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Abstract: Astaxanthin, originating from seafood, is a naturally occurring red carotenoid pigment.
Previous studies have focused on its antioxidant properties; however, whether astaxanthin possesses
a desired anti-inflammatory characteristic to regulate the dendritic cells (DCs) for sepsis therapy
remains unknown. Here, we explored the effects of astaxanthin on the immune functions of murine
DCs. Our results showed that astaxanthin reduced the expressions of LPS-induced inflammatory
cytokines (TNF-α, IL-6, and IL-10) and phenotypic markers (MHCII, CD40, CD80, and CD86) by
DCs. Moreover, astaxanthin promoted the endocytosis levels in LPS-treated DCs, and hindered the
LPS-induced migration of DCs via downregulating CCR7 expression, and then abrogated allogeneic T
cell proliferation. Furthermore, we found that astaxanthin inhibited the immune dysfunction of DCs
induced by LPS via the activation of the HO-1/Nrf2 axis. Finally, astaxanthin with oral administration
remarkably enhanced the survival rate of LPS-challenged mice. These data showed a new approach
of astaxanthin for potential sepsis treatment through avoiding the immune dysfunction of DCs.
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1. Introduction

The immune system, as a tight and dynamic regulatory network, maintains an im-
mune homeostasis, which keeps a balance between the response to heterogenic antigens
and tolerance to self-antigens [1]. However, in some diseases, such as sepsis, rheumatoid
arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), and inflam-
matory bowel disease (IBD), this immune homeostasis is broken [2]. Sepsis is a highly
heterogeneous clinical syndrome that mainly results from the dysregulated inflammatory
response to infection, which continues to cause considerable morbidity and accounts for
5.3 million deaths per year in high income countries [3]. Recently, the incidence of sepsis
is progressively increased and sepsis-related mortality cases remain at a high level in
China [4]. The host immune response induced by sepsis is a complex and dynamic pro-
cess. After infection, the conserved motifs of pathogens, termed the pathogen-associated
molecular patterns (PAMPs), such as lipopolysaccharide (LPS, cell wall component of
gram-negative bacteria) or lipoteichoic acid (cell wall component of gram-positive bacte-
ria), are recognized by the pattern recognition receptors (PRRs) expressed by immune cells,
and an overwhelming innate immune response is triggered in septic patients [5,6]. Under
physiological conditions, the immune activation contributes to eliminating pathogens
and clearing infected cells. However, when driven by sepsis, the immune homeostasis
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appears imbalanced and initiates a life-threatening “cytokine storm”. Currently, no drugs
have been approved specifically for the treatment of sepsis, and clinical trials of potential
therapies have failed to reduce mortality; therefore, new approaches are needed. Immune-
modulatory intervention is the main potential therapeutic strategy against sepsis [7]. For
instance, single cytokine, or a combination of multiple cytokines, including G-CSF, GM-CSF,
IFN-γ, IL-3, IL-7, and IL-15, were introduced into sepsis therapy, according to a disease-
specific progression and patient immune responses [8]. Some immunosuppressive agents,
such as bursopentin [9], curcumin [10], and oleuropein [11], provided protection against
inflammatory injury in the LPS-induced sepsis models.

Dendritic cells (DCs), as the most important potent antigen-presenting cells, link the
innate and adaptive immune response. The maturation/activation of DCs is followed
by the transformations of phenotype and function, improving their migration ability to
draining the lymph node, resulting in the activation of downstream T lymphocyte cells [12].
In fact, DCs reside in all the tissues of the host mainly in an antigen-capturing state and
maintain immune tolerance by migrating to the lymph nodes for presenting self-antigens
to lymphocytes in a tolerogenic manner [13]. Therefore, DCs also balance the immune
homeostasis in the host, and guide the skewing of the downstream immune response [14].
Notably, the abnormalities of DC homeostasis are implicated in sepsis. The differentiation
level of monocytes into DCs is improved during sepsis [15]. The expression levels of surface
molecules related to the DC function are changed [16]. Considering the critical role of DCs
in the immune regulation in sepsis, the modification of the DC system is becoming an
increasingly important target for sepsis therapy [15]. Modificatory DCs by adenovirus/IL-
10 transduction maintained an immature state with low expressions of IL-12, CD86, and
MHCII, and the survival rate of septic mice remarkably increased [17,18]. Bursopentin
inhibited the LPS-induced phenotypic and the functional maturation of DCs [9,19]. These
studies indicated that compartmental modification of DC function can alter the sepsis-
induced immune response.

Astaxanthin, 3,3′-dihydroxy-β,β′-carotene-4,4′-dione, is a naturally occurring red
carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as
salmon, trout, and shrimp [20,21]. The lipid-soluble carotenoid, with a polar–nonpolar–
polar structure, is able to help astaxanthin easily pass through and fix into the double
layers of the cell membrane. Moreover, free radicals inside and outside of the cell mem-
brane can be scavenged by the polar structure of astaxanthin, and radicals located in the
cell membrane can be captured by its polyene chain [22]. Therefore, astaxanthin has a
strong antioxidant property, and is regarded as a potential candidate agent against many
diseases [23–26]. Recent studies have shown that astaxanthin had a variety of pharmacolog-
ical effects against inflammatory injury [27–29]. Astaxanthin provided a neuroprotection
against diabetes-induced sickness behavior through inhibiting inflammation [30]. Astax-
anthin also can attenuate monosodium urate crystal-induced arthritis by suppressing the
level of pro-inflammatory cytokines [31]. Moreover, astaxanthin was shown to suppress
LPS-induced inflammatory factors increase, MAPK phosphorylation, and NF-kB activation
in vivo [32]. These studies demonstrated to us that astaxanthin have a great potential as a
therapeutic agent of sepsis by an anti-inflammatory strategy.

In this study, we attempted to characterize the effects of astaxanthin on the immune
activation and functional properties of the LPS-induced DCs for potential sepsis therapy.
Our data suggested that astaxanthin protected DCs from LPS-induced immune dysfunction,
which might be a simple, inexpensive, and highly effective anti-inflammatory strategy via
regulating DC activity in sepsis.

2. Results
2.1. Astaxanthin Inhibited LPS-Induced Cytokine Production by DCs

Firstly, the biosafety of astaxanthin was evaluated in the murine DCs. The cells
were treated with astaxanthin and the cell viability was analyzed by the CCK-8 assay.
The results revealed that the cellular viability was not changed until 24 h after treatment
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with astaxanthin up to 50 µM (Figure 1A). Next, we examined the expression of CD69,
which is a critical activation marker of DCs. After exposure to LPS (100 ng/mL) for
24 h, the expression of CD69 was upregulated, whereas they were significantly inhibited
with treatment of astaxanthin (Figure 2A,B). In addition, we tested whether astaxanthin
affected the production of cytokines in LPS-induced DCs. Significantly, pro-inflammatory
cytokines (TNF-α and IL-6) were downregulated by astaxanthin in a dose-dependent
manner (Figure 2C,D). Surprisingly, the secretion of IL-10 was not increased (Figure 2E),
implying that the suppressive effect of astaxanthin probably was not mediated through anti-
inflammatory cytokine. These results indicated that astaxanthin attenuated the cytokines
secreted by LPS-induced DCs.
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Figure 1. Biosafety evaluation of astaxanthin in vitro and in vivo. (A) The cytotoxicity of astaxanthin with different doses
was performed in the DCs by using the CCK-8 assay. (B) Astaxanthin with different concentrations was given orally for five
days every 24 h; the data represent the change of body weight in each group (n = 10/group). The data shown are the means
± s.d. of three replicates and are representative of three independent experiments. Statistical significance is assessed by
unpaired Student’s two-sided t-test to compare astaxanthin (0 µM).
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Figure 2. Astaxanthin suppressed the secretion of cytokines from LPS-stimulated DCs. DCs were incubated with the
astaxanthin or plus 100 ng/mL LPS for 24 h. (A,B) The expression of activation marker CD69 on DCs was analyzed by FCM.
(C–E) Supernatants were collected and TNF-α, IL-6, and IL-10 were detected by ELISA. The data shown are the means
± s.d. of three replicates and are representative of three independent experiments. Statistical significance is assessed by
one-way ANOVA analysis to compare the results between different groups. ** p < 0.01.
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2.2. Astaxanthin Reversed the Morphological Changes in LPS-Activated DCs

Mature DCs were easily aggregated to form larger clusters and longer extensions [33].
Upon LPS stimulation alone, the size of clusters and the extension morphologies of DCs
were increased, compared with the untreated and the astaxanthin-alone group. However,
these processes were impaired by astaxanthin (Figure 3A,C). Meanwhile, the size of clusters
and the cell shape index (major axis/minor axis) of each group were measured. As shown in
Figure 3B,D, these two indexes were markedly increased after LPS stimulation. Treatment
of astaxanthin significantly suppressed the increase of two indexes in LPS-induced DCs.
These results indicated that astaxanthin attenuated the morphological changes of LPS-
activated DCs.
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Figure 3. Astaxanthin decreased the morphological changes of LPS-stimulated DCs. After stimulation for 24 h with
astaxanthin or plus 100 ng/mL LPS, DC aggregation (A) and dendrites (C) were observed by microscopy. (B,D) Statistical
results on the size of DC cluster formation and the cellular shape indices in each group. Data shown are the means ± s.d. of
40 clusters or DCs randomly selected from 3 separate experiments. Statistical significance is assessed by one-way ANOVA
analysis to compare the results between different groups. ** p < 0.01. Bars: (A) 100 µm; (C) 20 µm.

2.3. Astaxanthin Impaired the Phenotypic Maturation of LPS-Induced DCs

Maturation is the key step in the DC-mediated regulation of immune responses. To
investigate whether astaxanthin modulated the DC maturation, the expression levels of
MHCII and costimulatory molecules in DCs were analyzed by FCM. With LPS treatment
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alone, the expressions of MHCII, CD40, CD80, and CD86 were markedly upregulated,
whereas they were down-regulated remarkably with the treatment of astaxanthin (Figure 4).
These data suggested that astaxanthin diminished LPS-activated DC phenotypic maturation
and compromised the immunostimulation of the activated DCs.
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2.4. Astaxanthin Increased the Endocytosis Capability of LPS-Induced DCs

In response to inflammatory stimuli, DCs trigger the process of maturation; down-
regulation of endocytosis is a hallmark of maturation [34]. To investigate whether astax-
anthin modulated the endocytosis of DCs, the fluorescent marker dextran was used. As
shown in Figure 5A,B, LPS alone significantly decreased the endocytosis capability of DCs
compared to the untreated control, while astaxanthin enhanced the uptake of dextran
in LPS-induced DCs. Moreover, confocal laser scanning microscopy (CLSM) images dis-
played the amount of Alexa Fluor 647-dextran existing in the body of LPS-induced DCs
and was enhanced after the treatment of astaxanthin (Figure 5C). These results suggested
that astaxanthin significantly increased the endocytosis capability of LPS-induced DCs.
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Figure 5. Astaxanthin enhanced the endocytosis ability of DCs after LPS treatment in vitro. After stimulation for 24 h with
astaxanthin or plus 100 ng/mL LPS, the treated DCs were incubated with 1 mg/mL FITC-Dextran (A,B) or Alexa Fluor
647-Dextran (C) at 37 ◦C for 30 min. After incubation, the cells were washed three times with cold PBS and analyzed by
FCM (A) or were observed by using confocal laser scanning microscopy (CLSM). Parallel experiments were performed at
4 ◦C to determine the nonspecific binding. The data shown are the means ± s.d. of three replicates and are representative
of three independent experiments. (C) Dextran (Alexa Fluor 647; red) and Nuclei (4′,6-diamidino-2-phenylindole (DAPI);
blue). The results are from one representative experiment of three performed. Bars: 10 µm. Statistical significance is assessed
by one-way ANOVA analysis to compare the results between different groups. ** p < 0.01.

2.5. Astaxanthin Inhibited the Migration Capability of LPS-Induced DCs

DCs that are stimulated with inflammatory mediators can mature and migrate from
nonlymphoid regions to lymphoid organs for initiating T cell-mediated immune responses.
This migratory step is closely related to the CCR7 expression of DCs [35]. To investigate
whether astaxanthin modulated the DC migration, the expression levels of CCR7 in DCs
were analyzed by FCM. With LPS treatment alone, CCR7 expression was significantly in-
creased, whereas they remarkably declined after the treatment of astaxanthin (Figure 6A,B).
Moreover, chemotaxis assay in transwell chambers was used to examine the DC migration
on the basis of attraction of mature DCs for CCL19 or CCL21. The migration of LPS-induced
DCs was remarkably inhibited after the treatment of astaxanthin in response to CCL19
(Figure 6C,D). These results suggested that astaxanthin significantly inhibited the migration
capability of LPS-induced DCs.
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Figure 6. Astaxanthin decreased the LPS-induced CCR7 expression and DC’s migration ability in vitro. DCs were incubated
by astaxanthin or plus 100 ng/mL LPS for 24 h. (A,B) FCM analysis of CCR7 expression. Data shown are the means ±
s.d. of three replicates and are representative of three independent experiments. (C,D) DCs from astaxanthin (10 µM)
alone, LPS (100 ng/mL) alone, astaxanthin (10 µM) plus LPS (100 ng/mL) groups were seeded into the upper wells of a
24-well transwell chamber, and CCL19 (200 ng/mL) was included in lower chamber. After 4 h, the number of DCs that
were transferred from the upper to the lower wells was counted by FCM. The spontaneous migration of cells (absence of
CCL19) was also shown. Data shown are the means ± s.d. of three replicates and are representative of three independent
experiments. Statistical significance is assessed by one-way ANOVA analysis to compare the results between different
groups. ** p < 0.01.

2.6. Astaxanthin Impaired the Allostimulatory Capacity of LPS-Induced DCs

Mature DCs are potent stimulators of allogeneic T cell proliferation in the mixed
lymphocyte reaction (MLR) [36]. To determine the effects of astaxanthin on the ability
of LPS-induced DCs to stimulate the MLR, DCs were collected and incubated with allo-
geneic CD4+ T cells. As shown in Figure 7, LPS-induced DCs stimulated proliferative
responses more effectively than untreated DCs, while astaxanthin-treated DCs impaired
proliferative responses derived from the LPS stimulation at all ratios of DC: T cell tests.
These results suggested that astaxanthin strongly impaired the allostimulatory capacity of
LPS-induced DCs.
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2.7. Astaxanthin Protected the LPS-Induced Immune Dysfunction of DCs via Activation of
HO-1/Nrf2 Axis

To investigate whether astaxanthin modulated the DC maturation by the HO-1/Nrf2
pathway, the expression levels of HO-1 and Nrf2 on DCs were analyzed by FCM. As shown
in Figure 8A–D, treatment of LPS-induced DCs with astaxanthin, HO-1, and Nrf2 were
significantly upregulated, compared with the LPS-only group. Next, to study whether
HO-1 played an important role in the suppression of DC maturation, the cytokine release
(TNF-α and IL-10) (Figure 8I,J) and phenotypic markers (CD80 and CD86) (Figure 8E–H)
were detected. The results showed that the effects of astaxanthin in the LPS-induced DCs
were diminished when DCs were pretreated with SnPP (a HO-1 inhibitor) (Figure 8E–J).
However, CoPP (a HO-1 inducer) aggravated the inhibitory effect of astaxanthin in the
LPS-induced DCs (Figure 8E–J). Therefore, the Nrf2/HO-1 pathway played an important
role in the inhibition of LPS-induced DCs maturation by astaxanthin.
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the means ± s.d. of three replicates and are representative of three independent experiments. (K) Experimental setting to
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2.8. Astaxanthin Protected LPS-Induced Sepsis in Mice

The overwhelming production of pro-inflammatory cytokines and mediators results
in tissue damage or lethality. To determine the effects of astaxanthin on the LPS-induced
septic lethal rate and production of cytokines in LPS-challenged mice, firstly, the biosafety
of astaxanthin was evaluated in mice. As shown in Figure 1B, the body weight of mice
was not changed in the astaxanthin group compared with the control group, even if the
dose used was up to 300 mg/kg. Next, the changes in body weight and survival rates
were monitored after LPS injection for 3 days or 40 h, respectively. As shown in Figure 9A,
LPS administration markedly increased the loss of body weight in mice. However, the
astaxanthin recovered the change of body weight in the LPS-challenged mice. Moreover, the
astaxanthin decreased the mortality of the LPS-treated mice (Figure 9B). Next, the levels of
cytokines in mice serum were detected by ELISA. The results showed that administration of
astaxanthin significantly decreased the production of TNF-α, IL-6, and IL-10 (Figure 9C–E).
Taken together, these data demonstrated that astaxanthin effectively protected LPS-induced
sepsis in mice.
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3. Discussion

Here, we explored the immunosuppressive properties of astaxanthin on the activation
and maturation of DCs for the first time. Our data indicated that astaxanthin reduced
the expression of activation markers (CD69), LPS-induced pro-inflammatory (TNF-α and
IL-6), and anti-inflammatory (IL-10) cytokines by DCs; reversed the morphological changes
of LPS-activated DCs; decreased the LPS-induced expression of phenotypic markers by
DCs, including MHCII, CD40, CD80, and CD86; promoted the endocytosis levels in LPS-
treated DCs; and hindered the LPS-induced migration of DCs via downregulating CCR7
expression. Furthermore, astaxanthin abrogated allogeneic T cell proliferation by LPS-
induced DCs. Finally, astaxanthin enhanced the survival rate of LPS-challenged mice and
inhibited the production of inflammatory cytokines in serum, suggesting that astaxanthin
can strongly protect LPS-induced sepsis (Figure 10).These results powerfully implied that
astaxanthin may have a potential application in the treatment of sepsis.

Toll-like receptor (TLR) 4 signaling, leading to secretion of inflammatory productions,
has been considered as a critical pathway in sepsis pathophysiology. LPS from gram-
negative bacteria interacted with TLR4 to cause phagocytic cells to robustly generate a
variety of proinflammatory cytokines [37]. CD69, as a type II C-type lectin, is known as a
very early activation marker, which is first upregulated upon primary activation [38,39].
In our study, we found that astaxanthin reduced the activation level of LPS-treated DCs
by downregulating CD69 expression, suggesting that the immunosuppressive ability of
astaxanthin was involved in the early inflammatory response. After DC activation, a mass
of inflammatory cytokines was released. TNF-α, as a rapid proinflammatory cytokine,
can strongly accelerate DC maturation [40]. Furthermore, TNF-α also can regulate other
inflammatory cytokines, especially for IL-6 [41], implying that astaxanthin might suppress
the secretion of TNF-α, and then result in the down-expression of IL-6 in DCs. At the
late stage of sepsis, the anti-inflammatory state may appear, showing a high expression of
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IL-10, which may result in a further impaired immune response with an increased risk of
nosocomial infections [42]. Therefore, we evaluated the effects of astaxanthin treatment
in LPS-induced IL-10 expression, and found that IL-10 was also decreased, and thereby,
astaxanthin plays a remarkable inhibition role on both pro- and anti-inflammatory stages.
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Figure 10. Schematic of the proposed mechanism for astaxanthin, rescuing the LPS-induced immune dysfunction of DCs and
protecting LPS-induced sepsis in mice. (A) Astaxanthin firstly activated the Nrf2 signaling pathway, and then significantly
upregulated HO-1 expression, which suppressed the immune functions of LPS-induced DCs, including activation markers
(CD69), the cytokines release (TNF-α, IL-6, and IL-10), phenotypic marker (MHCII, CD40, CD80, and CD86) and migration
marker (CCR7). (B) Astaxanthin decreased the production of TNF-α, IL-6, and IL-10 in serum, recovered the change in body
weight and decreased the mortality of the LPS-treated mice.

DCs possess two major states, including immature DCs (iDCs) and mature DCs
(mDCs). The iDCs have a strong antigen capture ability with lower expression of pheno-
typic markers. After antigen uptake, iDCs were transformed into mDCs, which have a
strong ability to stimulate the proliferation and differentiation of T cells by upregulating
the surface levels of MHCII and costimulatory molecules. Moreover, DCs can easily mature
into inflammatory DCs, thereby sustaining a continuous activation of the adaptive immune
response at inflammation sites [43]. However, iDCs were able to induce immune toler-
ance, and have therefore been introduced as a therapy for systemic lupus erythematosus
(SLE) [44,45]. In our data, astaxanthin can effectively inhibit LPS-induced phenotypic
markers of DCs, including MHCII, CD40, CD80, and CD86, suggesting that astaxanthin
was able to prevent the transformation from iDCs into mDCs. In addition, LPS-induced
DCs with astaxanthin treatment possessed a strong antigen capture ability, indicating that
the DCs remain in an immature state. Furthermore, once DCs mature, the chemokine
receptor CCR7 displays a high-upregulation, which will guide the DCs to migrate toward
a draining lymph node, a T cell-rich area with a high expression of CCL19 and CCL21
(CCR7 ligands), for an expanded immune response [46]. Our data suggested that astax-
anthin could probably block the connection between DCs and draining lymph nodes via
down-regulating CCR7 expression, and lead to limit extensive immune responses. Even if
contact happened, LPS-induced DCs with astaxanthin treatment were hardly promoted
to a proliferation of allogeneic T cells in our allogeneic mixed lymphocyte reaction assay,
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which might be associated with the down-regulation of MHCII, costimulatory molecules,
and cytokines.

Inflammation is the most common feature of many chronic diseases and complications.
Previous studies have revealed that the transcription nuclear factor erythroid 2-related
factor 2 (Nrf2) contributes to the anti-inflammatory process by orchestrating the recruitment
of inflammatory cells and regulating gene expression through the antioxidant response
element (ARE) [47]. Heme oxygenase-1 (HO-1) is the inducible isoform and rate-limiting
enzyme that catalyzes the degradation of heme into carbon monoxide (CO) and free iron,
and biliverdin to bilirubin [48]. Several studies have demonstrated that HO-1 and its
metabolites have significant anti-inflammatory effects mediated by Nrf2 [49]. It has been
reported that activation of Nrf2 prevents LPS-induced transcriptional upregulation of
pro-inflammatory cytokines, including IL-6 and IL-1β [50]. Here, we have demonstrated
that astaxanthin inhibited the maturation of LPS-induced DCs via the activation of the
HO-1/Nrf2 axis. Interestingly, astaxanthin is a potential antioxidant, and the HO-1/Nrf2
axis is also a key known antioxidative pathway; whether astaxanthin utilizes its antioxidant
property to activate the HO-1/Nrf2 pathway and then to initiate an anti-inflammatory
response needs to be further investigated.

LPS and other PAMPs are related in the pathogenesis of sepsis and the activation
of immune responses, resulting in tissue pathological injury and multiple organ fail-
ure [51]. Management of excessive inflammatory response is a key strategy for sepsis
treatment [52]. In the present study, we performed a series of experiments to determine the
anti-inflammatory activities of astaxanthin using LPS-challenged mice. Our results showed
that administration of astaxanthin promoted the survival rate of LPS-challenged mice.
Additionally, administration of astaxanthin reduced the levels of inflammatory cytokines in
serum, including TNF-α, IL-6, and IL-10, which was in line with the result of DCs in vitro.
These results implied that DC-targeted anti-inflammatory strategies have great potential in
the treatment of sepsis.

4. Materials and Methods
4.1. Ethics Statement

The Jiangsu Administrative Committee for Laboratory Animals approved all of the
animal studies according to the guidelines of Jiangsu Laboratory Animal Welfare and
Ethical of Jiangsu Administrative Committee of Laboratory Animals (Permission number:
SYXKSU-2007-0005).

4.2. Reagents

Astaxanthin (mol wt 596.84), LPS derived from Escherichia coli 026: B6, FITC-Dextran
(mol wt 40,000) and Cobalt protoporphyrin (CoPP, a HO-1 inducer) were from Sigma-
Aldrich. Alexa Fluor 647-Dextran (mol wt 10,000) was from Thermo Fisher. Carboxyflu-
orescein succinimidylester (CFSE) and RPMI 1640 medium were from Invitrogen. Fetal
bovine serum (FBS) was from Hyclone. Recombinant CCL19, GM-CSF, and IL-4 were from
Peprotech. CCK-8 kit was from Beyotime. CD4+ T cell isolation kit was from Miltenyi
Biotech. Fluorescent-labeled anti-mouse mAbs, PerCP-Cy5.5 CD69, FITC-MHCII, PE-CD40,
PE-CD80, FITC-CD86, PE-CCR7 or respective isotype controls, were from BD PharMingen.
Alexa Fluor 647 HO-1 or respective isotype was from Abcam. PE-Nrf2 or respective isotype
was from Cell Signaling Technology. Tin protoporphyrin IX (SnPP, a HO-1 inhibitor) was
from MedChemExpress.

4.3. Generation of DCs

Male C57BL/6 mice, 4–6 weeks old, were from the Animal Research Center of
Yangzhou University (Jiangsu, China). The mice were housed under specific pathogen-free
conditions for at least 1 week before use. DCs were isolated and cultured as our improved
method [53]. Briefly, bone marrow cells were extracted from the tibias and femurs of
mice, and then cultured in complete medium (RPMI 1640 supplemented with 10% FBS, 1%
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streptomycin and penicillin, 10 ng/mL GM-CSF and 10 ng/mL IL-4). After 60 h of culture,
medium was gently discarded and fresh medium was added. On day 6, non-adherent and
loosely adherent DC aggregates were harvested and sub-cultured overnight. On day 7,
only cultures with >90% cells expressing CD11c by flow cytometry (FCM) were used.

4.4. Cell Viability Assay

The cytotoxicity assay of astaxanthin with different doses was performed in DCs using
the CCK-8 kit in accordance with the manufacturer’s instructions. Briefly, 5 × 103 cells
were cultured in 96-well plate. After treatment, 10 µL CCK-8 was added to each well, and
the cells were incubated for an additional 1 h. The absorbance was measured at 450 nm,
and the results were compared as a percentage of the control group.

4.5. Cytokine Assay

In vitro, the DCs were incubated with astaxanthin and/or LPS for 24 h. Next, the
levels of TNF-α, IL-6, and IL-10 in the culture supernatants were measured by using ELISA
kits (eBioscience) and were performed according to the manufacturer’s instruction.

4.6. Phenotype Assay

DCs were harvested and washed twice with PBS, and incubated with FITC-MHCII,
PE-CD40, PE-CD80, FITC-CD86, or their respective isotypes, at 4 ◦C for 30 min as per the
manufacturer’s guidelines. After being washed three times with PBS, DCs were analyzed
by FCM.

4.7. Endocytosis Assay

The harvested DCs were incubated with 1 mg/mL FITC-Dextran at 37 ◦C for 30 min
as previously described [54]. After incubation, DCs were washed twice with PBS and
analyzed by FCM. In addition, 4 ◦C control was also performed to exclude adhesion.

4.8. Migration Assay

The chemotaxis of DCs was performed in a 24-well transwell chamber (pore size, 5 µm;
Corning) as described previously [55]. DCs (1 × 105 cells) were then seeded onto the upper
chambers and CCL19 (200 ng/mL) was added in the lower chamber. After incubation for
4 h, the migrated cells were collected from the lower chamber, and the number of cells was
counted by FCM.

4.9. Allogeneic Mixed Lymphocyte Reaction Assay

Male BALB/c mice, 6 weeks old, were from the Animal Research Center of Yangzhou
University (Jiangsu, China). Responder T cells were purified from mice splenic lympho-
cytes using a CD4+ T cell isolation kit and labeled with CFSE according to the manufac-
turer’s instructions. Next, these cells were cocultured in duplicate with DCs (DC/T cell
ratios of 1:1 or 1:5) in 5% CO2 incubator at 37 ◦C for 5 days and detected by FCM.

4.10. HO-1 and Nrf2 Protein Expression Assay

The treated DCs were incubated with Alexa Fluor 647 HO-1, PE-Nrf2, or the respective
isotypes for 30 min at 4 ◦C. The cells were analyzed using FCM.

4.11. Body Weight Change Assay

Six-week-old C57BL/6 mice were divided into five groups (n = 10/group). In the
treatment group, the mice were given astaxanthin orally for 4 days every 24 h, and the
doses of astaxanthin were 50, 100, and 200 mg/kg, respectively; 48 h after the firstly oral
administration, the mice received LPS (10 mg/kg body weight) by intraperitoneal injection,
body weight changes were monitored for 3 days.
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4.12. Survival Rate and Cytokine Assay

48 h after 1st oral administration, the mice received LPS (20 mg/kg body weight) by
intraperitoneal injection, survival rates were monitored for 40 h as described previously [56].
The mice were euthanized and blood was collected at 4 h after LPS injection, the levels of
cytokines (TNF-α, IL-6, and IL-10) in plasma were measured by an ELISA kit according to
the manufacturer’s protocol.

4.13. Statistical Analysis

Results were expressed as the means ± SD. Statistical significance between the
2 groups was determined by unpaired Student’s two-sided t-test. To compare multi-
ple groups, one-way ANOVA with Tukey’s post hoc test was performed by using SPSS
17.0. * p < 0.05, ** p < 0.01.

5. Conclusions

In summary, our findings showed that astaxanthin inhibited the immune dysfunction
of DCs induced by LPS via the activation of HO-1/Nrf2 axis in vitro, and enhanced the
survival rate of LPS-challenged mice in vivo, which might be used as a potential candidate
strategy for clinical sepsis.
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