothetic potentiation of the effects of HDAC inhibitors
should afford to decrease the active doses of relatively toxic HDAC
inhibitors used in chemotherapy, and therefore, to reduce side
effects.

DISCUSSION
Epigenetic alterations of histone and non-histone proteins
are central events in the initiation and progression of cancer.
Cancers arising from the large intestine or rectum are called CRC
and represent the fourth leading cause of cancer-related death
worldwide.27

Although general chemotherapy strategy based on fluorouracil
(5-FU) is applied in CRC cases, other drugs such as irinotecan and
oxaliplatin have resulted in improved outcomes,28,29 prompting
clinicians to focus on both combination regimens in patients with
metastatic disease. Interestingly, overexpression of HDAC1 in CRC
correlated with significant decrease in survival and was able to
predict poor patient prognosis.30 Further, in cases where CRCs are
characterized by microsatellite instability (MSI) (approx. 15% of
CRCs), which occurs due to deficiency in the mismatch repair
pathway, 5-FU treatment was not effective and showed resistance
as compared with microsatellite stable CRCs. This further supports
our analysis of HDAC effects and the use of HCT116 cell line as the
latter has a perturbed epigenetic profile and a MSI phenotype,
with a strong resistance to 5-FU therapy.31 Therefore, analysis of
histone acetylation levels would help to provide better diagnostic
and prognostic strategies in the future, while HDAC inhibitors are
considered as the promising route for cancer treatment. For
example, HDAC inhibitor SAHA sensitized CRC tumours in model
animals.32

We have selected HC toxin based on its potency and broad
specificity against HDACs.33 This drug induces robust hyperace-
tylation of lysines of cellular proteins including histone tails in all
cell lines investigated, which then stays irreversibly at a maximum
level between 2 and 24 h (not shown).
In a separate set of experiments, we have examined major

metabolic transitions that accompany inhibition of HDAC activity
in the cells using an Orbitrap mass spectrometer (Rodriguez-
Blanco and Kagansky, unpublished). Our metabolomics profiling
experiments unexpectedly demonstrated statistically significant
decrease in level of intracellular ALCAR, as well as other acetylated
amino acids (not shown), including N-acetyl methionine (NAM)

and N-acetyl aspartate (NAA). Amino acylase (Acy1) is the single
mammalian enzyme that removes acetyl groups from N′-acety-
lated amino acids.34 Therefore, we tested if hypothetic Acy1
promoter activation, following HDAC inhibition, is responsible for
the drop in the acetylated amino acids, resulted from the Acy1
overexpression. Gene expression analysis of the Acy1 transcript
did not detect any overexpression of this gene caused by the
HDAC inhibitor (Supplementary Figure S2). Therefore, we assume
that pools of acetylated amino acids are gradually depleted as
a result of the lysine hyperacetylation, as it was previously
postulated for the ALCAR. We propose that other free N-acetylated
amino acids, such as NAM and NAA, may also serve as ‘emergency’
sources of acetyl groups. Thus, it is possible that free N-acetylated
amino acids can act as ‘acetylation sink’ to capture acetyl groups
in a somewhat ‘inert’ form (by analogy to methylation sink role for
1MNA35), as despite the discovery of N-acetylated amino acids
over half a century ago,36 very few biological roles, if any, were
assigned to them in cellular metabolism.
Currently used immunohistochemistry and western blots do not

provide precise means to evaluate the acetylation levels, and
therefore development of novel quantitative fingerprinting
approaches may serve both for the screening of patients, and
for evaluating the specificity of HDAC inhibitors. eRPPA employs
highly selective antibodies against histone acetylations (including
key histone H3 acetylations, H3K14ac, H3K9ac, H3K27ac, and
histone H4 acetylations H4K5ac, H4K8ac, H4K12ac and H4K16ac)
to quantitatively detect changes in the global acetylation profiles.
The important concern with HDAC inhibitors treatment, as in

the case of other types of chemotherapy, is its side effects.
Although the side effects from HDAC inhibitors are comparatively
mild, global changes to the protein makeover (as most of the
cellular proteins are acetylated) across the whole body cannot be
considered risk-free.37 Consequently, there will always be a ‘tug of
war’ between achieving the needed HDAC inhibition on one hand
and reducing the effective dose of the drug on the other.

L-Carnitine is an amino acid derivative, biosynthesized from
lysine and methionine majorly in brain, kidney and liver and play
important roles on lipid metabolism.38 ALCAR is an acetylated
derivative of carnitine that has been studied and shown to act as a
protective agent on many types of diseases including neurological
disorders,39 muscle-related diseases40 and has very recently been
shown to be a potential cancer biomarker.41 In the literature, it
was also demonstrated that ALCAR has a potentiating effect on
histone acetylation in different cancer cells. Previous study has
shown that mitochondrial uptake of ALCAR can supply the cell

Figure 2. Induction of histone acetylation (a and b): Each sample, normalized for protein levels, was loaded onto the slide using twofold serial
dilutions in triplicate. Panel a shows a typical image obtained by RPPA using a pan-acetylated lysine antibody. The amount of antibody
staining was normalized with Fast Green and the staining intensity (Relative Fluorescent Units) of each sample was calculated as a percentage
of cells treated with DMSO alone± S.E.M. (b, chart). Each value represents the mean of three individual experiments, conducted and spotted
in triplicate. Ten micrograms of the isolated histone protein from each treatment was used to confirm the RPPA findings by western blot
analysis using a pan-acetylated lysine antibody (b, below the chart); three biological replicates with three technical replicates each time.

Global histone modification fingerprinting in human cells
M Partolina et al

4

Cell Death Discovery (2017) 16077 Official journal of the Cell Death Differentiation Association



Figure 3. Metabolites potentiate the effects of HC toxin on histone acetylation and methylation. HCT116 cells were exposed to 100 nM HC toxin for
24 h in the presence or absence of combined metabolites (500 nM ALCAR, 500 nM NAL and 500 nM NAM) and then RPPA was conducted on
isolated histones. A typical image from RPPA for pan-acetylated lysine is shown (a). Each sample, normalized for protein levels, was loaded onto the
slide using twofold serial dilutions in triplicate. The amount of antibody staining was normalized with Fast Green and the staining intensity (Relative
Fluorescent Units) of each sample was calculated as a percentage of cells treated with DMSO alone±S.E.M.; three biological replicates with three
technical replicates each time. (b) HC toxin and HC toxin+metabolites caused a significant increase in histone acetylation, compared with DMSO or
metabolites alone (Po0.001). The RPPA findings were confirmed using western blot analysis of the isolated histones (b, lower panel); three
biological replicates with three technical replicates each time. Acetylation (c–f) and methylation (g and h) at specific histone residues were also
examined by RPPA. Relative staining intensity was calculated and expressed as a percentage of DMSO (open bars), metabolites alone (spotted bars),
HC toxin (solid bars) and HC toxin+metabolites (hatched bars). Statistical significance was determined using two-tailed Student’s T-test: *Po0.05;
**Po0.01; ***Po0.001. Three biological replicates with three technical replicates each time for each panel (c–g).
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with acetyl groups that can be utilized for histone acetylation.26

Other studies reported that carnitine has potentiated colon cancer
cell death in Caco-2 and SW680 cells42–44 caused by another HDAC
inhibitor, sodium butyrate. The mechanisms by which ALCAR
modulates butyrate-induced cancer cell death have not been
elucidated. Authors hypothesized that ALCAR may affect butyrate
availability and metabolism in colon cancer cells. No change in
histone H4 acetylation of butyrate-treated cells was detected in
the presence of added ALCAR in the previous study.42 In their
work, authors used western blotting with antibody against
pan-acetylated H4, while acetylation of only few specific lysines
on H3 and H4 was affected in our experiments. Notably in our
experiments, pan-acetylated lysine antibody did not detect
significant change between HC toxin-treated cell in the presence
and absence of acetylated amino acids added to the media. We
should also consider that butyrate is comparatively a weaker
HDAC inhibitor than HC toxin.
To reveal the effects of ALCAR, NAM, and NAA on CRC cells on

histone acetylation, we have used eRPPA. Despite unsurprisingly
not detecting any significant effects of these compounds on their
own, when combined with HC toxin, there were statistically
significant increases of most acetylations tested. Interestingly, at
the same time, eRPPA experiments have demonstrated substantial
decrease in levels of five methylations (Figure 3h), which is likely
explained by the mutually exclusive occupancy of acetyl and
methyl marks on the same lysine residues. We hypothesize that
increased acetylation of lysines 9 and 27 on histone H3, lysine 5 on
H4 and decreased H3K9 methylation can lead to reactivation of
the transcription of silenced genes in cancer, and thereby restore
normal cellular growth and differentiation.
It will be important to elucidate the exact biochemical reactions

involved in the transfer of acetyl groups. It is possible that amino
acetyl groups cleaved from ALCAR and other acetylated amino
acids by the Acy1 enzyme are incorporated into the Acetyl CoA
and are then transferred to the ε-position on the lysines of histone
tails and other proteins. Based on the current literature, we posit
that ALCAR and/or NAA could act as potential therapeutic agents
for CRC treatment potentiating histone acetylation in the presence
of HDAC inhibitors.
It is not yet clear whether treatment of variously diagnosed CRC

patients with clinically approved HDAC inhibitors in combination
with N-acetylated amino acids could help to slow down the
tumour development, stop formation of new tumours or
metastases, and therefore extend the patients survival. We expect
further experiments in animal CRC models and clinical trials
involving non-toxic ALCAR, NAA and NAM, would answer this
question.

MATERIALS AND METHODS
Chemicals
The Epigenetic Screening Library containing in excess of 140 small
molecules, which target a variety of proteins, including histone deacety-
lases, histone acetyltransferases, methyltransferases, demethylases and
acetylated histone binding proteins, were obtained from Cayman
Chemicals (Ann Arbor, MI, USA). All molecules were prepared at a stock
concentration of 10 mM in DMSO. Gibco Dulbecco’s modified Eagle's
medium (DMEM) and fetal bovine serum (FBS) were purchased from
Invitrogen (Paisley, UK). HC toxin was purchased from AbCam (Cambridge,
UK). All other chemicals were supplied by Sigma-Aldrich (Dorset, UK)
unless stated otherwise.

Cell lines and drug treatment
HeLa cells containing multiple copies of GFP reporter genes, which are
variously epigenetically silenced by DNA hypermethylation or the parental
cell line they were derived from (null cells), were a kind gift from Prof.
Richard Katz (Fox Chase Cancer Center, Philadelphia, PA, USA), and are
described in detail elsewhere.45 HCT116, an intestinal epithelial

adenocarcinoma cell line, was obtained from the European Collection of
Cell Cultures (Porton Down, UK). Cells were grown as monolayers in DMEM
culture medium, supplemented with 10% FBS and antibiotics (penicillin
and streptomycin), and maintained under a humidified atmosphere with
5% CO2 at 37 °C.
For RPPA experiments with HCT116 cell line, treatments were done as

follows (equivalent method was used for the RPE-1 cells (not shown)).
Twelve 145 mm dishes were seeded with HCT116 cells (typically 2 million
per dish). Four different treatments were done, each in three replicates (on
three individual dishes), using media with added DMSO stocks of indicated
drugs. Drugs were added in the indicated concentrations, with final
concentration of DMSO being 0.1%. Cells were treated for 2 or 24 h in the
incubator prior to collection. They were then washed with cold PBS,
scraped and collected on ice in 1 ml of cold PBS. Histones were isolated
using the following acid extraction protocol.

Histone extraction
To extract histones, the culture medium was removed following treatment
and the cells were scraped into ice-cold PBS and collected by centrifuging
at 2000 r.p.m. The pellets were re-suspended in 1 ml of lysis buffer
(250 mM sucrose, 50 mM Tris-HCl, 50 mM NaHSO3, 45 mM sodium
butyrate, 25 mM KCl, 25 mM MgCl2, 10 mM β-mercaptoethanol, 2 mM
PMSF and 0.2% Triton X-100), supplemented with 1X cOmplete Protease
Inhibitor Cocktail (Sigma-Aldrich) and incubated on ice for 15 min.
The nuclei were pelleted by centrifugation at 800× g for 10 min, the
supernatant was discarded and the pellet was re-suspended in 1 ml 0.2M
H2SO4. After a 30 min incubation on ice, the debris was removed by
spinning at 13 000 r.p.m. for 10 min, the supernatant was transferred to a
fresh tube, 125 ml of 100% TCA was added and the nuclei were incubated
on ice for a further 15 min. Next, the nuclei were again pelleted by
spinning at 13 000 r.p.m. for 10 min, the supernatant was discarded and
the pellet was dislodged into acetone with 50 mM HCl, vortexed and
incubated for 30 min at room temperature. The histones were collected by
centrifuging for 5 min at maximum speed and then re-suspended in 100%
acetone and left overnight at − 20 °C. The tubes were then centrifuged
again at 13 000 r.p.m. for 10 min, the supernatant was discarded and the
histones were diluted in water with protease, phosphatase and HDAC
inhibitors. The total concentration of histone proteins was determined
using a Qubit Protein Assay System (Thermo Fisher Scientific, Paisley, UK).
Western blotting was used to evaluate the reactivity of histone antibodies
and preliminary assessment of histone. Concentrations were normalized to
100–200 μg/ml and the samples were loaded on 10–20% Gradient Tricine
SDS gels (Novex, Life Technologies, Carlsbad, CA, USA) for western blot
analyses and Coommassie staining. Gels were run for 90 min, 125 V,
according to the manufacturer’s instructions, followed by 7 min transfer to
PVDF membrane using the I-Blot gel transfer system (Thermo Fisher
Scientific). The membranes were hybridized with pan-acetyl-lysine,
H4K8ac, and H4K12ac mouse monoclonal antibodies.

Epigenetic reverse phase protein array
The histone samples were next subjected to RPPA Assay system (Grace Bio-
Labs, Bend, OR, USA). Starting concentrations of histone samples were in
the range of 400–750 μg/ml. However we found that some histone
modification antibodies worked well even with much lower concentration
of the histones samples. Histone samples were prepared in 20% solution of
glycerol in 200 μl, then we added 67 μl of 4 × Sample Buffer (4xSB with
10% of 2-mercaptoethanol) and heated at 95 °C for 5 min. The RPPA
method could accommodate higher number of samples, but to simplify
our experiments we used 12 samples settings.
We loaded samples onto a 96-well V-bottom plate. The plate was

divided into three areas to prepare dilutions. The first line of the wells
would be 100% dilution, second – 50% dilution, third – 25% dilution, fourth
– 12.5% and so on: fifth – 100%, sixth – 50%, seventh – 25%, eighth –
12.5%, etc. Sixty microlitres of 20% glycerol were added in wells in rows 2,
3, 4, 6, 7, 8 and 10, 11, 12. About 120 μl of sample were added in each well
of the 100% sample rows 1, 5, 9 (Supplementary Figure S1a).
Using multichannel pipette, 60 μl from each of the 100% sample well

was added to 50% sample well, and mixed. Sixty microlitres from 50%
sample was added to 25% sample well, and mixed. Finally, 60 μl of 25%
sample was added to 12.5% sample well and mixed. Each plate
accommodates four samples that are located in the middle of the plate
in 8 × 16 rectangles, leaving the four-well wide border to contain only
water to prevent the evaporation. Other samples were diluted the same
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way, adding a half of a dilution to the next well each time. After loading a
sample plate, three 386-well loading plates were prepared for printing
(Supplementary Figures S1b–d). When the histone samples were prepared
for spotting, they were loaded into wells of sample plates as biological
triplicates, 8–10 μl per well. The samples were printed/spotted onto
ONCYTE porous nitrocellulose film slides using Aushon BioSystems 2470
Arrayer (Billerica, MA, USA). One row contains a sample spotted in four
consecutive twofold dilution series in triplicate to quantify protein in each
sample. The slides were dried overnight at 4 °C and the RPPA Assay was
performed using the Grace Bio-Labs protocol with a panel of histone
antibodies.
Each slide/chip was processed in a hybridization cassette (Arraylt

Corporation, Sunnyvale, CA, USA) to allow the detection of histone marks
individually in each of 16 arrays with primary antibodies. The slide was
washed with water four times for 15 min to remove salts and detergents,
which could be performed in a 50 ml Falcon tube or a tray. This and all
following steps should be performed with agitation. The slides were placed
in an Array-It chamber. To enhance availability of an antigen-binding sites
through denaturation, incubation with Antigen Retriever (Reblot strong
solution; Millipore, Billerica, MA, USA) was performed for 15 min. The slides
were completely covered and washed twice with water, followed by two
PBS washes for 5 min each and incubated for 10 min in Superblock
(Thermo). This was followed by a TBST wash, twice for 5 min and incubated
with primary antibodies, at 1:250 dilutions in Superblock for 1 h. After
incubation, they were again washed with TBST twice for 5 min and
incubated for 10 min with blocking buffer, following which they were
washed three times for 5 min using TBST. Secondary fluorescent Dylight-
800-labelled anti mouse antibodies (Cell Signaling, Danvers, MA, USA) at a
dilution of 1:2500 was added and incubated for 30 min in Superblock.
From here on, the methodology should be carried out in dark, as the
antibodies are light sensitive. Following incubation with secondary
antibody, they were washed twice with TBST for 5 min, rinsed with fresh
water and finally the slides were dried at room temperature for 10 min
before acquiring the data. Data were collected using an Innoscan 710 IR
(Innopsys, Carbonne, France) infra-red microarray scanner and the calcula-
tions were done using Mapix software (version 7.3.1; Innopsys). The
calculated data are normalized in order to correct for technical variability.
We used Fast Green reference staining that allowed us to account for total
protein that was printed on the slide at each spot immobilized on the
membrane and normalized specific antibodies signals accordingly.

List of antibodies used in eRPPA
pan-acetyl-Lysine (AKL5C1; Santa Cruz Biotech, Santa Cruz, CA, USA);
H4K5ac; H4K8ac; H4K12ac; H4K16ac; H3K9ac; H3K14ac; H3K4m1; H3K4m2;
H3K4m3; H3K9m1; H3K9m2; H3K27m1; H3K27m2; H3K27m3 (all affinity
purified mouse monoclonal antibodies from Kimura Lab, Yokohama,
Japan).

Fast Green staining procedure
The slide with spotted protein samples was washed with water in a
50 ml Falcon tube for 5 min with agitation. It was washed with 1% sodium
hydroxide for 15 min with agitation and rinsed briefly by submerging them
repeatedly 10 times in dH2O. Then we washed the slide in water for 10 min
with agitation. The slide was placed in de-stain solution (10% acetic acid,
30% methanol in water) for 15 min with agitation. Fast green stain solution
(1 × in water) was added to perform the staining for 3 min with agitation.
We rinsed the slide briefly with water by submerging it repeatedly in water
about 10 times. We dried the slide by brief centrifugation and scanned the
slide at 785 nm.

Detection of de-repression of silenced GFP transgenes
Cells were cultured and treated in 96-well flat-bottom plates as described
above. Following incubation, the medium was removed, the monolayers
were washed twice with ice-cold PBS and the cells were fixed in 4%
paraformaldehyde solution for 30 min. They were then washed again and
stained with 30 μl/well DAPI at a concentration of 1 μg/ml in PBS. After
30 min exposure in the dark, the cells were washed and then visualized
by fluorescent microscopy using a Zeiss Observer Z1 microscope (Zeiss
FLUAR × 10/0.5) with MetaMorph v7.8.8.0 software from Molecular Devices
(Sunnyvale, CA, USA). The proportion of GFP fluorescent cells was
calculated as a percentage of total cells using CellProfiler v2.1.1
software.46 Only when a cell was deemed to be of the appropriate size,
tested positive for DAPI staining and had a significantly high level

of GFP staining relative to control levels, did this count as a cell with
re-activated GFP reporters.

Quantitative reverse transcriptase polymerase chain reaction
(qRT-PCR)
Following treatment as described in the figure legends, HCT116 cells were
scraped into ice-cold PBS and collected by centrifugation. RNA was
extracted from the cells using TRIzol reagent (Ambion, Waltham, MA, USA)
according to the manufacturer’s instructions and cDNA was prepared
using standard procedures in a reaction containing 1 μg RNA and the
following reagents (all supplied by Promega, Madison, WI, USA): 50 mM
Tris-HCl, 75 mM KCl, 3 mM MgCl2, 10 mM DTT, 1 mM nucleotides, 0.5 μg
Oligo(dT) primer, 100U M-MLV reverse transcriptase and 20U RNasin.
Quantitative PCR was performed using SYBR Green (Applied Biosystems,
Foster City, CA, USA) according to the manufacturer’s instructions with an
LC480 light cycler (Roche, Basel, Switzerland). The following primers were
used: ACY1 For 5′-CTTCGGGCGGGAGGCATA-3′; ACY1 Rev 5′-CCACTTTT
GGCATCGAGGT-3′; The ΔCT value for each test primer compared with PolII
was determined and 2ΔΔCT was calculated and expressed as a percentage
of cells treated with vehicle alone.
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