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Abstract: The Y Balance Test (YBT) is a dynamic balance assessment typically used in sports medicine.
This work proposes a deep learning approach to automatically score this YBT by estimating the
normalized reach distance (NRD) using a wearable sensor to register inertial signals during the
movement. This paper evaluates several signal processing techniques to extract relevant information
to feed the deep neural network. This evaluation was performed using a state-of-the-art human
activity recognition system based on recurrent neural networks (RNNs). This deep neural network
includes long short-term memory (LSTM) layers to learn features from time series by modeling
temporal patterns and an additional fully connected layer to estimate the NRD (normalized by the
leg length). All analyses were carried out using a dataset with YBT assessments from 407 subjects,
including young and middle-aged volunteers and athletes from different sports. This dataset allowed
developing a global and robust solution for scoring the YBT in a wide range of applications. The
experimentation setup considered a 10-fold subject-wise cross-validation using training, validation,
and testing subsets. The mean absolute percentage error (MAPE) obtained was 7.88 ± 0.20%.
Moreover, this work proposes specific regression systems to estimate the NRD for each direction
separately, obtaining an average MAPE of 7.33 ± 0.26%. This deep learning approach was compared
to a previous work using dynamic time warping and k-NN algorithms, obtaining a relative MAPE
reduction of 10%.

Keywords: wearable sensors; Y Balance Test; time series data; recurrent neural networks

1. Introduction

Dynamic balance refers to the ability to maintain equilibrium while performing actions
that include movements of the center of mass outside of the base of support. In particular,
the Y Balance Test (YBT) is a test for assessing dynamic balance control, which has been
widely used in clinical practice and research [1]. For example, YBT has been used for
determining a person’s risk for injury [2] or return to sport readiness [3]. This test assesses
performance during single-leg balance while reaching in three directions (anterior, postero-
medial, and posterolateral). The traditional method for scoring the YBT is the normalized
reach distance (NRD), which is obtained by measuring the distance an individual can reach
in each of the three directions, normalized by leg length. Inertial measurement units (IMUs)
are now being used to capture movement quality during the reaching tasks, providing a
more sensitive approach to measuring dynamic balance performance. These IMUs provide
a new opportunity to estimate the NRD directly from the sensor data and score the YBT,
by developing a fully automated system. Although the NRD formula and setup are easy
to assess, obtaining the NRD with the equipment requires the subjects to attend to the
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physiotherapist or sports center to perform the YBT. The equipment is cumbersome to
move. Evaluating the YBT automatically using a back inertial sensor facilitates its eval-
uation, allowing subjects to supervise their evolution without the need of attending the
sport center neither the help of the physiotherapist. The inertial signals could be used for
feeding a deep learning architecture. The architecture output generates an estimation of
the NRD, allowing to score the performance of the YBT.

Wearable inertial sensors have been widely used in sports science and medicine
postural control applications. Postural control assessments have been frequently used
for performance testing [4], injury risk screening, injury rehabilitation, and assessment
of readiness to return to play [5]. Previous studies have been focused on evaluating the
validity and reliability of assessment protocols in laboratory environments [6]. For example,
a previous work [7] demonstrated that inertial sensor-derived 95% ellipsoid volume (95 EV)
measure could capture alterations in dynamic balance control, which were not detected by
traditional reach distances alone, and distinguish pre-fatigue and post-fatigue dynamic
balance control for all three reach directions. In addition, another previous study [8]
analyzed inter-session test-retest reliability of quantified YBT variables using a single
lumbar inertial sensor, providing a reliable measure of balance performing across all three
reach directions between tests performed in two different weeks. The authors analyzed
the following YBT variables: NRD, 95 EV, ranges of pitch, roll, and yaw, and root mean
square, sample-entropy, area under the curve of the fast Fourier transform and variance
of the tri-axial gyroscope and accelerometer signals and magnitudes of the lumbar sensor.
Regarding injuries related to sports, another previous work [2] demonstrated that poor
dynamic balance performance, measured by a lumbar inertial sensor during the YBT, was
significantly associated with a subsequent concussion injury. The authors used data from
an elite rugby union, and they concluded that individuals with poorer balance performance
were three times more likely to sustain a sports-related concussion.

Regarding classification tasks related to dynamic balance, a previous work [1] discrim-
inated between the three YBT reach directions and between pre and post-fatigue balance
performed during the YBT. The authors recorded data from fifteen subjects performing
YBT on the dominant leg at 0, 10, and 20 min. They used features extracted from a lumbar
sensor and a random forest classifier. They obtained 97.80% of accuracy, 97.86 ± 0.89%
of sensitivity, and 98.90 ± 0.56% of specificity for the reach direction classification task.
Regarding fatigue, “normal” and “abnormal” balance performances were classified with
an accuracy of 61.90–71.43%, sensitivity of 61.90–69.04%, and specificity of 61.90–78.57%
depending on which reach direction was chosen.

Regarding regression tasks related to dynamic balance, a previous study in the lit-
erature [3] proposed and evaluated a machine learning approach based on the k-nearest
neighbour (k-NN) algorithm and dynamic time warping method to estimate the NRD
over a dataset with 29 young healthy adults [9]. This study used data from 21 subjects for
training and validating the model and data from the remaining eight subjects for testing
it. The authors observed that the Z-axis from the lumbar accelerometer was the most
informative signal. This previous work used a 10-fold cross-validation for the training
and validation procedure and evaluated the final model over the eight unseen subjects.
The results reported a mean absolute percentage error (MAPE) of 6.24% and 8.02% over
the training and testing subsets, respectively. Another recent work [10] studied kinematic
and kinetic predictors of YBT performance for each direction using data from 31 healthy
subjects. The authors built a stepwise regression model with specific variables such as
flexion or rotation of the knee, hip, ankle, or torso. Knee flexion and torso contralateral
rotation explained 45.8% of the variance in anterior reach direction, the combination of
hip flexion, ankle dorsiflexion, and external rotation explained 76.9% of the variance in
posteromedial reach direction, and hip flexion and pelvis contralateral rotation explained
69.6% of the variance in the posterolateral reach direction. The conclusions of this work
remarked that hip and knee joint moments in the sagittal and frontal planes were critical
for YBT performance.
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Deep learning algorithms have been widely integrated into human activity recognition
(HAR) systems [11] and have outperformed traditional machine learning techniques. Some
of these deep learning architectures are composed of convolutional layers which could
capture spatial and temporal dependencies of inputs through convolutions with filters.
Other architectures are composed of recurrent layers which could learn the evolution of a
sequence through internal memory cells. Within HAR systems, gesture recognition has
been achieved using these architectures or a combination of both [12,13]. This way, motion
during a YBT could be considered as a gesture, so deep learning approaches could generate
a robust model based on the performed movement during the YBT excursions. To the
best of the authors’ knowledge, in the literature, there is not a previous study using deep
learning algorithms (recurrent neural networks) for estimating YBT distances. This would
be the most important contribution of this paper.

This paper addresses the challenge of automatically estimating the NRD of the YBT.
The main contributions of the paper are the following:

• Analysis of the YBT NRD estimation task using data from a wide variety of subjects.
• Proposal and evaluation of a deep learning approach to estimate the NRD of the YBT

by modeling the temporal pattern of the movement. In this analysis, several normal-
izations and input formats were analyzed. This approach automatically evaluates
the YBT using a back inertial sensor, allowing subjects to supervise their evolution
without the need of attending the sport center neither the help of the physiotherapist.

• Comparison of two approaches for NRD estimation: creating a unique robust model
for all directions or building specific systems to estimate the NRD for each direction.

• Description of a detailed analysis of correlations between real and estimated NRD.

This study was performed over a dataset with YBT from 407 different subjects using a
subject-wise cross-validation strategy. To the best of the authors’ knowledge, this dataset is
the biggest in the literature. Moreover, a subset of this dataset was used for comparison
with previous results.

2. Materials and Methods

This section describes the YBT, the dataset used for the experiments, the signal pro-
cessing techniques, and the deep learning approach based on LSTMs.

2.1. Y Balance Test and Collection Protocol

The YBT is an instrumented substitute of the Star Excursion Balance Test (SEBT),
efficient for measuring dynamic postural control. The YBT is a clinical assessment that is
traditionally scored by measuring the reach distance [1] (NRD). This distance provides an
objective measurement.

The YBT consists in switching from an initial bilateral to unilateral stance and main-
taining controlled balance while using one leg to perform a maximal reach excursion with
the non-stance limb in the three standardized directions [14]. Figure 1 shows an individual
performing a YBT excursion, a diagram of the anterior, posteromedial, and posterolateral
directions and the location and orientation of the lumbar sensor. The subject must return to
the starting bilateral stance in a controlled way. A trial is considered a failure if any of these
situations occurs: the subject removes his hands from the hips, contacts the ground, uses the
block for support, raises the stance leg heel, or kicks the slider forward for extra distance.
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Figure 1. A YBT excursion in operation, a diagram of the directions [3], and the lumbar inertial 
sensor orientation and location. 
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Rugby Union athletes, 32 Intercounty Gaelic Football athletes, 104 young healthy adults 
(18–40 years), 18 healthy middle-aged adults (40–64 years), 97 NCAA Division 1 American 
football, and 49 NCAA Division 1 ice hockey players. All participants were healthy sub-
jects and they self-reported no musculoskeletal or neurological impairments at the time 
of testing. In this sense, the dataset offers data from a wide variety of population and some 
athletes from different sports. Data were collected in a standardized manner which has 
previously been detailed in the literature ([2,7,8,15]). The university research ethics board 
granted ethical approval, and all subjects gave informed consent before the completion of 
the testing protocol. 

The participants were informed about the YBT, and they performed several practice 
trials before the data collection. Each session consisted of three YBT excursions in three 
different directions (anterior, posteromedial, and posterolateral) and with the two legs in 
a randomized order. From each subject, 18 recordings were obtained per session: 3 YBT 
excursions × 3 directions × 2 stance legs. However, some of the YBT samples were missing 
in the dataset. The YBT reach distance and sensor data were collected for each excursion. 
Data were labelled by measuring the reach distance over the experimental platform. First, 
the researchers measured the leg length as the distance from the anterior-superior iliac 
spine to the most distal aspect of the medial malleolus [15]. Second, once the subject 
reached the distance by moving the slider over the platform, they write down the distance 
and normalized it using the subject’s leg length using Equation (1). 

Figure 1. A YBT excursion in operation, a diagram of the directions [3], and the lumbar inertial
sensor orientation and location.

2.2. Dataset

The dataset contains YBT recordings from 407 subjects (aged 23.1 ± 6.6 years; height
179.8 ± 42.1 cm; weight 89.3 ± 21.1 kg; left leg length 96.6 ± 7.6 cm; right length
96.9 ± 6.4 cm). The dataset contains data from 407 subjects from different cohorts: 107 pro-
fessional Rugby Union athletes, 32 Intercounty Gaelic Football athletes, 104 young healthy
adults (18–40 years), 18 healthy middle-aged adults (40–64 years), 97 NCAA Division 1
American football, and 49 NCAA Division 1 ice hockey players. All participants were
healthy subjects and they self-reported no musculoskeletal or neurological impairments at
the time of testing. In this sense, the dataset offers data from a wide variety of population
and some athletes from different sports. Data were collected in a standardized manner
which has previously been detailed in the literature ([2,7,8,15]). The university research
ethics board granted ethical approval, and all subjects gave informed consent before the
completion of the testing protocol.

The participants were informed about the YBT, and they performed several practice
trials before the data collection. Each session consisted of three YBT excursions in three
different directions (anterior, posteromedial, and posterolateral) and with the two legs in
a randomized order. From each subject, 18 recordings were obtained per session: 3 YBT
excursions× 3 directions× 2 stance legs. However, some of the YBT samples were missing
in the dataset. The YBT reach distance and sensor data were collected for each excursion.
Data were labelled by measuring the reach distance over the experimental platform. First,
the researchers measured the leg length as the distance from the anterior-superior iliac
spine to the most distal aspect of the medial malleolus [15]. Second, once the subject
reached the distance by moving the slider over the platform, they write down the distance
and normalized it using the subject’s leg length using Equation (1).

Normalized Reach Distance =
Raw Reach Distance (cm)

Leg Length (cm)
∗ 100 (1)
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The total number of samples included in this dataset is 7262 (2427 from the anterior
direction, 2411 from the posteromedial direction and 2424 from the posterolateral direction),
corresponding to 407 subjects.

These subjects were wearing a single inertial sensor (Shimmer3, Dublin, Ireland),
which provided an accelerometer, gyroscope, and magnetometer in three dimensions. The
sensor was mounted at the level of the fourth lumbar vertebra, in line with the top of the
iliac crests and secured using a custom-made elastic belt to closely match the acceleration of
the body’s center of mass during the YBT excursions. Figure 1 shows a subject wearing the
belt where the lumbar sensor was attached, and the Z-axis pointed backwards. The inertial
sensor was connected via Bluetooth to an Android tablet (Galaxy Tab 2, Samsung, Seoul,
Korea) operating a custom-made application and configured to collect tri-axial accelerome-
ter (±2 g), tri-axial gyroscope (±500 ◦/s) and tri-axial magnetometer (±1 gauss) data at a
sampling frequency of 51.2 Hz during each YBT reach excursion. The Shimmer3 sensor was
calibrated prior to data collection following the standardized procedure outlined by the
manufacturer [16]. These data acquisition parameters were defined based on pilot testing
and previous work investigating the utility of inertial sensors in the evaluation of exercise
technique and balance [1,7,17]. Shimmer sensor is a general-purpose device but could
be used for clinical postural balance purposes since it provides accurate measurements
of inertial signals. In this work, we used the Z-axis from the lumbar accelerometer as
suggested by [3]. This previous work concluded that this signal was the most informative
one and no improvement was obtained when including additional signals. We observed
that Z-axis acceleration signal have a greater standard deviation during the YBT (mean
5.07, std 2.85 g) compared to X (mean −0.09, std 1.64 g) and Y (mean 7.57, std 2.17 g) axes.
A higher variability can provide more information about the movements and about the
NRD. This aspect has been verified evaluating the system with other signals. Figure 2
shows Z acceleration of YBT excursions from subject 100403 in the three directions (anterior
in red, posteromedial in green, and posterolateral in blue). In this figure, it is possible
to observe a common pattern of the YBT excursions: a gradual increase of acceleration
and final braking. In addition, the figure shows that the acceleration signal reaches higher
values for directions posteromedial and posterolateral compared to the anterior direction.

Sensors 2021, 21, 7110 5 of 18 
 

 

Normalized Reach Distance ൌ Raw Reach Distance ሺcmሻLeg Length ሺcmሻ ∗ 100 (1)

The total number of samples included in this dataset is 7262 (2427 from the anterior 
direction, 2411 from the posteromedial direction and 2424 from the posterolateral direc-
tion), corresponding to 407 subjects. 

These subjects were wearing a single inertial sensor (Shimmer3, Dublin, Ireland), 
which provided an accelerometer, gyroscope, and magnetometer in three dimensions. The 
sensor was mounted at the level of the fourth lumbar vertebra, in line with the top of the 
iliac crests and secured using a custom-made elastic belt to closely match the acceleration 
of the body’s center of mass during the YBT excursions. Figure 1 shows a subject wearing 
the belt where the lumbar sensor was attached, and the Z-axis pointed backwards. The 
inertial sensor was connected via Bluetooth to an Android tablet (Galaxy Tab 2, Samsung, 
Seoul, South Korea) operating a custom-made application and configured to collect tri-
axial accelerometer (±2 g), tri-axial gyroscope (±500 °/s) and tri-axial magnetometer (±1 
gauss) data at a sampling frequency of 51.2 Hz during each YBT reach excursion. The 
Shimmer3 sensor was calibrated prior to data collection following the standardized pro-
cedure outlined by the manufacturer [16]. These data acquisition parameters were defined 
based on pilot testing and previous work investigating the utility of inertial sensors in the 
evaluation of exercise technique and balance [1,7,17]. Shimmer sensor is a general-pur-
pose device but could be used for clinical postural balance purposes since it provides ac-
curate measurements of inertial signals. In this work, we used the Z-axis from the lumbar 
accelerometer as suggested by [3]. This previous work concluded that this signal was the 
most informative one and no improvement was obtained when including additional sig-
nals. We observed that Z-axis acceleration signal have a greater standard deviation during 
the YBT (mean 5.07, std 2.85 g) compared to X (mean −0.09, std 1.64 g) and Y (mean 7.57, 
std 2.17 g) axes. A higher variability can provide more information about the movements 
and about the NRD. This aspect has been verified evaluating the system with other sig-
nals. Figure 2 shows Z acceleration of YBT excursions from subject 100403 in the three 
directions (anterior in red, posteromedial in green, and posterolateral in blue). In this fig-
ure, it is possible to observe a common pattern of the YBT excursions: a gradual increase 
of acceleration and final braking. In addition, the figure shows that the acceleration signal 
reaches higher values for directions posteromedial and posterolateral compared to the 
anterior direction. 

 
Figure 2. Z-axis lumbar acceleration signal of YBT excursions from subject 100403. 

These excursions have different lengths: from 113 to 648 data-points (2.2 s to 12.7 s), 
with a mean of 324.83 data-points (6.3 s) and a standard deviation of 115.84 data-points 
(2.3 s). Figure 3 shows the histograms of YBT excursions of the dataset depending on 

Figure 2. Z-axis lumbar acceleration signal of YBT excursions from subject 100403.

These excursions have different lengths: from 113 to 648 data-points (2.2 s to 12.7 s),
with a mean of 324.83 data-points (6.3 s) and a standard deviation of 115.84 data-points
(2.3 s). Figure 3 shows the histograms of YBT excursions of the dataset depending on dura-
tion. The specific histograms for each direction show that YBT excursions of the anterior
direction usually last less time than posteromedial and posterolateral excursions. These
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histograms also show that YBT excursions in all directions could last until approximately
12 s.
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Figure 4. Histograms of YBT excursions depending on the NRD for all directions (a), anterior
direction (b), posteromedial direction (c), and posterolateral direction (d).

The specific histograms for each direction show that YBT excursions of each direction
have a different mean and standard deviation of the reach distance: 59.65± 6.73, 104.63 ± 8.66,
and 100.27 ± 9.10 for anterior, posteromedial, and posterolateral, respectively.
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2.3. Signal Processing and Deep Learning Approach

HAR systems typically use a general-purpose framework [17] with several modules
for activity recognition tasks, which could be extended for regression tasks. This framework
contains two main modules: a signal processing module that extracts the features or trans-
forms the signals and a machine or deep learning system that models and could estimate a
specific measure for each sample. This general-purpose framework of HAR systems could
be adapted to our regression system. Figure 5 presents the sequence of modules for the
HAR framework used in this work, mentioning the outputs of the intermediate modules.
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The raw signals were normalized considering several possibilities. The Z-axis lumbar
acceleration signal was normalized by the mean along with all samples in each example (by
examples), all samples of the excursions in a specific direction (direction), or all samples of
all excursions from the same subject (subject), respectively

As mentioned, the length of the time series is different for each YBT excursion while the
inputs to the deep learning architecture have a fixed size. Because of this, after normalizing
the signal, zero padding was used at the beginning of the signal to have examples of the
same duration: 650 points, which correspond to 12.7 s. These initial zeros did not affect the
system performance because recurrent neural networks could learn this type of patterns,
obtaining information about the YBT duration.

After zero-padding, we extracted features. In this process, we evaluated two possibili-
ties: using raw recordings directly (leaving to the deep learning architecture the process of
learning features automatically), and handcrafted features from YBT sub-windows.

For the raw data approach, to reduce the number of inputs to the deep learning ar-
chitecture, we selected 100 representative points from the last 500 points of each example
after downsampling (filtering and sample selection). This way, we obtained YBT examples
of 100 data points. We followed this technique because a sequence of 650 points is too
long to be analyzed by a recurrent layer. Figure 6 shows the complete signal processing
for the YBT excursions, showing the process of an example of posterolateral direction from
subject 100403.

Regarding the feature extraction process, each YBT example was subdivided into
2 s subwindows with a step of 0.5 s (overlap of 1.5 s) after the normalization and zero
padding processes. For all 12.7 s excursions, 22 sub-windows of 186 features were obtained.
Afterward, we extracted handcrafted features for each sub-window to learn a temporal
model from the evolution of the features through the YBT excursion. Figure 7 shows the sub-
windowing process for a YBT example and the extraction of features of the subwindows.
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For features computation, we used a time series feature extraction library [18] to
compute over 60 different features extracted across temporal, statistical, and spectral
domains for each of the sub-windows. Barandas et al. [18] explained the computation
details for each feature. The features are grouped into three sets, as shown in Table 1:
temporal domain, statistics, and spectral domain.

Thanks to the Fourier analysis, it is possible to detect fast signals variations that are
related to vibrations produced by the exercise stress. These oscillations increase the energy
at high frequencies. In addition, slow movements, which could be related to the beginning
and the end of the exercise, are associated with energy in low frequencies. For these
reasons, we included features from the fast Fourier transform in the spectral domain subset
(Table 1).
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Table 1. Features from different domains.

Temporal Domain 2nd Order Statistics Spectral Domain

- Autocorrelation
- Centroid
- Mean absolute differences
- Mean differences
- Median absolute differences
- Median differences
- Distance
- The sum of absolute
differences
- Total energy
- Entropy
- Peak to peak distance
- Area under the curve
- Absolute energy
- Maximum peaks
- Minimum peaks
- Positive turning points
- Neighborhood peaks
- Negative turning points
- Slope
- Zero-crossing rate

- Histograms
- Interquartile range
- Mean absolute deviation
- Median absolute deviation
- Root mean square
- Standard deviation
- Variance
- Empirical Cumulative
Distribution Function (ECDF)
percentile counts
- Kurtosis
- Skewness
- Maximum
- Minimum
- Mean
- Median
- ECDF coefficients
- ECDF percentiles

- FFT mean coefficients
- Wavelet absolute means
- Wavelet standard deviations
- Wavelet variances
- Spectral distance
- Fundamental frequency
- Maximum frequency
- Median frequency
- Spectral positive turning
points
- Max power spectrum
- Spectral centroid
- Spectral decrease
- Spectral kurtosis
- Spectral skewness
- Spectral spread
- Spectral slope
- Spectral variation
- Spectral roll-off
- Spectral roll-on
- Human range energy
- Mel-Frequency Cepstrum
Coefficients
- Linear Prediction Coefficients
- power bandwidth
- Spectral entropy
- Wavelet entropy
- Wavelet energies

The deep learning architecture was composed of a time modeling subnet and an
additional fully connected layer for estimating the normalized reach distance (regression).
The first subnet modeled the time patterns using recurrent layers while the second part of
the network estimated the NRD. The output of the architecture was the estimated NRD
for every YBT excursion. We used the mean squared error (MSE) as loss metric and the
Adagrad as the optimizer, with parameter-specific learning rates that were adapted relative
to how frequently a parameter gets updated during training. The deep learning architecture
had two long short-term memory (LSTM) layers with 32 and 16 neurons, respectively, and
a final dense (fully connected) layer with one neuron and a linear activation function. The
architecture included intermediate dropout layers (20%) after recurrent layers to avoid
overfitting during training. These recurrent layers are capable of learning long-term
dependencies in sequence prediction problems, extracting the temporal model of each
example, and generating a model based on the pattern of the YBT excursion. Figure 8
represents the RNN architecture based on LSTMs, which was optimized by evaluating the
system performance over validation subsets and the structure inside an LSTM neuron. This
architecture used a 2 D input considering W sub-windows ×M features as dimensions. In
the case of using raw signals directly, the dimensions were W excursion length ×M = 1
(Z acceleration values). This figure also shows that the LSTM neuron is composed of
sigmoid (σ) and hyperbolic tangent (tanh) layers and how it manages the internal memory.
xt, ht, and Ct denote respectively the input, the output, and the cell state memory of the
module, and ht-1 and Ct-1 denote the output and the cell state memory of the previous
module. This architecture has been implemented in Python using Keras with Tensorflow
as backend. In the experiments, other tools like sklearn have been used. Table 2 details the
different layers of the architecture. The deep learning architecture was separately optimized
regarding the different input formats: raw data and features. The final architecture was the
same in both cases, which was optimized using a validation subset: the best performance
over the validation subset was obtained using a learning rate of 0.02, a batch size of 100,
and 50 epochs.
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Table 2. Configuration details and number of parameters for all layers of the deep learning architecture using features from
2-s wub-windows as input.

Layer Output
Shape Param # Activation

Function Other Characteristics

Input (-, 22, 186) - - -

LSTM (-, 22, 32) 28,032 - kernel_initializer = “glorot_uniform”,
return_sequences = True

LSTM (-, 16) 3126 - kernel_initializer = “glorot_uniform”,
return_sequences = False

Dense (-, 1) 17 Linear kernel_initializer = “glorot_uniform”,
Output (-, 1) - - -

3. Results

This section describes the evaluation metrics used in this work and discusses the
results obtained in the experiments performed in these analyses.

3.1. Evaluation Metrics and Validation

As commented in the introduction, this paper reports the results of estimating the
NRD in YBTs. For this regression task, we computed the mean absolute percentage error
(MAPE) according to Equation (2), where yi is the real NRD, ŷi is the predicted NRD, and N
is the number of samples. This metric was used to compare the real NRD and the estimated
one, and the results are presented with confidence intervals obtained at a confidence level
of 95% (Equation (3)). In this equation, N is the number of samples, Error a specific error,
and its standard deviation σ. If there is no overlap between the confidence intervals of
different approaches, this fact suggests that the results are significantly different:

MAPE =
∑N

i=1
|yi−ŷi |

yi

N
(2)

Error (95%) = Error± 1.96 ∗ σ√
N

(3)

In addition, this work presents correlation coefficient measures between the real and
the predicted NRDs. Equation (4). defines the Pearson correlation, where the covariance of
X and Y is divided by the product of the standard deviation of X and Y. X and Y are the
real and estimated NRD, respectively:

ρX,Y =
cov(X, Y)

σXσY
(4)
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Regarding the cross-validation strategies used in the experiments, we performed a
10-fold subject-wise cross-validation strategy: data are divided in such a way that the data
from the same subject are contained only in one subset (training, validation, or testing). In
each iteration data from subjects were arranged in 10 folds, eight folds were used to train
the system, one fold to optimize the system and the remaining fold to test the system. This
process was repeated 10 times modifying the training, validation and testing subsets by a
round-robin strategy as shown in Figure 9.
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The results presented in this work were average values obtained throughout the cross-
validation procedure. A validation subset was used for adjusting the main parameters
of the deep learning system, and then this validation subset was included in the training
subset to train the final model before the evaluation over the testing subset.

3.2. Experiments

This section includes the experiments and analyses performed over the YBT dataset.
In these experiments, we analyzed the impact of the data normalization and input format
of the YBT excursion over the regression performance. Afterward, we compared two
procedures to estimate the NRD in the YBT excursion: using a unique system for all
directions or using specific systems for each direction.

3.2.1. Data Normalization and Input Format

This subsection shows the regression performance depending on the data normal-
ization applied to the inertial signals. Table 3 illustrates the validation and testing MAPE
results when no input normalization was applied or when different normalizations were
computed over the raw data excursion: example, direction or user normalization. As
shown, selecting the appropriate data normalization is crucial for estimating the NRD
of YBT because not all normalizations work in the same way for this task. For example,
performing an input normalization using the data for each example or direction could
be counterproductive. This table suggests that each subject could have specific energy
when performing the YBT in all directions that could be different from the one used by
another one. In this sense, normalizing the data of each subject separately improved the
performance of the NRD estimation. We obtained a significant difference when performing
a user normalization of data, so, from this point, the rest of the experiments were done
using a user normalization.
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Table 3. Results of regression task using different normalization of raw data.

Input Normalization Val MAPE (%) Test MAPE (%)

None 9.55 ± 0.09 9.33 ± 0.25
Example 17.21 ± 0.15 17.21 ± 0.43
Direction 13.08 ± 0.11 12.12 ± 0.31

User 8.91 ± 0.08 8.78 ± 0.22

We also analyzed the duration of the raw YBT excursions from 50 to 500 data points,
and we observed that the error performance kept stable, as shown in Table 4. This way, we
used 100 points as compromise between time resolution and sequence complexity to be
learnt by the LSTM layers.

Table 4. Test MAPE using subject normalization over raw data depending on the number of data
points of the YBT excursions.

Data Points Test MAPE (%)

50 8.87 ± 0.23
100 8.78 ± 0.22
167 8.82 ± 0.23
250 8.87 ± 0.24
500 8.82 ± 0.24

As mentioned in the dataset description section, the Z-axis acceleration signal was
showed the greatest standard deviation during the YBT, providing more variability about
the movements. To verify the contribution of the other axes, we added X-axis and Y-axis
accelerations, but we observed a worse performance: the system provided a validation
MAPE of 9.22 ± 0.08% and a testing MAPE of 9.06 ± 0.26%, compared to 8.91 ± 0.08%
and 8.78 ± 0.22% when using only the Z-axis acceleration. X-axis and Y-axis accelerations
do not contribute to improve the system performance and can be discarded to have a
simpler system.

Table 5 illustrates the validation and testing MAPE results depending on the input
format using a user normalization: raw, or features. For the case of using handcrafted
features at sub-windows, we evaluated different sub-window lengths: 1 s, 2 s and 3 s.
The first conclusion is that we obtained a lower prediction error when using handcrafted
features as inputs to the deep learning architecture. Regarding the sub-windows length,
the lowest validation MAPE was obtained when using handcrafted features from 2-s sub-
windows. The deep learning architecture was able to learn a better model of the YBT
excursions to estimate the reach distance when it was fed by specific features instead of the
raw data directly. From this point, the rest of the experiments were done using handcrafted
features obtained from 2 s subwindows.

Table 5. Results of regression task using different input format and user normalization.

Input Format Val MAPE (%) Test MAPE (%)

Raw 8.91 ± 0.08 8.78 ± 0.22
Features from 1 s subwindows 8.38 ± 0.07 8.00 ± 0.20
Features from 2 s subwindows 8.35 ± 0.07 7.88 ± 0.20
Features from 3 s subwindows 8.37 ± 0.07 8.08 ± 0.20

Table 6 includes the validation and testing MAPE results depending on the subset
of features used. Results suggested that the temporal-domain features were the most
informative. When using only these features, the performance was similar to the case of
using the whole set. In this sense, if an optimized system in terms of resources consumption
is required, the suggestion would be to use only temporal-domain features.
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Table 6. Results of regression task using different subsets of features from 2-s sub-windows.

Subset of Features Val MAPE (%) Test MAPE (%)

All 8.35 ± 0.07 7.88 ± 0.20
Temporal domain 8.16 ± 0.07 7.87 ± 0.19
Statistical domain 8.69 ± 0.07 8.32 ± 0.20
Spectral domain 8.43 ± 0.07 8.12 ± 0.20

As an example of error evolution through the training process, Figure 10 shows the
training and validation MAPE through the 50 epochs of one of the validation folds inside
the 10-fold subject-wise cross-validation strategy when all features were used.
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This figure shows how the training error is continuously decreasing as increasing
the number of epochs while the validation error oscillated until becoming a stable value
around 50 epochs.

3.2.2. Unique System for All Directions vs. Specific Systems for Each Direction

In the next analysis, we evaluated two procedures for estimating the NRD: by using a
unique system for all the directions or considering specific systems for each direction. The
system characteristics are those that obtained the best performance in previous sections.

A unique system was trained with the YBT excursions of all the directions, which was
able to indirectly detect the direction of the excursion and estimate the reach distance for
each example. In this case, the variability of the reach distance values was high.

Specific systems for each direction were focused on estimating the reach distance
using the examples of a single direction. The target is to train a specific model for each
direction. This approach solved more specific tasks where the variability of the output
is lower.

Figure 11 shows the testing MAPE results per fold and the average results for both
procedures. Results suggest that a specific system for each direction could surpass the
performance of a unique system for all directions, obtaining a significant difference between
the average results (7.88 ± 0.20% for the unique system and 7.33 ± 0.26% for the specific
systems). When using a unique system, this system was trained with higher variability of
examples: different acceleration ranges and NRDs. When building specific systems trained
with data from the same direction, the variability is lower, and the regression problem is
less difficult.
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Table 7 indicates the testing MAPE obtained for each direction depending on the
approach. We could observe that the error performance of each direction could be reduced,
being significant for the anterior direction.

Table 7. Results for both strategies: unique system and specific systems for each direction.

Test MAPE (%) per Direction

Direction
System

Unique model Specific models
Anterior 10.27 ± 0.46 8.69 ± 0.29

Posteromedial 6.31 ± 0.22 6.28 ± 0.21
Posterolateral 7.04 ± 0.26 7.02 ± 0.25

An additional experiment was performed to compare the proposed method to the
previous study [3] mentioned in the related work section. This previous work estimated
the NRD using a k-NN algorithm and dynamic time warping method over a dataset with
29 young healthy adults [9]. The deep learning system was evaluated using the same
experimental setup: 21 subjects for training and validating the model and eight subjects for
testing it. The previous work achieved a test MAPE of 8.02%, while the proposed methods
obtained a test MAPE of 7.59 ± 1.51% and 7.27 ± 1.75% using a unique system for all
directions and a specific system for each direction, respectively. Results suggest that the
deep learning approach could reduce the regression performance. In this case, there is not
a significant difference between the results because the number of testing samples was only
143 YBT excursions. Previous work was based on measuring the dynamic time warping
between sequences for estimating the reach distance. However, the LSTM layers (proposed
in this work) obtained better time models based on the evolution of these sequences.

3.2.3. Results Analysis

If we analyzed the MAPE and the correlation between the real and the predicted NRD
for each subject, we could focus on the most challenging subjects and discuss the reasons
of this poor performance. Figure 12 shows a histogram of correlation per subject, where it
is possible to observe that most of the subjects reached a high correlation. This distribution
has a mean of 0.956 and a standard deviation of 0.068. Although most of the subjects (369)
obtained a correlation higher than 0.9, some isolated subjects (nine) obtained a correlation
lower than 0.8.
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Figure 13 shows YBT excursions from subjects with the lowest correlation on the
top and subjects with the highest correlation on the bottom. It is possible to observe
that the excursions on the top do not follow the general pattern described in Figure 2:
they presented imbalances, a sharp increase of acceleration, or an opposite pattern of
the movement. Some subjects reached the distance after several attempts while moving
around the measurement platform, which could lead to imbalances or a sharp increase of
acceleration. However, the opposite pattern of movement was caused by a turned sensor
while data collection.
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In contrast, the YBT examples from the subjects with the highest correlation displayed
an appropriate movement pattern of the YBT for the three directions, which was observed
when the dataset was presented. This reveals the evidence about how important is carefully
supervising the data collection protocol of YBT because excursions with anomalous move-
ment patterns could disturb the model generation and affect the NRD of those examples.

Figure 14 shows the real and predicted NRD of YBT from subjects with high MAPE
and low MAPE. It is important to highlight that for subjects with anomalous movements
(Figure 13) the NRD prediction does not fit the ground truth. This is noticeable in subjects
with IDs 700009 and 14200105 (top of Figure 14), where the regression task failed. However,
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there are other subjects with a highly accurate estimation, as shown at the bottom of
Figure 14.
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4. Discussion

The results obtained in the previous section validate the use of deep learning tech-
niques to score the YBT by estimating the NRD. This approach has been evaluated through
a dataset that contains recordings from a wide range of subjects (407 subjects aged from
18 to 64 years). This set of different people could be used to create a robust model that
could generalize to other subjects. However, a user normalization of recordings is required
to build this general model since each person has distinct energy while performing the
YBT excursions.

Regarding the input format, this manuscript evaluated raw and handcrafted features
as inputs to the deep learning architecture. Results suggested that the recurrent layers
architecture could boost the NRD estimation performance when it was fed with specific
features from 2-s sub-windows of the YBT excursions instead of leaving the network
directly learns from raw recordings. This aspect could happen in complex tasks, where
extracting features for representing the recordings is worthy. We also observed that the
temporal-domain features were the most informative ones, reaching a similar performance
than using the entire set of features.

Training specific systems with data from the same direction allows a better modeling
of the regression problem because this training use data with lower variability. These
specific systems reach significantly better performance compared to training a unique
model for all directions. The supervision of subjects during the YBT collection protocol
is crucial to avoid anomalous recordings that could disturb the modeling process. These
recordings could hinder the training and they would obtain a worse NRD estimation error.

5. Conclusions

Dynamic balance assessments are crucial in clinical practice and research regarding
risk screening and injury rehabilitation. This work analyses the YBT NRD estimation
task using a dataset of 407 different subjects and a 10-fold subject-wise cross-validation
strategy. This wide variety of healthy subjects includes data from young and middle-aged
volunteers and athletes from different sports, which allows developing a global and robust
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solution for scoring the YBT in a wide range of possible scenarios. We analyzed different
normalizations and input formats to automatically score the YBT by estimating the NRD.
We observed that the combination of a user normalization of data and feature computation
of sub-windows from each YBT example could boost the estimation performance using
a deep learning approach. This deep learning architecture is composed of LSTM layers
which were able to extract a temporal model of each example through the evolution of the
YBT sub-window features. This approach obtained a testing MAPE of 7.88 ± 0.20%. In
addition, building a specific system to estimate the NRD for each direction could reduce
this performance, reaching 7.33 ± 0.26% of MAPE. This work also highlighted that it is
important to carefully supervise the data collection protocol of YBT because the subjects
with the lowest correlation between the real and predicted distances presented some
imbalance, a sharp increase in acceleration, or opposite patterns of movement to what was
typically observed. This deep learning approach achieves a relative MAPE reduction of
10% compared to previous work which used a machine learning procedure using the same
experimental setup [3].

As future work, it would be interesting to create a system that automatically detects
abnormal YBT excursions right after the collection protocol. This way, it would be possible
to repeat during the collection protocol the YBT excursions that do not fit the mentioned
appropriate movement pattern that allows better estimating the NRD. In addition, it would
be interesting to develop specific systems for every cohort of subjects.
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