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ABSTRACT 
 

Objectives: Clinical and epidemiological findings indicate an association between coronary artery disease (CAD) 
and low birth weight (BW). However, the mechanisms underlying this relationship are largely unknown. Here, 
we aimed to identify novel single-nucleotide polymorphisms (SNPs) associated with CAD, BW, and their shared 
pleiotropic loci, and to detect the potential causal relationship between CAD and BW. 
Methods: We first applied a genetic pleiotropic conditional false discovery rate (cFDR) method to two 
independent genome-wide association studies (GWAS) summary statistics of CAD and BW to estimate the 
pleiotropic enrichment between them. Then, bi-directional Mendelian randomization (MR) analyses were 
performed to clarify the causal association between these two traits. 
Results: By incorporating related traits into a conditional analysis framework, we observed the significant 
pleiotropic enrichment between CAD and BW. By applying the cFDR level of 0.05, 109 variants were detected 
for CAD, 203 for BW, and 26 pleiotropic variants for both traits. We identified 11 CAD- and/or BW-associated 
SNPs that showed more than three of the metabolic quantitative trait loci (metaQTL), protein QTL (pQTL), 
methylation QTL (meQTL), or expression QTL (eQTL) effects. The pleiotropic SNP rs10774625, located at ATXN2, 
showed metaQTL, pQTL, meQTL, and eQTL effects simultaneously. Using the bi-directional MR approach, we 
found a negative association from BW to CAD (odds ratio [OR] = 0.68, 95% confidence interval [CI]: 0.59 to 0.80, 
p = 1.57× 10-6). 
Conclusion: We identified several pleiotropic loci between CAD and BW by leveraging GWAS results  
of related phenotypes and identified a potential causal relationship from BW to CAD. Our findings provide 
novel insights into the shared biological mechanisms and overlapping genetic heritability between CAD  
and BW. 
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INTRODUCTION 
 

Coronary artery disease (CAD) is characterized by the 

narrowing or obstruction of the coronary arteries, 

which can lead to chest pain, arrhythmia, heart failure, 

and even permanent heart damage [1]. In 2017, over 

485 million people suffered from CAD, resulting  

in 17.8 million deaths [2, 3], making this disease  

the leading cause of morbidity and mortality 

worldwide [4]. 

 

Numerous studies have shown that early life 

experiences, including low birth weight (BW), may 

increase the risk of cardiovascular diseases [5–7]. Thus, 

the World Health Organization has classified low BW 

as a risk factor for CAD later in life [8]. However, the 

prevalence of CAD does not decrease with higher BW 

accompanied by improved living conditions [9]. In 

addition, many randomized controlled trials designed to 

improve BW revealed different results [10, 11], leaving 

the relationship between BW and CAD unclear. 

 

CAD and BW are highly influenced by multiple 

genetic factors with heritability estimates over 30–60% 

[12] and 30–50% [13], respectively. With the 

development of genome-wide association studies 

(GWAS), more than 230 CAD-associated [14–19] and 

80 BW-associated loci [20–22] have been detected. 

These loci describe only a small part of the genetic 

contribution [23, 24], leaving a large proportion of 

“missing heritability” unexplained [25]. Pleiotropy 

occurs when one gene or variant affects multiple 

phenotypes [26]. Among the human genome, more  

than 17% of genes and 5% of single-nucleotide 

polymorphisms (SNPs) show pleiotropic effects [27]. 

Considering the potential causal relationship, large 

genetic determination, pleiotropic effect, and missing 

heritability between CAD and BW, it is necessary to 

illuminate biological mechanisms and uncover novel 

associated genetic variants for both traits. 

 

By leveraging the pleiotropic effect in related traits, a 

conditional false discovery rate (cFDR) method was 

developed without additional subjects recruitment [28]. 

This approach is cost-effective and could improve the 

identification of novel genetic loci underlying missing 

heritability, thereby elucidating genetic mechanisms 

associated with multiple phenotypes [29–32]. 

Furthermore, Mendelian randomization (MR) is an 

approach to investigate the potential causality between 

exposure and outcome using genetic instrumental 

variables [33]. As genetic variants are randomly 

distributed among the population and are generally 

independent of confounders, such analysis may reduce 

confounding bias and eliminate potential reversed 

causal relationship [34]. 

In this study, we applied cFDR and bi-directional MR 

analyses to two large and independent GWAS datasets 

aiming to 1) identify additional novel loci and the 

genetic pleiotropy of CAD and BW, and 2) estimate the 

causality between CAD and BW. Therefore, we can 

improve SNP detection, and clarify the shared mechanic 

relationship and overlapping genetic heritability 

between these two traits better. 

 

RESULTS 
 

Pleiotropic enrichment estimation 
 

We found leftward separations between each line 

(including the null line) in the stratified quantile-quantile 

(Q-Q) plots, which indicated the pleiotropy of CAD 

conditional on BW (Figure 1A), as well as BW 

conditional on CAD (Figure 1B). As shown in fold-

enrichment plots (Figure 1C, 1D), distinct upward shifts 

from the baseline demonstrated a strong pleiotropic 

enrichment between BW and CAD. We observed the 

most notable pleiotropy with an enrichment fold greater 

than 40 in BW conditional on CAD.  

 

Furthermore, the stratified Q-Q plots for CAD 

conditional on autism spectrum disorder (ASD) 

(Supplementary Figure 1A), and BW conditional on 

ASD (Supplementary Figure 1C) all showed no 

enrichment and vice versa (Supplementary Figure 1B, 

1D), which can be the negative controls. 

 

CAD-associated SNPs identified by cFDR 
 

Conditional on BW, we identified 109 significant SNPs 

(cFDR ≤ 0.05) associated with CAD variation, which 

were located on 20 different chromosomes (1–17, 19, 

21–22), annotated to 98 genes (Supplementary Table 1 

and Figure 2A). We validated 22 SNPs that were 

statistically significant in the former CAD GWAS 

datasets [14–19]. Additionally, six SNPs associated 

with cardiovascular function were also validated in our 

research [35–38]. Excluding 26 SNPs that showed high 

linkage disequilibrium (LD) (r2 > 0.6) with the previous 

CAD-related loci, the remaining 55 SNPs were 

potentially novel to CAD (Supplementary Table 2). 

Using validation datasets, we found 111 significant 

SNPs for CAD, 73 of which (65.8%) were also 

significant in the original cFDR research 

(Supplementary Table 3).  

 

We detected 16 SNPs associated with various metabolites 

(Supplementary Table 7), such as kynurenine, C18:1 

sphingomyelin, and cholesterol, which affected the 

pathogenesis of CAD. Seven SNPs were associated with 

different proteins, and 27 SNPs showed significant 

metabolic quantitative trait locus (metaQTL) effects in 
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the human serum. Notably, three novel SNPs, 

rs11244035, rs3811417, and rs624249, showed more 

than three metaQTL, protein QTL (pQTL), methylation 

QTL (meQTL), or expression QTL (eQTL) effects 

simultaneously (Table 1).  

 

BW–associated SNPs identified by cFDR 
 

Conditional on CAD, we identified 203 significant 

SNPs (cFDR ≤ 0.05) associated with BW variation, 

which were located on 22 chromosomes (1–22), 

annotated to 179 genes (Supplementary Table 4 and 

Figure 2B). We validated 27 SNPs that were 

statistically significant in the former BW GWAS 

datasets [20–22, 39], although 19 of the remaining 176 

SNPs showed high LD (r2 > 0.6) with the previous BW-

related loci (Supplementary Table 5). Using validation 

datasets, we found 229 significant SNPs for BW, 182 of 

which (79.5%) were also significant in the original 

cFDR research (Supplementary Table 6). 

 

We detected 26 SNPs associated with various metabolites 

(Supplementary Table 7), five were associated with 

different proteins, and 31 showed significant meQTL 

effects in the human serum. In particular, four novel 

SNPs, rs143384, rs4875812, rs6700896, and rs8108865, 

showed more than three metaQTL, pQTL, meQTL, or 

eQTL effects simultaneously (Table 1). 

 

 
 

Figure 1. Stratified Q-Q plots and fold-enrichment plots. Stratified Q-Q plots of nominal vs. empirical -log10(p) values in principal trait 

below the standard GWAS threshold of p ≤ 5 × 10−8 as a function of the significance of the association with conditional trait at the level of p ≤ 
1, p ≤ 0.1, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001, respectively. (A) CAD as a function of the significance of the association with BW, and (B) BW as 
a function of the significance of the association with CAD. Fold-enrichment plots of enrichment vs nominal -log10(p) values (corrected for 
inflation) corresponding to levels of p ≤ 1, p ≤ 0.1, p ≤ 0.01, ≤ 0.001, respectively in (C) CAD below the standard GWAS threshold of p ≤ 5 × 
10−8 as a function of significance of the association with BW; and in (D) BW below the standard GWAS threshold of p ≤ 5 × 10−8 as a function 
of significance with CAD. Dashed lines indicate the null-hypothesis. 
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Potentially pleiotropic SNPs identified using 

conjunction cFDR (ccFDR) 
 

We calculated the ccFDR value and constructed the 

conjunction Manhattan plot to explore the pleiotropic loci 

between CAD and BW. (Figure 2C). Precisely 26 

potentially pleiotropic loci that reached a significance 

threshold at ccFDR ≤ 0.05 were mapped to 13 

chromosomes and annotated to 26 different genes. We 

validated three SNPs that were statistically significant in 

the original GWAS and CAD-related study, nine loci 

were also found to be related to other phenotypes 

(Supplementary Table 8). Using validation datasets, we 

found 17 pleiotropic SNPs for both traits, 12 of which 

(70.5%) were also pleiotropic loci in the original ccFDR 

research (Supplementary Table 9). We then detected 18 

pleiotropic SNPs that showed more than one of the 

metaQTL, pQTL, meQTL, or eQTL effects. Particularly, 

rs10774625 showed all QTL effects simultaneously 

(Table 2). 

 

Causality between BW and CAD  
 

After instrument selection, LD clumping, variant 

extraction, and harmonization, 52 BW-CAD SNP pairs 

were selected when choosing BW as exposure 

(Supplementary Table 10). The MR-Egger regression 

test result (intercept: -0.0025, 95% confidence interval

 

 
 

Figure 2. Conditional Manhattan plot. SNPs with -log10(cFDR) ≥ 1.3 (cFDR ≤ 0.05) for (A) CAD given BW (CAD|BW) and (B) BW given CAD 

(BW|CAD), or (C) -log10(ccFDR) ≥ 1.3 (ccFDR ≤ 0.05) are shown above the red line. 
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Table 1. Conjunction cFDR for 26 pleiotropic SNPs in CAD and BW (ccFDR ≤ 0.05). 

SNP Chr Pos Alt Gene Annotation metaQTL/pQTL/meQTL/eQTL 
SNP 

Type 

Gene 

Type 

cFDR_CA

D 
cFDR_BW ccFDR 

rs10774625 12 111472415 A/T ATXN2 intronic metaQTL/pQTL/meQTL/eQTL(3 hits) CAD CAD 1.48E-08 3.06E-05 3.06E-05 

rs11066301 12 112433568 A/T PTPN11 intronic metaQTL/meQTL/eQTL(1 hit) CAD CAD 3.45E-05 6.50E-03 6.50E-03 

rs11172113 12 57133500 T/A LRP1 intronic metaQTL/meQTL/eQTL(4 hits) Novel Novel 3.56E-03 3.18E-02 3.18E-02 

rs11206803 1 56411837 C/G AC119674.2 intronic meQTL Novel Novel 2.02E-02 3.51E-02 3.51E-02 

rs12148530 15 96542056 T/A 7SK intergenic 
 

Novel Novel 4.40E-02 1.64E-02 4.40E-02 

rs12306172 12 54145221 G/C SMUG1 intronic eQTL(7 hits) Novel Novel 1.37E-03 8.89E-05 1.37E-03 

rs13035774 2 24135782 C/G FAM228B intronic meQTL/eQTL(29 hits) Novel Novel 5.73E-03 4.35E-03 5.73E-03 

rs1319869 15 98669256 G/C IGF1R intronic 
 

Novel BW 1.41E-03 1.85E-04 1.41E-03 

rs1480933 4 119512093 C/G PDE5A intronic pQTL/eQTL(17 hits) Novel Novel 4.43E-02 3.52E-02 4.43E-02 

rs1861044 4 15537875 A/T CC2D2A intronic pQTL Novel Novel 4.54E-02 3.25E-02 4.54E-02 

rs2268310 7 44637499 C/G OGDH intronic meQTL Novel Novel 3.85E-02 3.10E-02 3.85E-02 

rs2339940 2 24028917 G/C MFSD2B intronic eQTL(22 hits) Novel Novel 1.34E-03 1.67E-05 1.34E-03 

rs3756668 5 68300260 G/C PIK3R1 3'-UTR 
 

Novel Novel 1.32E-02 6.91E-04 1.32E-02 

rs4233701 2 23706216 G/C KLHL29 intronic eQTL(15 hits) Novel Novel 5.26E-03 2.81E-05 5.26E-03 

rs4643791 4 119344464 G/C FABP2 intergenic eQTL(21 hits) Novel Novel 4.76E-02 2.75E-02 4.76E-02 

rs502467 3 172009573 T/A FNDC3B intergenic 
 

Novel Novel 2.58E-02 2.22E-02 2.58E-02 

rs611003 11 69630516 C/G CCND1 intergenic 
 

Novel Novel 4.98E-02 9.20E-04 4.98E-02 

rs630014 9 133274306 A/T ABO intronic metaQTL/meQTL/eQTL(9 hits) Novel CAD 5.22E-03 1.16E-02 1.16E-02 

rs6673081 1 155017119 T/A ZBTB7B 3'-UTR eQTL(8 hits) Novel BW 8.98E-04 4.66E-08 8.98E-04 

rs670950 19 43777410 T/A KCNN4 intronic eQTL(1 hit) Novel Novel 3.15E-02 7.91E-03 3.15E-02 

rs6713510 2 226169783 G/C LOC646736 intronic 
 

CAD CAD 6.65E-03 1.29E-02 1.29E-02 

rs8039305 15 90879313 T/A FURIN intronic meQTL/eQTL(27 hits) Novel CAD 3.77E-06 1.13E-06 3.77E-06 

rs8105944 19 51047598 C/G KLK13 intergenic 
 

Novel Novel 4.04E-02 3.81E-02 4.04E-02 

rs821551 1 155718789 C/G DAP3 intronic meQTL/eQTL(50 hits) Novel Novel 1.08E-02 6.67E-04 1.08E-02 

rs866919 10 30224354 C/G RP11 intergenic eQTL(1 hit) Novel Novel 9.93E-03 9.87E-03 9.93E-03 

rs965098 21 15185306 G/C JCAD intergenic 
 

Novel Novel 2.64E-02 2.35E-02 2.64E-02 

Abbreviations: Chr, chromosome; Pos, chromosomal position (GRCh38/hg38); metaQTL, metabolic quantitative trait locus; 
pQTL, protein quantitative trait locus; meQTL, methylation quantitative trait locus; eQTL, expression quantitative trait locus; 
CAD, coronary artery disease; BW, birth weight; cFDR, conditional false discovery rate; ccFDR, conjunctional conditional false 
discovery rate. The allele was exhibited as reference allele/alter allele; SNP type and gene type means whether identified 
SNPs and genes have been reported in previous GWAS or in previous related cFDR studies. 

 

Table 2. Functional annotation for 11 SNPs showing significant effects in metaQTL, pQTL, meQTL, and eQTL. 

SNP 
GENCODE 

genes 
Traits metaQTL pQTL 

meQTL 

(P) 

eQTL 

Hits 

Promoter 

histone 

marks 

Enhancer 

histone 

marks 

DNAse 
Proteins 

bound 
Motifs changed 

rs10774625 ATXN2 Pleiotropic 9 hits B2M 4.10E-16 3 hits     9 altered motifs 

rs11066301 PTPN11 Pleiotropic 2 hits  6.48E-12 1 hit  BLD   6 altered motifs 

rs11172113 LRP1 Pleiotropic SM C18:1  1.43E-07 4 hits 8 tissues 15 tissues 17 tissues FOXA1 AP-2, Hic1, PU.1 

rs630014 ABO Pleiotropic 2 hits  4.82E-09 9 hits 4 tissues GI, MUS ESC,GI  Gm397, RP58 

rs11244035 OBP2B CAD  8 hits 1.37E-05 6 hits     Ik-1, Ik-2, NERF1a 

rs3811417 RORC CAD nonanoylcarnitine  5.46E-06 2 hits 5 tissues 12 tissues CRVX  Arnt, Mxi1, Myc 

rs624249 SLC22A2 CAD X-12798  9.90E-05 3 hits  4 tissues    

rs143384 GDF5 BW  CPN1 1.27E-07 47 hits 9 tissues 13 tissues 16 tissues  Ascl2 

rs4875812 MIR596 BW deoxycholate  3.11E-12 3 hits  4 tissues   9 altered motifs 

rs6700896 LEPR BW  LEPR 3.16E-07 1 hit  LIV SKIN,SKIN CTCF GR, Myf, TCF12 

rs8108865 FCHO1 BW HWESASXX  1.27E-28 1 hit  BRN, BLD   NF-Y, NF-kappaB, Pou2f2 

Abbreviations: metaQTL, metabolic quantitative trait locus; pQTL, protein quantitative trait locus; meQTL, methylation 
quantitative trait locus; eQTL, expression quantitative trait locus; DNAse, deoxyribonuclease; SM C18:1, C18:1 sphingomyelin; 
B2M, beta-2-microglobulin. 
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[CI]: -0.015 to 0.014, p = 0.973) suggested that there was 

no genetic confounding due to horizontal pleiotropy. The 

null-pleiotropy result was also confirmed using scatter 

plots and funnel plots (Supplementary Figures 2, 3). 

There was no apparent heterogeneity in our chosen  

SNPs, as evidenced by Cochran’s Q test (Supplementary 

Table 11). We found a negative association of BW to 

CAD from the inverse-variance weighted (IVW) 

estimates (odds ratio [OR] = 0.68, 95% CI: 0.59 to 0.80, 

p = 1.57× 10-6), which was consistent with all other MR 

methods (Table 3 and Figure 3). MR leave-one-out 

sensitivity analysis demonstrated that there was no 

influence of outlying and/or pleiotropic (Supplementary 

Figure 4). However, in the opposite direction, we found 

no causal relationship from CAD to BW (Supplementary 

Table 12). 

 

Functional enrichment and protein-protein 

interaction analyses 
 

We discovered significant enrichment of biological 

processes including “regulation of phospholipid 

metabolic process” (p = 1.10×10-4) and “negative 

regulation of lipid transport” (p = 2.40×10-4) for genes 

associated with CAD by conducting functional 

enrichment analysis. Moreover, genes associated with 

BW were enriched in gene ontology (GO) terms like 

“tube morphogenesis” (p = 1.20×10-4) and “regulation 

of multicellular organismal process” (p = 3.10×10-4). 

Interestingly, the results for pleiotropic variants showed 

a cluster of biological processes in insulin and kinase 

categories, which might contribute to body growth and 

the progression of CAD (Table 4).  

 

According to the protein-protein interaction network for 

CAD (Supplementary Figure 5A), proteins such as 

FURIN, FLT1, PLG, LDLR, and APOE were closely 

connected, and have been demonstrated to affect 

cardiovascular function [14, 40–42]. Similarly, in the 

BW network (Supplementary Figure 5B), proteins 

including ADRB1, ADCY5, ESR1, EPAS1, and 

CDKAL1 were closely connected and have been 

demonstrated to affect BW [21, 43–45]. 

 

DISCUSSION 
 

In this study, we incorporated summary statistics from 

two independent GWAS datasets and discovered 109 

and 203 SNPs associated with CAD and BW, 

respectively. By performing the ccFDR method, we 

further detected 26 pleiotropic loci associated with both 

phenotypes. Following a bi-directional MR analysis and 

functional annotation, we confirmed the causal 

relationship from BW to CAD and speculated the 

underlying shared genetic mechanisms between these 

two traits. 

Notably, we identified 11 CAD- and/or BW-associated 

SNPs that showed more than three of the metaQTL, 

pQTL, meQTL, or eQTL effects. These functional loci 

might have a great effect on the pathogenesis of CAD 

and/or BW. For example, rs11172113 is located in the 

intron of LRP1, a member of the low-density 

lipoprotein receptor family, which regulates 

extracellular proteolytic activities [46]. LRP1 plays a 

pivotal role in mediating inflammation and efferocytosis 

[47], and mouse studies have shown that LRP1 

knockout leads to diminished vessel integrity and high-

density lipoprotein secretion [48]. Another study proved 

that LRP1 regulates food intake and energy homeostasis 

by acting as a co-activator of PPARγ [49]. Moreover, 

the lipidomic analysis demonstrated that the metabolite 

C18:1 sphingomyelin, which is associated with 

rs11172113, was enhanced in CAD patients compared 

to that in the control group [50]. Another longitudinal 

prospective study revealed that the alteration of 

sphingomyelin metabolism is associated with BW 

percentiles [51], suggesting a potentially crucial role for 

this SNP in both traits. 

 

Furthermore, we identified one pleiotropic locus, 

rs10774625, showing metaQTL, pQTL, eQTL, and 

meQTL effects simultaneously. rs10774625 is located 

in the intron of ATXN2. One population-based GWAS 

demonstrated that the ATXN2-SH3 region contributes to 

changes in the retinal venular caliber, an endophenotype 

of the microcirculation related to clinical cardiovascular 

diseases [52]. Animal experiments supported the role of 

ATXN2 in translational regulation as well as embryonic 

development [53]. Another ATXN2 knockdown 

experiment demonstrated that mice lacking ATXN2 

develop dysfunction in energy metabolism and weight 

regulation [54, 55]. It has been reported that rs10774625 

is associated with the kynurenine metabolite pathway 

(KP) [56]. Evidence indicates that the activation of 

indoleamine 2,3-dioxygenase, the inducible enzyme in 

KP, is closely limited by endothelial cells [57], vascular 

smooth muscle cells [58], and dendritic cells [59], all of 

which play vital roles in cardiac pathophysiology [60]. 

Epidemiologically, it was shown that the concentration 

of kynurenine is associated with body weight indexes in 

a European cohort of more than 1000 people [61]. An 

immunohistochemistry study also detected that the 

kynurenine-to-tryptophan ratio limits the expression of 

inflammatory markers in the adipose tissue, which is 

correlated with body weight [62]. In addition, beta-2-

microglobulin (B2M) is associated with rs10774625, 

which reduces the capacity for energy conversion and 

restricts intrauterine growth, resulting in low BW [63], 

and is also implicated in the pathogenesis of CAD [64]. 
These facts indicated that rs10774625 (representing 

gene ATXN2) might be essential in linking the 

pathogenesis between CAD and BW. 
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Table 3. Causal relationship from BW to CAD by Mendelian randomization analysis. 

Method nSNP OR (95%CI) P_value 

Simple median 52 0.72 (0.61, 0.84) 2.89E-05 

Weighted median 52 0.68 (0.62, 0.76) 1.33E-13 

Weighted mode 52 0.70 (0.55, 0.89) 6.34E-03 

Maximum likelihood 52 0.69 (0.62, 0.76) 8.57E-13 

MR Egger 52 0.63 (0.39, 1.01) 6.22E-02 

Inverse variance weighted 52 0.68 (0.59, 0.80) 1.57E-06 

Abbreviations: nSNP, number of SNPs applied in the test; OR, odds ratio; 95%CI, 95% confidence interval. Detailed SNPs 
information are exhibited in Supplementary Table 10. 

 

 
 

Figure 3. Forest plot of MR estimates BW on CAD. The estimated causal effect of BW on CAD was expressed by IVW (OR= 0.68, 95% CI: 

0.59 to 0.80, p = 1.57× 10-6). 
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Table 4. Gene ontology (GO) terms enriched for SNP-annotated genes with FDR ≤ 0.05. 

Traits GO terms Term description Gene counts FDR 

CAD GO:1903725 regulation of phospholipid metabolic process 7 1.10E-04 

 GO:0032369 negative regulation of lipid transport 5 2.40E-04 

 GO:0019220 regulation of phosphate metabolic process 22 2.70E-04 

 GO:0032375 negative regulation of cholesterol transport 4 2.70E-04 

 GO:0051241 negative regulation of multicellular organismal process 18 2.70E-04 

BW GO:0035239 tube morphogenesis 19 1.20E-04 

 GO:0051239 regulation of multicellular organismal process 42 3.10E-04 

 GO:0030154 cell differentiation 47 4.30E-04 

 GO:0035295 tube development 20 4.30E-04 

 GO:0072359 circulatory system development 20 4.30E-04 

Pleiotropic GO:0043560 insulin receptor substrate binding 3 1.20E-04 

 GO:0005158 insulin receptor binding 3 4.30E-04 

 GO:0043559 insulin binding 2 2.20E-03 

 GO:0016538 cyclin-dependent protein serine/threonine kinase regulator activity 2 3.60E-02 

 GO:0043548 phosphatidylinositol 3-kinase binding 2 3.60E-02 

 

According to the functional enrichment results, we 

could also hypothesize the possible shared pathogenesis 

mechanisms between CAD and BW. GO terms 

including “regulation of phospholipid metabolic 

process”, “regulation of multicellular organismal 

process”, and “insulin receptor binding,” have important 

impacts on metabolic abnormalities, such as impaired 

fasting glucose [65], dyslipidemia, and hypertension 

[66], which could contribute to the increased risk for 

both traits.  

 

Our study has some strengths. First, we improved the 

identification of potential CAD- and BW-associated 

SNPs and detected several pleiotropic loci in both traits. 

Following MR analysis, we assessed the causal effect 

between these two related traits. Second, we took into 

account ASD, which is unlikely to be correlated with 

CAD and BW, for a “control trait” enrichment analysis, 

which provided a baseline to examine pleiotropic 

enrichment and statistically validate the novel findings 

in our study. Third, evidence from metaQTL, pQTL, 

eQTL, and meQTL effects suggested a possible 

explanation for the etiology of CAD and/or BW and 

improved the interpretability of the results.  

 
Additionally, our study includes some limitations. First, 

we were unable to link the genetic findings to clinical 

measures due to the lack of raw datasets for individual 

clinical outcomes. However, our study aimed to identify 

potential novel SNPs and explore the overlapping 

biological mechanisms between CAD and BW. We 
hope that our findings can be validated via functional 

experiments or fine-mapping studies. Second, although 

we confirmed the causal relationship from BW to CAD, 

the causalities of metabolomics, proteomics, and 

methylation between these two traits are unclear. 

Nevertheless, this problem could be solved by a follow-

up multivariable MR study. 

 

CONCLUSIONS 
 

In conclusion, by applying the cFDR and bi-directional 

MR analyses to two strongly associated traits, we 

detected significant pleiotropic SNPs of potential 

functions for CAD and/or BW and estimated the causal 

relationship from BW to CAD. These findings provide a 

better understanding of the shared genetic mechanisms 

between CAD and BW, which might suggest a novel 

research direction for early disease prevention and 

subsequent treatment. 

 

MATERIALS AND METHODS 
 

GWAS data sources 

 

The first CAD GWAS was obtained from the Coronary 

Artery Disease Genome-wide Replication and Meta-

analysis plus The Coronary Artery Disease Genetics 

(CARDIoGRAMplusC4D) Consortium. This meta-

analysis of 48 multiple ancestry studies involved more 

than 8.6 million SNPs from 60,801 cases and 123,504 

controls [18]. The first BW dataset conducted by the 

Early Growth Genetics (EGG) Consortium consisted of 

45 multiple ancestry studies including 321,223 subjects. 

As the control trait, the ASD dataset, collected by the 

Psychiatric Genomics Consortium, contained 15,954 

participants with European ancestry (7,387 ASD cases 

and 8,567 controls) [67]. For validation, two other CAD 
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and BW datasets were used. The validation CAD 

dataset, comprising 10,801 cases and 137,914 controls, 

was collected by the CARDIoGRAMplusC4D 

Consortium [17]. The validation BW dataset, including 

153,781 subjects, was collected by the EGG 

Consortium [21]. All datasets contained the summary 

statistics of each locus and the conducted genomic 

control [17, 18, 21, 22, 67]. 

 

cFDR and ccFDR for identifying shared variants 

 

Data processing 

First, two GWAS datasets were combined and 

8,285,296 common SNPs with summary statistics 

remained for both CAD and BW phenotypes. Then, we 

performed LD-based pruning (r2 ≤ 0.2) using HapMap 

III genotypes as a reference, and the SNP of the pair 

with longer allele frequency was retained [31, 68]. After 

merging and pruning, 141,779 variants were prepared 

for further analysis.  

 

Pleiotropic enrichment evaluation 
We constructed stratified Q-Q plots to estimate the 

pleiotropic enrichment in two related phenotypes using 

the “ggplot2” R package. In this study, -log10(p) which 

means the nominal p-value and -log10(q) which means 

the empirical quantile were plotted on the Y- and X-

axes, respectively, at different significance levels (p ≤ 1, 

p ≤ 0.1, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001). Under the 

null hypothesis, plots would fall on the line Y=X, and 

the enrichment of pleiotropic loci could be evaluated by 

the degree of leftward deviation from the null line. 

Additionally, we constructed fold-enrichment plots as a 

supplement for the Q-Q plots. Fold-enrichment and -

log10(p) were plotted on the Y- and X-axes, 

respectively, at different significance levels (p ≤ 1, p ≤ 

0.1, p ≤ 0.01, and p ≤ 0.001) for CAD and BW. 

Pleiotropy could be visually observed via an upward 

deflection from the baseline (for the group including all 

SNPs (p = 1)). 

 

Calculation of cFDR and ccFDR values 
The cFDR method was used to estimate the possibility 

that a random SNP was not associated with the primary 

trait, given that its strength for the conditional traits was 

below the threshold [28]. This was an extension of the 

original FDR framework, applied for the cross-trait 

analysis [69]. Specifically, we computed cFDR for each 

SNP, selecting CAD as the primary phenotype given its 

association with BW (CAD|BW) and vice versa 

(BW|CAD). To detect the pleiotropic loci for both traits, 

we calculated the ccFDR value, the maximum of the 

two cFDR values. The ccFDR value indicated that the 
possibility that a given SNP was false positively related 

to two traits (CAD and BW) simultaneously. The 

thresholds for cFDR and ccFDR were set at 0.05. 

Detailed steps of this approach have been described by 

Andreassen et al. [29].  

 

Bi-directional MR analysis 
 

To determine the relationship between BW and CAD, 

we performed a bi-directional MR analysis using the 

“TwoSampleMR” R package [70]. First, SNPs that 

were genome-wide significant (p ≤ 5x10-8) in the 

exposure GWAS dataset were selected as genetic 

variants. To ensure that the instruments for exposure 

were independent, we performed LD-based clumping 

(r2 > 0.001) and only retained the SNP with a lower p-

value [68, 71]. Then, we extracted summary-level 

statistics for each selected SNP from the outcome trait 

and removed the SNPs related to the outcome 

phenotype (p ≤ 5x10-8). The summary associations of 

candidate genetic variants were harmonized as 

described previously [72]. Finally, MR was conducted 

using IVW, simple median, weighted median, weighted 

mode, maximum likelihood, and MR-Egger approaches. 

BW and CAD were used as exposure and outcome 

measures, respectively, to identify the causal direction. 

The datasets used in the MR analysis were the same as 

that in the original cFDR analysis (The first CAD and 

BW datasets). To investigate whether any SNP had an 

outlying and/or pleiotropic influence, we also 

performed a leave-one-out sensitivity analysis. 

 

Functional annotation and protein-protein interaction 

analyses 

 

Online tools HaploReg (http://compbio.mit.edu/HaploReg) 

and RegulomeDB (http://www.regulomedb.org/) were 

applied to map each of the identified significant SNPs to 

nearby genes, corresponding DNA features, and 

regulatory elements. Next, we detected whether they 

possessed metaQTL, pQTL, meQTL, or eQTL effects. 

To obtain the metaQTL and pQTL hits, we applied the 

web-based software SNiPA (http://www.snipa.org/), 

meQTL and eQTL information were collected from 

Bonder’s study [73] and HaploReg, respectively. 

 

We used the GOEAST software to detect statistically 

overrepresented GO terms within the selected gene sets 

[74]. Meanwhile, using the STRING database, we 

conducted protein-protein interaction analyses to 

investigate the interaction and functional relationships 

of the identified CAD- and/or BW-related genes [75]. 

 

AUTHOR CONTRIBUTIONS 
 

Xinrui Wu conceived the study, performed data 

analysis, interpretation and wrote the manuscript. Xu 

Lin, Qi Li, and Zun Wang were responsible for data 

collection and analysis. Na Zhang and Mengyuan Tian 

http://compbio.mit.edu/HaploReg
http://www.regulomedb.org/
http://www.snipa.org/


 

www.aging-us.com 3627 AGING 

contributed to the manuscript. Xiaolei Wang conducted 

experiments. Hongwen Deng gave constructive 

suggestions during the whole process. Hongzhuan Tan 

provided guidance in study design, organized the 

investigation and is the corresponding author. All 

authors have read and approved the final manuscript 

before submission. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 

 

FUNDING 
 

This research was supported by the National Natural 

Science Foundation of China [No.81373088, 

No.81773535], China Scholarship Council 

[No.201806371067], the graduate student scientific 

research innovation project of Central South University 

[2019zzts328], the National Institutes of Health 

[R01AR069055, U19AG055373, P20GM109036, 

R01AG061917], and the Edward G. Schlieder 

Endowment fund from Tulane University. 

 

REFERENCES 
 
1. Thomas H, Diamond J, Vieco A, Chaudhuri S, Shinnar E, 

Cromer S, Perel P, Mensah GA, Narula J, Johnson CO, 
Roth GA, Moran AE. Global atlas of cardiovascular 
disease 2000-2016: the path to prevention and control. 
Glob Heart. 2018; 13:143–63. 

 https://doi.org/10.1016/j.gheart.2018.09.511 
PMID:30301680 

2. GBD 2017 Disease and Injury Incidence and Prevalence 
Collaborators. Global, regional, and national incidence, 
prevalence, and years lived with disability for 354 
diseases and injuries for 195 countries and territories, 
1990-2017: a systematic analysis for the global burden 
of disease study 2017. Lancet. 2018; 392:1789–858. 

 https://doi.org/10.1016/S0140-6736(18)32279-7 
PMID:30496104 

3. GBD 2017 Causes of Death Collaborators. Global, 
regional, and national age-sex-specific mortality for 
282 causes of death in 195 countries and territories, 
1980-2017: a systematic analysis for the global burden 
of disease study 2017. Lancet. 2018; 392:1736–88. 

 https://doi.org/10.1016/S0140-6736(18)32203-7 
PMID:30496103 

4. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, 
Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, 
Isasi CR, Jiménez MC, Jordan LC, et al, and American 
Heart Association Statistics Committee and Stroke 
Statistics Subcommittee. Heart disease and stroke 

statistics-2017 update: a report from the American 
heart association. Circulation. 2017; 135:e146–603. 

 https://doi.org/10.1161/CIR.0000000000000485 
PMID:28122885 

5. Gluckman PD, Hanson MA, Bateson P, Beedle AS, Law 
CM, Bhutta ZA, Anokhin KV, Bougnères P, Chandak GR, 
Dasgupta P, Smith GD, Ellison PT, Forrester TE, et al. 
Towards a new developmental synthesis: adaptive 
developmental plasticity and human disease. Lancet. 
2009; 373:1654–57. 

 https://doi.org/10.1016/S0140-6736(09)60234-8 
PMID:19427960 

6. Sun D, Wang T, Heianza Y, Huang T, Shang X, Lv J, Li S, 
Harville E, Chen W, Fonseca V, Qi L. Birthweight and 
cardiometabolic risk patterns in multiracial children. Int 
J Obes (Lond). 2018; 42:20–27. 

 https://doi.org/10.1038/ijo.2017.196 PMID:28925411 

7. Tam CH, Wang Y, Luan J, Lee HM, Luk AO, Tutino GE, 
Tong PC, Ko GT, Ozaki R, Tam WH, Kong AP, So WY, 
Chan JC, Ma RC. Non-linear relationship between 
birthweight and cardiometabolic risk factors in Chinese 
adolescents and adults. Diabet Med. 2015; 32:220–25. 

 https://doi.org/10.1111/dme.12630 PMID:25388749 

8. Organization WH. Strategic priorities of the WHO 
Cardiovascular Disease programme. https://www.who. 
int/cardiovascular_diseases/priorities/en 

9. Chung RY, Schooling CM, Cowling BJ, Leung GM. How 
does socioeconomic development affect risk of 
mortality? an age-period-cohort analysis from a 
recently transitioned population in China. Am J 
Epidemiol. 2010; 171:345–56. 

 https://doi.org/10.1093/aje/kwp378 PMID:20042438 

10. Nossier SA, Naeim NE, El-Sayed NA, Abu Zeid AA. The 
effect of zinc supplementation on pregnancy 
outcomes: a double-blind, randomised controlled trial, 
Egypt. Br J Nutr. 2015; 114:274–85. 

 https://doi.org/10.1017/S000711451500166X 
PMID:26099195 

11. Potdar RD, Sahariah SA, Gandhi M, Kehoe SH, Brown N, 
Sane H, Dayama M, Jha S, Lawande A, Coakley PJ, 
Marley-Zagar E, Chopra H, Shivshankaran D, et al. 
Improving women’s diet quality preconceptionally and 
during gestation: effects on birth weight and 
prevalence of low birth weight—a randomized 
controlled efficacy trial in India (Mumbai maternal 
nutrition project). Am J Clin Nutr. 2014; 100:1257–68. 

 https://doi.org/10.3945/ajcn.114.084921 
PMID:25332324 

12. Andreassen OA, Djurovic S, Thompson WK, Schork AJ, 
Kendler KS, O’Donovan MC, Rujescu D, Werge T, van 
de Bunt M, Morris AP, McCarthy MI, Roddey JC, 
McEvoy LK, et al, and International Consortium for 

https://doi.org/10.1016/j.gheart.2018.09.511
https://pubmed.ncbi.nlm.nih.gov/30301680
https://doi.org/10.1016/S0140-6736(18)32279-7
https://pubmed.ncbi.nlm.nih.gov/30496104
https://doi.org/10.1016/S0140-6736(18)32203-7
https://pubmed.ncbi.nlm.nih.gov/30496103
https://doi.org/10.1161/CIR.0000000000000485
https://pubmed.ncbi.nlm.nih.gov/28122885
https://doi.org/10.1016/S0140-6736(09)60234-8
https://pubmed.ncbi.nlm.nih.gov/19427960
https://doi.org/10.1038/ijo.2017.196
https://pubmed.ncbi.nlm.nih.gov/28925411
https://doi.org/10.1111/dme.12630
https://pubmed.ncbi.nlm.nih.gov/25388749
https://www.who.int/cardiovascular_diseases/priorities/en
https://www.who.int/cardiovascular_diseases/priorities/en
https://doi.org/10.1093/aje/kwp378
https://pubmed.ncbi.nlm.nih.gov/20042438
https://doi.org/10.1017/S000711451500166X
https://pubmed.ncbi.nlm.nih.gov/26099195
https://doi.org/10.3945/ajcn.114.084921
https://pubmed.ncbi.nlm.nih.gov/25332324


 

www.aging-us.com 3628 AGING 

Blood Pressure GWAS, and Diabetes Genetics 
Replication and Meta-analysis Consortium, and 
Psychiatric Genomics Consortium Schizophrenia 
Working Group. Improved detection of common 
variants associated with schizophrenia by leveraging 
pleiotropy with cardiovascular-disease risk factors. Am 
J Hum Genet. 2013; 92:197–209. 

 https://doi.org/10.1016/j.ajhg.2013.01.001 
PMID:23375658 

13. Clausson B, Lichtenstein P, Cnattingius S. Genetic 
influence on birthweight and gestational length 
determined by studies in offspring of twins. BJOG. 
2000; 107:375–81. 

 https://doi.org/10.1111/j.1471-0528.2000.tb13234.x 
PMID:10740335 

14. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes 
TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, 
Goldstein BA, Stirrups K, König IR, Cazier JB, et al, and 
CARDIoGRAMplusC4D Consortium, and DIAGRAM 
Consortium, and CARDIOGENICS Consortium, and 
MuTHER Consortium, and Wellcome Trust Case 
Control Consortium. Large-scale association analysis 
identifies new risk loci for coronary artery disease. Nat 
Genet. 2013; 45:25–33. 

 https://doi.org/10.1038/ng.2480 PMID:23202125 

15. Coronary Artery Disease (C4D) Genetics Consortium. A 
genome-wide association study in europeans and 
south Asians identifies five new loci for coronary artery 
disease. Nat Genet. 2011; 43:339–44. 

 https://doi.org/10.1038/ng.782 PMID:21378988 

16. Howson JM, Zhao W, Barnes DR, Ho WK, Young R, Paul 
DS, Waite LL, Freitag DF, Fauman EB, Salfati EL, Sun BB, 
Eicher JD, Johnson AD, et al, and CARDIoGRAM-
plusC4D, and EPIC-CVD. Fifteen new risk loci for 
coronary artery disease highlight arterial-wall-specific 
mechanisms. Nat Genet. 2017; 49:1113–19. 

 https://doi.org/10.1038/ng.3874 PMID:28530674 

17. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, 
Marouli E, Zeng L, Ntalla I, Lai FY, Hopewell JC, 
Giannakopoulou O, Jiang T, Hamby SE, et al, EPIC-CVD 
Consortium, and CARDIoGRAMplusC4D, and UK 
Biobank CardioMetabolic Consortium CHD working 
group. Association analyses based on false discovery 
rate implicate new loci for coronary artery disease. Nat 
Genet. 2017; 49:1385–91. 

 https://doi.org/10.1038/ng.3913 PMID:28714975 

18. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, 
Kanoni S, Saleheen D, Kyriakou T, Nelson CP, Hopewell 
JC, Webb TR, Zeng L, Dehghan A, et al. A 
comprehensive 1,000 genomes-based genome-wide 
association meta-analysis of coronary artery disease. 
Nat Genet. 2015; 47:1121–30. 

 https://doi.org/10.1038/ng.3396 PMID:26343387 

19. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes 
TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger 
C, Absher D, Aherrahrou Z, Allayee H, et al, and 
Cardiogenics, and CARDIoGRAM Consortium. Large-
scale association analysis identifies 13 new 
susceptibility loci for coronary artery disease. Nat 
Genet. 2011; 43:333–38. 

 https://doi.org/10.1038/ng.784 PMID:21378990 

20. Freathy RM, Mook-Kanamori DO, Sovio U, Prokopenko I, 
Timpson NJ, Berry DJ, Warrington NM, Widen E, 
Hottenga JJ, Kaakinen M, Lange LA, Bradfield JP, Kerkhof 
M, et al, and Genetic Investigation of ANthropometric 
Traits (GIANT) Consortium, and Meta-Analyses of 
Glucose and Insulin-related traits Consortium, and 
Wellcome Trust Case Control Consortium, and Early 
Growth Genetics (EGG) Consortium. Variants in ADCY5 
and near CCNL1 are associated with fetal growth and 
birth weight. Nat Genet. 2010; 42:430–35. 

 https://doi.org/10.1038/ng.567 PMID:20372150 

21. Horikoshi M, Beaumont RN, Day FR, Warrington NM, 
Kooijman MN, Fernandez-Tajes J, Feenstra B, van 
Zuydam NR, Gaulton KJ, Grarup N, Bradfield JP, 
Strachan DP, Li-Gao R, et al, and CHARGE Consortium 
Hematology Working Group, and Early Growth 
Genetics (EGG) Consortium. Genome-wide associations 
for birth weight and correlations with adult disease. 
Nature. 2016; 538:248–52. 

 https://doi.org/10.1038/nature19806  
PMID:27680694 

22. Warrington NM, Beaumont RN, Horikoshi M, Day FR, 
Helgeland Ø, Laurin C, Bacelis J, Peng S, Hao K, 
Feenstra B, Wood AR, Mahajan A, Tyrrell J, et al, and 
EGG Consortium. Maternal and fetal genetic effects on 
birth weight and their relevance to cardio-metabolic 
risk factors. Nat Genet. 2019; 51:804–14. 

 https://doi.org/10.1038/s41588-019-0403-1 
PMID:31043758 

23. Magnus P, Gjessing HK, Skrondal A, Skjaerven R. 
Paternal contribution to birth weight. J Epidemiol 
Community Health. 2001; 55:873–77. 

 https://doi.org/10.1136/jech.55.12.873 
PMID:11707480 

24. Zdravkovic S, Wienke A, Pedersen NL, Marenberg ME, 
Yashin AI, De Faire U. Heritability of death from 
coronary heart disease: a 36-year follow-up of 20 966 
Swedish twins. J Intern Med. 2002; 252:247–54. 

 https://doi.org/10.1046/j.1365-2796.2002.01029.x 
PMID:12270005 

25. Pei YF, Zhang L, Papasian CJ, Wang YP, Deng HW. On 
individual genome-wide association studies and their 
meta-analysis. Hum Genet. 2014; 133:265–79. 

 https://doi.org/10.1007/s00439-013-1366-4 
PMID:24114349 

https://doi.org/10.1016/j.ajhg.2013.01.001
https://pubmed.ncbi.nlm.nih.gov/23375658
https://doi.org/10.1111/j.1471-0528.2000.tb13234.x
https://pubmed.ncbi.nlm.nih.gov/10740335
https://doi.org/10.1038/ng.2480
https://pubmed.ncbi.nlm.nih.gov/23202125
https://doi.org/10.1038/ng.782
https://pubmed.ncbi.nlm.nih.gov/21378988
https://doi.org/10.1038/ng.3874
https://pubmed.ncbi.nlm.nih.gov/28530674
https://doi.org/10.1038/ng.3913
https://pubmed.ncbi.nlm.nih.gov/28714975
https://doi.org/10.1038/ng.3396
https://pubmed.ncbi.nlm.nih.gov/26343387
https://doi.org/10.1038/ng.784
https://pubmed.ncbi.nlm.nih.gov/21378990
https://doi.org/10.1038/ng.567
https://pubmed.ncbi.nlm.nih.gov/20372150
https://doi.org/10.1038/nature19806
https://pubmed.ncbi.nlm.nih.gov/27680694
https://doi.org/10.1038/s41588-019-0403-1
https://pubmed.ncbi.nlm.nih.gov/31043758
https://doi.org/10.1136/jech.55.12.873
https://pubmed.ncbi.nlm.nih.gov/11707480
https://doi.org/10.1046/j.1365-2796.2002.01029.x
https://pubmed.ncbi.nlm.nih.gov/12270005
https://doi.org/10.1007/s00439-013-1366-4
https://pubmed.ncbi.nlm.nih.gov/24114349


 

www.aging-us.com 3629 AGING 

26. Stearns FW. One hundred years of pleiotropy: a 
retrospective. Genetics. 2010; 186:767–73. 

 https://doi.org/10.1534/genetics.110.122549 
PMID:21062962 

27. Sivakumaran S, Agakov F, Theodoratou E, Prendergast 
JG, Zgaga L, Manolio T, Rudan I, McKeigue P, Wilson JF, 
Campbell H. Abundant pleiotropy in human complex 
diseases and traits. Am J Hum Genet. 2011; 89:607–18. 

 https://doi.org/10.1016/j.ajhg.2011.10.004 
PMID:22077970 

28. Andreassen OA, Thompson WK, Schork AJ, Ripke S, 
Mattingsdal M, Kelsoe JR, Kendler KS, O'Donovan MC, 
Rujescu D, Werge T, Sklar P, Chen CH, McEvoy L, et al, 
and Psychiatric Genomics Consortium (PGC), and 
Bipolar Disorder and Schizophrenia Working Groups. 
Improved detection of common variants associated 
with schizophrenia and bipolar disorder using 
pleiotropy-informed conditional false discovery rate. 
PLoS Genet. 2013; 9:e1003455. 

 https://doi.org/10.1371/journal.pgen.1003455 
PMID:23637625 

29. Greenbaum J, Deng HW. A statistical approach to fine 
mapping for the identification of potential causal 
variants related to bone mineral density. J Bone Miner 
Res. 2017; 32:1651–58. 

 https://doi.org/10.1002/jbmr.3154 PMID:28425624 

30. Hu Y, Tan LJ, Chen XD, Liu Z, Min SS, Zeng Q, Shen H, 
Deng HW. Identification of novel potentially pleiotropic 
variants associated with osteoporosis and obesity 
using the cFDR method. J Clin Endocrinol Metab. 2018; 
103:125–38. 

 https://doi.org/10.1210/jc.2017-01531 
PMID:29145611 

31. Lin X, Peng C, Greenbaum J, Li ZF, Wu KH, Ao ZX, Zhang 
T, Shen J, Deng HW. Identifying potentially common 
genes between dyslipidemia and osteoporosis using 
novel analytical approaches. Mol Genet Genomics. 
2018; 293:711–23. 

 https://doi.org/10.1007/s00438-017-1414-1 
PMID:29327327 

32. Zhang Q, Wu KH, He JY, Zeng Y, Greenbaum J, Xia X, Liu 
HM, Lv WQ, Lin X, Zhang WD, Xi YL, Shi XZ, Sun CQ, 
Deng HW. Novel common variants associated with 
obesity and type 2 diabetes detected using a cFDR 
method. Sci Rep. 2017; 7:16397. 

 https://doi.org/10.1038/s41598-017-16722-6 
PMID:29180724 

33. Smith GD, Ebrahim S. ‘Mendelian randomization’: can 
genetic epidemiology contribute to understanding 
environmental determinants of disease? Int J 
Epidemiol. 2003; 32:1–22. 

 https://doi.org/10.1093/ije/dyg070  
PMID:12689998 

34. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey 
Smith G. Mendelian randomization: using genes as 
instruments for making causal inferences in 
epidemiology. Stat Med. 2008; 27:1133–63. 

 https://doi.org/10.1002/sim.3034  
PMID:17886233 

35. Lv WQ, Zhang X, Zhang Q, He JY, Liu HM, Xia X, Fan K, 
Zhao Q, Shi XZ, Zhang WD, Sun CQ, Deng HW. Novel 
common variants associated with body mass index and 
coronary artery disease detected using a pleiotropic 
cFDR method. J Mol Cell Cardiol. 2017; 112:1–7. 

 https://doi.org/10.1016/j.yjmcc.2017.08.011 
PMID:28843344 

36. Peng C, Shen J, Lin X, Su KJ, Greenbaum J, Zhu W, Lou 
HL, Liu F, Zeng CP, Deng WF, Deng HW. Genetic sharing 
with coronary artery disease identifies potential novel 
loci for bone mineral density. Bone. 2017; 103:70–77. 

 https://doi.org/10.1016/j.bone.2017.06.016 
PMID:28651948 

37. Wang Z, Qiu C, Lin X, Zhao LJ, Liu Y, Wu X, Wang Q, Liu 
W, Li K, Deng HW, Tang SY, Shen H. Identification of 
novel functional CpG-SNPs associated with type 2 
diabetes and coronary artery disease. Mol Genet 
Genomics. 2020; 295:607–19. 

 https://doi.org/10.1007/s00438-020-01651-3 
PMID:32162118 

38. Zhang Q, Liu HM, Lv WQ, He JY, Xia X, Zhang WD, Deng 
HW, Sun CQ. Additional common variants associated 
with type 2 diabetes and coronary artery disease 
detected using a pleiotropic cFDR method. J Diabetes 
Complications. 2018; 32:1105–12. 

 https://doi.org/10.1016/j.jdiacomp.2018.09.003 
PMID:30270018 

39. Zeng CP, Chen YC, Lin X, Greenbaum J, Chen YP, Peng 
C, Wang XF, Zhou R, Deng WM, Shen J, Deng HW. 
Increased identification of novel variants in type 2 
diabetes, birth weight and their pleiotropic loci. J 
Diabetes. 2017; 9:898–907. 

 https://doi.org/10.1111/1753-0407.12510 
PMID:27896934 

40. Brænne I, Civelek M, Vilne B, Di Narzo A, Johnson AD, 
Zhao Y, Reiz B, Codoni V, Webb TR, Foroughi Asl H, 
Hamby SE, Zeng L, Trégouët DA, et al, and Leducq 
Consortium CAD Genomics. Prediction of causal 
candidate genes in coronary artery disease loci. 
Arterioscler Thromb Vasc Biol. 2015; 35:2207–17. 

 https://doi.org/10.1161/ATVBAHA.115.306108 
PMID:26293461 

41. Byars SG, Huang QQ, Gray LA, Bakshi A, Ripatti S, 
Abraham G, Stearns SC, Inouye M. Genetic loci 
associated with coronary artery disease harbor 
evidence of selection and antagonistic pleiotropy. PLoS 
Genet. 2017; 13:e1006328. 

https://doi.org/10.1534/genetics.110.122549
https://pubmed.ncbi.nlm.nih.gov/21062962
https://doi.org/10.1016/j.ajhg.2011.10.004
https://pubmed.ncbi.nlm.nih.gov/22077970
https://doi.org/10.1371/journal.pgen.1003455
https://pubmed.ncbi.nlm.nih.gov/23637625
https://doi.org/10.1002/jbmr.3154
https://pubmed.ncbi.nlm.nih.gov/28425624
https://doi.org/10.1210/jc.2017-01531
https://pubmed.ncbi.nlm.nih.gov/29145611
https://doi.org/10.1007/s00438-017-1414-1
https://pubmed.ncbi.nlm.nih.gov/29327327
https://doi.org/10.1038/s41598-017-16722-6
https://pubmed.ncbi.nlm.nih.gov/29180724
https://doi.org/10.1093/ije/dyg070
https://pubmed.ncbi.nlm.nih.gov/12689998
https://doi.org/10.1002/sim.3034
https://pubmed.ncbi.nlm.nih.gov/17886233
https://doi.org/10.1016/j.yjmcc.2017.08.011
https://pubmed.ncbi.nlm.nih.gov/28843344
https://doi.org/10.1016/j.bone.2017.06.016
https://pubmed.ncbi.nlm.nih.gov/28651948
https://doi.org/10.1007/s00438-020-01651-3
https://pubmed.ncbi.nlm.nih.gov/32162118
https://doi.org/10.1016/j.jdiacomp.2018.09.003
https://pubmed.ncbi.nlm.nih.gov/30270018
https://doi.org/10.1111/1753-0407.12510
https://pubmed.ncbi.nlm.nih.gov/27896934
https://doi.org/10.1161/ATVBAHA.115.306108
https://pubmed.ncbi.nlm.nih.gov/26293461


 

www.aging-us.com 3630 AGING 

 https://doi.org/10.1371/journal.pgen.1006328 
PMID:28640878 

42. López-Mejías R, Corrales A, Vicente E, Robustillo-
Villarino M, González-Juanatey C, Llorca J, Genre F, 
Remuzgo-Martínez S, Dierssen-Sotos T, Miranda-Filloy 
JA, Huaranga MA, Pina T, Blanco R, et al. Influence of 
coronary artery disease and subclinical atherosclerosis 
related polymorphisms on the risk of atherosclerosis in 
rheumatoid arthritis. Sci Rep. 2017; 7:40303. 

 https://doi.org/10.1038/srep40303 PMID:28059143 

43. Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio 
U, Taal HR, Hennig BJ, Bradfield JP, St Pourcain B, Evans 
DM, Charoen P, Kaakinen M, Cousminer DL, Lehtimäki 
T, et al, and Meta-Analyses of Glucose- and Insulin-
related traits Consortium (MAGIC), and Early Growth 
Genetics (EGG) Consortium. New loci associated with 
birth weight identify genetic links between intrauterine 
growth and adult height and metabolism. Nat Genet. 
2013; 45:76–82. 

 https://doi.org/10.1038/ng.2477 PMID:23202124 

44. van der Valk RJ, Kreiner-Møller E, Kooijman MN, 
Guxens M, Stergiakouli E, Sääf A, Bradfield JP, Geller F, 
Hayes MG, Cousminer DL, Körner A, Thiering E, Curtin 
JA, et al, and Early Genetics and Lifecourse 
Epidemiology (EAGLE) Consortium, and Genetic 
Investigation of ANthropometric Traits (GIANT) 
Consortium, and Early Growth Genetics (EGG) 
Consortium. A novel common variant in DCST2 is 
associated with length in early life and height in 
adulthood. Hum Mol Genet. 2015; 24:1155–68. 

 https://doi.org/10.1093/hmg/ddu510 PMID:25281659 

45. Au Yeung SL, Lin SL, Li AM, Schooling CM. Birth weight 
and risk of ischemic heart disease: a mendelian 
randomization study. Sci Rep. 2016; 6:38420. 

 https://doi.org/10.1038/srep38420 PMID:27924921 

46. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. 
LDL receptor-related protein 1: unique tissue-specific 
functions revealed by selective gene knockout studies. 
Physiol Rev. 2008; 88:887–918. 

 https://doi.org/10.1152/physrev.00033.2007 
PMID:18626063 

47. Mueller PA, Zhu L, Tavori H, Huynh K, Giunzioni I, 
Stafford JM, Linton MF, Fazio S. Deletion of 
macrophage low-density lipoprotein receptor-related 
protein 1 (LRP1) accelerates atherosclerosis regression 
and increases C-C chemokine receptor type 7 (CCR7) 
expression in plaque macrophages. Circulation. 2018; 
138:1850–63. 

 https://doi.org/10.1161/CIRCULATIONAHA.117.03170
2 PMID:29794082 

48. Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J. 
LRP: role in vascular wall integrity and protection from 
atherosclerosis. Science. 2003; 300:329–32. 

 https://doi.org/10.1126/science.1082095 
PMID:12690199 

49. Mao H, Lockyer P, Li L, Ballantyne CM, Patterson C, Xie 
L, Pi X. Endothelial LRP1 regulates metabolic responses 
by acting as a co-activator of PPARγ. Nat Commun. 
2017; 8:14960. 

 https://doi.org/10.1038/ncomms14960 
PMID:28393867 

50. Chatterjee M, Rath D, Schlotterbeck J, Rheinlaender J, 
Walker-Allgaier B, Alnaggar N, Zdanyte M, Müller I, 
Borst O, Geisler T, Schäffer TE, Lämmerhofer M, Gawaz 
M. Regulation of oxidized platelet lipidome: 
implications for coronary artery disease. Eur Heart J. 
2017; 38:1993–2005. 

 https://doi.org/10.1093/eurheartj/ehx146 
PMID:28431006 

51. Hellmuth C, Lindsay KL, Uhl O, Buss C, Wadhwa PD, 
Koletzko B, Entringer S. Association of maternal 
prepregnancy BMI with metabolomic profile across 
gestation. Int J Obes (Lond). 2017; 41:159–69. 

 https://doi.org/10.1038/ijo.2016.153 PMID:27569686 

52. Ikram MK, Sim X, Jensen RA, Cotch MF, Hewitt AW, 
Ikram MA, Wang JJ, Klein R, Klein BE, Breteler MM, 
Cheung N, Liew G, Mitchell P, et al, and Global BPgen 
Consortium. Four novel loci (19q13, 6q24, 12q24, and 
5q14) influence the microcirculation in vivo. PLoS 
Genet. 2010; 6:e1001184. 

 https://doi.org/10.1371/journal.pgen.1001184 
PMID:21060863 

53. Ciosk R, DePalma M, Priess JR. ATX-2, the C. Elegans 
ortholog of ataxin 2, functions in translational 
regulation in the germline. Development. 2004; 
131:4831–41. 

 https://doi.org/10.1242/dev.01352 PMID:15342467 

54. Lastres-Becker I, Brodesser S, Lütjohann D, Azizov M, 
Buchmann J, Hintermann E, Sandhoff K, Schürmann A, 
Nowock J, Auburger G. Insulin receptor and lipid 
metabolism pathology in ataxin-2 knock-out mice. 
Hum Mol Genet. 2008; 17:1465–81. 

 https://doi.org/10.1093/hmg/ddn035 PMID:18250099 

55. Kiehl TR, Nechiporuk A, Figueroa KP, Keating MT, 
Huynh DP, Pulst SM. Generation and characterization 
of Sca2 (ataxin-2) knockout mice. Biochem Biophys Res 
Commun. 2006; 339:17–24. 

 https://doi.org/10.1016/j.bbrc.2005.10.186 
PMID:16293225 

56. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, 
Huang J, Arnold M, Erte I, Forgetta V, Yang TP, Walter 
K, Menni C, Chen L, et al, and Multiple Tissue Human 
Expression Resource (MuTHER) Consortium. An atlas of 
genetic influences on human blood metabolites. Nat 
Genet. 2014; 46:543–50. 

 https://doi.org/10.1038/ng.2982 PMID:24816252 

https://doi.org/10.1371/journal.pgen.1006328
https://pubmed.ncbi.nlm.nih.gov/28640878
https://doi.org/10.1038/srep40303
https://pubmed.ncbi.nlm.nih.gov/28059143
https://doi.org/10.1038/ng.2477
https://pubmed.ncbi.nlm.nih.gov/23202124
https://doi.org/10.1093/hmg/ddu510
https://pubmed.ncbi.nlm.nih.gov/25281659
https://doi.org/10.1038/srep38420
https://pubmed.ncbi.nlm.nih.gov/27924921
https://doi.org/10.1152/physrev.00033.2007
https://pubmed.ncbi.nlm.nih.gov/18626063
https://doi.org/10.1161/CIRCULATIONAHA.117.031702
https://doi.org/10.1161/CIRCULATIONAHA.117.031702
https://pubmed.ncbi.nlm.nih.gov/29794082
https://doi.org/10.1126/science.1082095
https://pubmed.ncbi.nlm.nih.gov/12690199
https://doi.org/10.1038/ncomms14960
https://pubmed.ncbi.nlm.nih.gov/28393867
https://doi.org/10.1093/eurheartj/ehx146
https://pubmed.ncbi.nlm.nih.gov/28431006
https://doi.org/10.1038/ijo.2016.153
https://pubmed.ncbi.nlm.nih.gov/27569686
https://doi.org/10.1371/journal.pgen.1001184
https://pubmed.ncbi.nlm.nih.gov/21060863
https://doi.org/10.1242/dev.01352
https://pubmed.ncbi.nlm.nih.gov/15342467
https://doi.org/10.1093/hmg/ddn035
https://pubmed.ncbi.nlm.nih.gov/18250099
https://doi.org/10.1016/j.bbrc.2005.10.186
https://pubmed.ncbi.nlm.nih.gov/16293225
https://doi.org/10.1038/ng.2982
https://pubmed.ncbi.nlm.nih.gov/24816252


 

www.aging-us.com 3631 AGING 

57. Wang Q, Zhang M, Ding Y, Wang Q, Zhang W, Song P, 
Zou MH. Activation of NAD(P)H oxidase by tryptophan-
derived 3-hydroxykynurenine accelerates endothelial 
apoptosis and dysfunction in vivo. Circ Res. 2014; 
114:480–92. 

 https://doi.org/10.1161/CIRCRESAHA.114.302113 
PMID:24281189 

58. Niinisalo P, Oksala N, Levula M, Pelto-Huikko M, 
Järvinen O, Salenius JP, Kytömäki L, Soini JT, Kähönen 
M, Laaksonen R, Hurme M, Lehtimäki T. Activation of 
indoleamine 2,3-dioxygenase-induced tryptophan 
degradation in advanced atherosclerotic plaques: 
tampere vascular study. Ann Med. 2010; 42:55–63. 

 https://doi.org/10.3109/07853890903321559 
PMID:19941414 

59. Yun TJ, Lee JS, Machmach K, Shim D, Choi J, Wi YJ, Jang 
HS, Jung IH, Kim K, Yoon WK, Miah MA, Li B, Chang J, et 
al. Indoleamine 2,3-Dioxygenase-Expressing Aortic 
Plasmacytoid Dendritic Cells Protect against 
Atherosclerosis by Induction of Regulatory T Cells. Cell 
Metab. 2016; 24:886. 

 https://doi.org/10.1016/j.cmet.2016.11.008 
PMID:27974180 

60. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn 
M, Changsirivathanathamrong D, Wu BJ, Ball HJ, 
Thomas SR, Kapoor V, Celermajer DS, Mellor AL, et al. 
Kynurenine is an endothelium-derived relaxing factor 
produced during inflammation. Nat Med. 2010; 
16:279–85. 

 https://doi.org/10.1038/nm.2092 PMID:20190767 

61. Favennec M, Hennart B, Caiazzo R, Leloire A, Yengo L, 
Verbanck M, Arredouani A, Marre M, Pigeyre M, 
Bessede A, Guillemin GJ, Chinetti G, Staels B, et al. The 
kynurenine pathway is activated in human obesity and 
shifted toward kynurenine monooxygenase activation. 
Obesity (Silver Spring). 2015; 23:2066–74. 

 https://doi.org/10.1002/oby.21199  
PMID:26347385 

62. Wolowczuk I, Hennart B, Leloire A, Bessede A, Soichot 
M, Taront S, Caiazzo R, Raverdy V, Pigeyre M, Guillemin 
GJ, Allorge D, Pattou F, Froguel P, Poulain-Godefroy O, 
and ABOS Consortium. Tryptophan metabolism 
activation by indoleamine 2,3-dioxygenase in adipose 
tissue of obese women: an attempt to maintain 
immune homeostasis and vascular tone. Am J Physiol 
Regul Integr Comp Physiol. 2012; 303:R135–43. 

 https://doi.org/10.1152/ajpregu.00373.2011 
PMID:22592557 

63. Wang KC, Lim CH, McMillen IC, Duffield JA, Brooks DA, 
Morrison JL. Alteration of cardiac glucose metabolism 
in association to low birth weight: experimental 
evidence in lambs with left ventricular hypertrophy. 
Metabolism. 2013; 62:1662–72. 

 https://doi.org/10.1016/j.metabol.2013.06.013 
PMID:23928106 

64. Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, 
Sun BB, Laser A, Maranville JC, Wu H, Ho JE, 
Courchesne P, Lyass A, et al. Genome-wide mapping of 
plasma protein QTLs identifies putatively causal genes 
and pathways for cardiovascular disease. Nat 
Commun. 2018; 9:3268. 

 https://doi.org/10.1038/s41467-018-05512-x 
PMID:30111768 

65. Nielson C, Lange T, Hadjokas N. Blood glucose and 
coronary artery disease in nondiabetic patients. 
Diabetes Care. 2006; 29:998–1001. 

 https://doi.org/10.2337/diacare.295998 
PMID:16644627 

66. Karalis DG, Victor B, Ahedor L, Liu L. Use of lipid-
lowering medications and the likelihood of achieving 
optimal LDL-cholesterol goals in coronary artery 
disease patients. Cholesterol. 2012; 2012:861924. 

 https://doi.org/10.1155/2012/861924 PMID:22888414 

67. Autism Spectrum Disorders Working Group of The 
Psychiatric Genomics Consortium. Meta-analysis of 
GWAS of over 16,000 individuals with autism spectrum 
disorder highlights a novel locus at 10q24.32 and a 
significant overlap with schizophrenia. Mol Autism. 
2017; 8:21. 

 https://doi.org/10.1186/s13229-017-0137-9 
PMID:28540026 

68. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira 
MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, 
Sham PC. PLINK: a tool set for whole-genome 
association and population-based linkage analyses. Am 
J Hum Genet. 2007; 81:559–75. 

 https://doi.org/10.1086/519795 PMID:17701901 

69. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 
Controlling the false discovery rate in behavior 
genetics research. Behav Brain Res. 2001; 125:279–84. 

 https://doi.org/10.1016/s0166-4328(01)00297-2 
PMID:11682119 

70. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, 
Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan 
VY, Yarmolinsky J, Shihab HA, et al. The MR-base 
platform supports systematic causal inference across 
the human phenome. Elife. 2018; 7:e34408. 

 https://doi.org/10.7554/eLife.34408 PMID:29846171 

71. Zhang Q, Greenbaum J, Zhang WD, Sun CQ, Deng HW. 
Age at menarche and osteoporosis: a mendelian 
randomization study. Bone. 2018; 117:91–97. 

 https://doi.org/10.1016/j.bone.2018.09.015 
PMID:30240960 

72. Hartwig FP, Davies NM, Hemani G, Davey Smith G. 
Two-sample mendelian randomization: avoiding the 

https://doi.org/10.1161/CIRCRESAHA.114.302113
https://pubmed.ncbi.nlm.nih.gov/24281189
https://doi.org/10.3109/07853890903321559
https://pubmed.ncbi.nlm.nih.gov/19941414
https://doi.org/10.1016/j.cmet.2016.11.008
https://pubmed.ncbi.nlm.nih.gov/27974180
https://doi.org/10.1038/nm.2092
https://pubmed.ncbi.nlm.nih.gov/20190767
https://doi.org/10.1002/oby.21199
https://pubmed.ncbi.nlm.nih.gov/26347385
https://doi.org/10.1152/ajpregu.00373.2011
https://pubmed.ncbi.nlm.nih.gov/22592557
https://doi.org/10.1016/j.metabol.2013.06.013
https://pubmed.ncbi.nlm.nih.gov/23928106
https://doi.org/10.1038/s41467-018-05512-x
https://pubmed.ncbi.nlm.nih.gov/30111768
https://doi.org/10.2337/diacare.295998
https://pubmed.ncbi.nlm.nih.gov/16644627
https://doi.org/10.1155/2012/861924
https://pubmed.ncbi.nlm.nih.gov/22888414
https://doi.org/10.1186/s13229-017-0137-9
https://pubmed.ncbi.nlm.nih.gov/28540026
https://doi.org/10.1086/519795
https://pubmed.ncbi.nlm.nih.gov/17701901
https://doi.org/10.1016/s0166-4328(01)00297-2
https://pubmed.ncbi.nlm.nih.gov/11682119
https://doi.org/10.7554/eLife.34408
https://pubmed.ncbi.nlm.nih.gov/29846171
https://doi.org/10.1016/j.bone.2018.09.015
https://pubmed.ncbi.nlm.nih.gov/30240960


 

www.aging-us.com 3632 AGING 

downsides of a powerful, widely applicable but 
potentially fallible technique. Int J Epidemiol. 2016; 
45:1717–26. 

 https://doi.org/10.1093/ije/dyx028  
PMID:28338968 

73. Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, 
Vermaat M, van Iterson M, van Dijk F, van Galen M, 
Bot J, Slieker RC, Jhamai PM, Verbiest M, et al, and 
BIOS Consortium. Disease variants alter transcription 
factor levels and methylation of their binding sites. Nat 
Genet. 2017; 49:131–38. 

 https://doi.org/10.1038/ng.3721  
PMID:27918535 

74. Zheng Q, Wang XJ. GOEAST: a web-based software 
toolkit for gene ontology enrichment analysis. Nucleic 
Acids Res. 2008; 36:W358–63. 

 https://doi.org/10.1093/nar/gkn276 PMID:18487275 

75. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, 
Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, 
Bork P, Jensen LJ, Mering CV. STRING v11: protein-
protein association networks with increased coverage, 
supporting functional discovery in genome-wide 
experimental datasets. Nucleic Acids Res. 2019; 
47:D607–13. 

 https://doi.org/10.1093/nar/gky1131  
PMID:30476243 

  

https://doi.org/10.1093/ije/dyx028
https://pubmed.ncbi.nlm.nih.gov/28338968
https://doi.org/10.1038/ng.3721
https://pubmed.ncbi.nlm.nih.gov/27918535
https://doi.org/10.1093/nar/gkn276
https://pubmed.ncbi.nlm.nih.gov/18487275
https://doi.org/10.1093/nar/gky1131
https://pubmed.ncbi.nlm.nih.gov/30476243


 

www.aging-us.com 3633 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Stratified Q-Q plots. Stratified Q-Q plots of nominal vs. empirical -log10(p) values in principal trait below the 

standard GWAS threshold of p ≤ 5 × 10−8 as a function of the significance of the association with conditional trait at the level of p ≤ 1, p ≤ 0.1, 
p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001, respectively. (A) CAD as a function of the significance of the association with ASD, (B) ASD as a function of 
the significance of the association with CAD, (C) BW as a function of the significance of the association with ASD, and (D) ASD as a function of 
the significance of the association with BW. 
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Supplementary Figure 2. MR regression scatter plot. The relationship of the SNP effects on the exposure against the SNP effects on 
the outcome was depicted using a scatter plot. The different color lines show the results of corresponding MR analysis methods. 
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Supplementary Figure 3. MR regression funnel plot. Asymmetry in a funnel plot is useful for gauging the reliability of a particular MR 

analysis Each SNP's MR estimate is plotted against its minor allele frequency (MAF) corrected association with BW. A MAF correction 
proportional to the BW related SNP standard error is used since a low-frequency allele is likely to be measured with low precision. Similar to 
the use of funnel plots in the meta-analysis literature, this plot can be used for visual inspection of symmetry, where any deviation can be 
suggestive of pleiotropy. 
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Supplementary Figure 4. Leave-one-out plot. The leave-one-out analysis result was visualized by the forest plot. Each black dot and line 

correspond to the effect size and 95% confidence interval (95%CI), and the bottom red dot and line is the overall effect size and 95%CI. 
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Supplementary Figure 5. Functional protein association network analysis. Connections are based on co-expression and 
experimental evidence with a STRING 10.5 summary score above 0.4. Each filled node denotes a gene; edges between nodes indicate 
protein-protein interactions between protein products of the corresponding genes in (A) CAD and (B) BW. Different edge colors represent the 
types of evidence for the association. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 4, 6. 

 

Supplementary Table 1. Conditional FDR values of 109 SNPs for CAD given the BW (cFDR ≤ 0.05). 

 

Supplementary Table 2. 26 SNPs in high LD (R2> 0.6) with CAD-associated loci. 

SNP Traits Proxy SNP R2 P_value 

rs10781976 Coronary artery disease rs4888378 0.922 6E-15 

rs10818580 Coronary artery disease rs10818576 0.874 8E-09 

rs12044531 Coronary artery disease rs61776719 0.630 1E-09 

rs13070927 Cardiovascular disease rs2131570 0.992 5E-09 

rs1418278 Coronary artery disease rs10826753 0.692 2E-08 

rs1541853 Ischemic stroke rs7582720 1.000 4E-09 

rs2001945 Coronary artery disease rs6982502 0.988 8E-23 

rs2166529 Coronary artery disease rs6743030 0.926 2E-23 

rs2238151 Ischemic stroke rs10744777 0.995 4E-09 

rs2306374 Coronary artery disease rs185244 0.938 2E-17 

rs2812 Coronary artery disease rs9892152 1.000 6E-11 

rs34759087 Coronary artery disease (myocardial infarction) rs7623687 0.714 4E-10 

rs3754211 Coronary artery disease rs6587520 0.750 9E-09 

rs4245791 Coronary artery disease (myocardial infarction) rs4299376 0.968 6E-10 

rs4420638 Coronary artery disease rs56131196 1.000 2E-14 

rs4767293 Ischemic stroke rs10744777 0.946 4E-09 

rs4803455 Coronary artery disease rs2288874 0.741 4E-16 

rs583489 Coronary artery disease rs518594 0.694 1E-12 

rs6922782 Ischemic stroke rs4714955 0.617 4E-11 

rs7164299 Coronary artery disease rs734780 0.960 4E-10 

rs7168915 Coronary artery disease (myocardial infarction) rs7164479 0.731 6E-18 

rs7678 Coronary artery disease rs6004124 0.929 3E-09 

rs7698460 Coronary artery disease rs13131930 0.720 5E-19 

rs93139 Coronary artery disease rs10840293 0.944 9E-13 

rs990619 Coronary artery disease rs1842896 0.984 1E-11 

rs998584 Cardiovascular disease rs6905288 0.688 1E-12 

 

Supplementary Table 3. Conditional FDR values of 111 SNPs for CAD given the BW in validation dataset in validation 
dataset (cFDR ≤ 0.05). 

Supplementary Table 4. Conditional FDR values of 203 SNPs for BW given the CAD (cFDR ≤ 0.05). 
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Supplementary Table 5. 19 SNPs in high LD (R2> 0.6) with BW-associated loci. 

SNP Traits Proxy SNP R2 P_value 

rs10786156 Birth weight rs2274224 0.996 8.00E-13 

rs10840346 Birth weight rs4444073 0.829 3.00E-15 

rs1218565 Birth weight rs6426985 0.832 7.00E-11 

rs1319046 Birth weight rs4965425 0.819 4.00E-09 

rs1319859 Birth weight rs11630479 0.849 9.00E-07 

rs1415181 Birth weight rs1244983 0.733 5.00E-10 

rs1983127 Birth weight rs9645500 0.732 1.00E-12 

rs2423512 Birth weight rs6040076 0.799 7.00E-09 

rs2823025 Birth weight rs2229742 0.814 2.00E-08 

rs4812493 Birth weight rs753381 0.720 3.00E-09 

rs5765273 Birth weight rs11704481 0.662 1.00E-08 

rs6007030 Birth weight rs11704481 0.603 1.00E-08 

rs6072263 Birth weight rs753381 0.724 3.00E-09 

rs6918981 Birth length rs1759645 0.663 7.00E-10 

rs7309412 Birth weight rs2647873 0.877 3.00E-12 

rs7846135 Birth weight rs8180991 0.828 1.00E-08 

rs821551 Birth weight rs670523 0.645 8.00E-12 

rs889203 Birth weight rs2045457 0.779 6.00E-09 

rs895964 Birth weight rs2306547 0.625 4.00E-13 

 

Supplementary Table 6. Conditional FDR values of 229 SNPs for BW given the CAD in validation dataset  
(cFDR ≤ 0.05). 
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Supplementary Table 7. MetaQTL effects of significant SNPs. 

SNP Traits Metabolics 
Related disease or 

biofunctions(PMID) 

Sample  

Type 
P_value Source 

rs10774625 Pleiotropic 5-hydroxytryptophan Depression(31071306) serum 6.52E-06 SI data (Long et al.) 

  hypoxanthine Coronary artery disease (18651524) serum 1.29E-06 SI data (Long et al.) 

  quinolinate Acute kidney injury (31055583) serum 3.21E-06 SI data (Long et al.) 

  C-glycosyltryptophan  serum 5.41E-05 SI data (Shin et al.) 

  gamma-glutamylleucine  serum 6.14E-05 SI data (Shin et al.) 

  kynurenine Blood pressure (20190767) serum 1.47E-16 SI data (Shin et al.) 

  erythronate Cirrhosis (29291380) serum 5.78E-05 SI data (Shin et al.) 

rs11066301 Pleiotropic kynurenine Blood pressure (20190767) serum 2.93E-11 SI data (Shin et al.) 

  erythronate Cirrhosis (29291380) serum 1.71E-05 SI data (Shin et al.) 

rs11172113 Pleiotropic SM C18:1 Coronary artery disease (28431006) serum 9.21E-05 SI data (Draisma et al.) 

rs630014 Pleiotropic glycylglycine Alzheimer's disease (28951883) serum 6.26E-06 SI data (Long et al.) 

  ADpSGEGDFXAEGGGVR T2D (30372032) serum 3.53E-09 SI data (Shin et al.) 

  ADpSGEGDFXAEGGGVR T2D (30372032) serum 1.64E-06 SI data (Suhre et al.) 

rs10791643 CAD propylene glycol Hyperketonemia (27638258) urine 4.60E-05 SI data (Raffler et al.) 

rs11066301 CAD kynurenine Blood pressure (20190767) serum 2.93E-11 SI data (Shin et al.) 

  erythronate Cirrhosis (29291380) serum 1.71E-05 SI data (Shin et al.) 

rs11668477 CAD cholesterol Multiple metabolic disease (28319895) serum 7.69E-05 SI data (Shin et al.) 

rs1418278 CAD X-14057  serum 2.98E-05 SI data (Shin et al.) 

rs1541853 CAD PC aa C32:2  serum 9.24E-05 SI data (Draisma et al.) 

rs3811417 CAD nonanoylcarnitine  serum 9.50E-05 SI data (Shin et al.) 

rs3918291 CAD 1,7-dimethylurate  serum 5.41E-05 SI data (Suhre et al.) 

rs405509 CAD X-11820  serum 4.82E-11 SI data (Shin et al.) 

rs4245791 CAD X-12063  serum 3.07E-08 SI data (Shin et al.) 

rs445925 CAD palmitoyl-linoleoyl-glycerol  serum 2.11E-06 SI data (Long et al.) 

  17beta-diol monosulfate  serum 2.07E-06 SI data (Long et al.) 

  oleoyl-linoleoyl-glycerol  serum 7.34E-06 SI data (Long et al.) 

  Tetradecenoylcarnitine Aging-related Diseases (30498825) serum 3.00E-05 SI data (Draisma et al.) 

  PC aa C28:1  serum 6.54E-06 SI data (Draisma et al.) 

  palmitoyl sphingomyelin Dyslipidemia (18299615) serum 1.97E-09 SI data (Shin et al.) 

  cholesterol Multiple metabolic disease (28319895) serum 4.10E-10 SI data (Shin et al.) 

rs4895390 CAD 2-hydroxyacetaminophen sulfate Children obesity (30253079) serum 8.89E-05 SI data (Shin et al.) 

rs624249 CAD X-12798  serum 2.38E-11 SI data (Long et al.) 

rs6922782 CAD X-12411  serum 6.65E-06 SI data (Long et al.) 

rs998584 CAD SM C16:1  serum 2.76E-05 SI data (Draisma et al.) 

rs10221235 BW PC aa C38:6  serum 1.66E-05 SI data (Draisma et al.) 

rs1042725 BW serine Multiple metabolic disease (28319895) serum 7.98E-07 SI data (Shin et al.) 

rs10786156 BW cyclo(leu-pro)  serum 1.26E-05 SI data (Shin et al.) 

rs10786706 BW X-12212  serum 2.68E-05 SI data (Shin et al.) 

rs11125079 BW HWESASXX Blood pressure (27129722) serum 7.34E-05 SI data (Suhre et al.) 

rs11187076 BW pregnen-diol disulfate  serum 1.55E-07 SI data (Long et al.) 

rs12371967 BW malate  serum 2.47E-05 SI data (Shin et al.) 

rs12656216 BW lysine birth weight (19067286) serum 2.82E-05 SI data (Shin et al.) 

rs1389923 BW hydroxyphenylacetic acid monosulfate  serum 7.18E-06 SI data (Shin et al.) 

rs16887484 BW guanosine  serum 8.82E-07 SI data (Shin et al.) 

  inosine  serum 4.51E-05 SI data (Shin et al.) 

rs1797081 BW X-12749  serum 5.74E-05 SI data (Shin et al.) 
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rs2087826 BW cotinine  serum 3.39E-05 SI data (Shin et al.) 

rs2497304 BW 21-hydroxypregnenolone disulfate  serum 3.37E-06 SI data (Long et al.) 

  dehydroisoandrosterone sulfate  serum 8.55E-05 SI data (Shin et al.) 

rs3198697 BW 1-dihomo-linolenoyl-GPC  serum 4.53E-06 SI data (Long et al.) 

  dihomo-linolenate Oxidative stress (24760997) serum 1.56E-07 SI data (Shin et al.) 

  1-eicosatrienoylglycerophosphocholine  serum 2.35E-05 SI data (Suhre et al.) 

rs3849774 BW 1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPE  serum 8.36E-06 SI data (Long et al.) 

rs4428060 BW ADpSGEGDFXAEGGGVR T2D (30372032) serum 5.56E-05 SI data (Shin et al.) 

  ADpSGEGDFXAEGGGVR T2D (30372032) serum 6.92E-05 SI data (Suhre et al.) 

rs4712542 BW dehydroisoandrosterone sulfate  serum 4.09E-05 SI data (Shin et al.) 

rs475931 BW 4-hydroxyhippurate  serum 1.82E-05 SI data (Shin et al.) 

rs4812493 BW ADSGEGDFXAEGGGVR T2D (30372032) serum 6.73E-05 SI data (Shin et al.) 

rs4875812 BW deoxycholate  serum 6.12E-05 SI data (Shin et al.) 

rs533318 BW tiglyl carnitine  serum 4.81E-05 SI data (Suhre et al.) 

rs6948511 BW X-11795  serum 3.30E-06 SI data (Shin et al.) 

rs8108865 BW HWESASXX Blood pressure (27129722) serum 7.05E-05 SI data (Suhre et al.) 

rs889203 BW 3-methylxanthine  serum 9.95E-06 SI data (Suhre et al.) 

 

Supplementary Table 8. 9 pleiotropic SNPs also associated with other phenotypes. 

SNP Chr Pos Alt metaQTL/pQTL/meQTL/eQTL ccFDR Traits PMID 

rs10774625 12 111472415 A/T metaQTL/pQTL/meQTL/eQTL(3 hits) 3.06E-05 Colorectal cancer 29547645 
      Hashimoto's thyroiditis 27268232 
      Systemic lupus 27906046 
      Type 1 diabetes 24936253 
      Hypertension 19430479 

rs11066301 12 112433568 A/T metaQTL/meQTL/eQTL(1 hit) 6.50E-03 Hematological parameters 19820697 

rs11172113 12 57133500 T/A metaQTL/meQTL/eQTL(4 hits) 3.18E-02 Headache 29397368 
      Migraine 27322543 
      Pulmonary function 21946350 

rs3756668 5 68300260 G/C  1.32E-02 Type 2 diabetes 29893513 
    

 
 Small cell lung cancer 28280736 

    
 

 Endometrial cancer 22146979 

rs630014 9 133274306 A/T metaQTL/meQTL/eQTL(9 hits) 1.16E-02 Pancreatic ductal adenocarcinoma 23816557 
      Venous thromboembolism 21463476 
      Pancreatic cancer 22523087 

rs670950 19 43777410 T/A eQTL(1 hit) 3.15E-02 Vascular diseases 19644414 

rs6713510 2 226169783 G/C 
 

1.29E-02 Fasting plasma glucose 21188353 

rs8039305 15 90879313 T/A meQTL/eQTL(27 hits) 3.77E-06 Hypertension 28686695 

rs821551 1 155718789 C/G meQTL/eQTL(50 hits) 1.08E-02 Osteoporotic fractures 21760914 
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Supplementary Table 9. Conjunction cFDR for 17 pleiotropic SNPs in CAD and BW in validation dataset (ccFDR  
≤ 0.05). 

SNP Chr Pos Alt Gene Annotation cFDR.CAD cFDR.BW ccFDR Validation 

rs1042725 12 65964567 C/T HMGA2 3'-UTR 1.05E-02 7.21E-29 1.05E-02 No 

rs10774625 12 111472415 A/T ATXN2 intronic 5.16E-12 2.04E-05 2.04E-05 Yes 

rs11066301 12 112433568 A/T PTPN11 intronic 9.98E-05 9.88E-03 9.88E-03 Yes 

rs11206803 1 56411837 C/G AC119674.2 intronic 4.86E-03 4.44E-02 4.44E-02 Yes 

rs11853441 15 90856978 T/G Metazoa_SRP intergenic 9.38E-03 5.99E-03 9.38E-03 No 

rs12306172 12 54145221 G/C SMUG1 intronic 2.20E-03 1.52E-04 2.20E-03 Yes 

rs2243621 6 31464043 C/T HCP5 3'-UTR 2.56E-02 4.50E-02 4.50E-02 No 

rs2339940 2 24028917 G/C MFSD2B intronic 4.45E-02 1.16E-04 4.45E-02 Yes 

rs4233701 2 23706216 G/C KLHL29 intronic 4.50E-02 1.15E-04 4.50E-02 Yes 

rs4704942 5 158466352 G/C RP11 intergenic 4.95E-02 1.83E-05 4.95E-02 No 

rs6016377 20 40544088 C/T SNORD112 intergenic 2.95E-02 1.83E-07 2.95E-02 No 

rs630014 9 133274306 A/T ABO intronic 2.05E-03 9.57E-03 9.57E-03 Yes 

rs6673081 1 155017119 T/A ZBTB7B 3'-UTR 3.73E-02 2.11E-07 3.73E-02 Yes 

rs6713510 2 226169783 G/C LOC646736 intronic 1.07E-02 1.63E-02 1.63E-02 Yes 

rs8039305 15 90879313 T/A FURIN intronic 2.86E-11 3.92E-07 3.92E-07 Yes 

rs866919 10 30224354 C/G RP11 intergenic 3.92E-02 2.45E-02 3.92E-02 Yes 

rs965098 21 15185306 G/C JCAD intergenic 4.84E-02 4.08E-02 4.84E-02 Yes 
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Supplementary Table 10. 52 SNPs for genetic association from BW to CAD by mendelian randomization analysis. 

SNP Gene Alt 
BW  CAD 

P β  P β 

rs1011939 GPR139 G/C 3.00E-09 2.36E-02  2.46E-01 -1.20E-02 

rs10402712 PEPD A/T 2.00E-08 2.29E-02  5.33E-03 -2.94E-02 

rs10830963 MTNR1B G/C 1.00E-07 2.20E-02  5.27E-02 2.04E-02 

rs10935733 CPA3 T/A 6.00E-10 2.31E-02  8.81E-02 -1.64E-02 

rs1101081 ESR1 C/G 6.00E-20 3.70E-02  1.45E-02 -2.61E-02 

rs11055034 APOLD1 C/G 2.00E-08 2.30E-02  8.28E-01 -2.32E-03 

rs113086489 CLDN7 T/A 1.00E-15 2.96E-02  3.59E-01 -8.98E-03 

rs11765649 IGF2BP3 T/A 1.00E-09 2.58E-02  4.07E-01 -9.34E-03 

rs12543725 SLC45A4 G/C 2.00E-09 2.23E-02  9.53E-03 -2.52E-02 

rs12823128 ITPR2 T/A 3.00E-08 2.04E-02  2.13E-01 1.20E-02 

rs12906125 FES G/C 1.00E-08 2.26E-02  8.64E-08 -5.97E-02 

rs12942207 SP6 C/G 3.00E-09 2.38E-02  9.52E-01 -6.04E-04 

rs13266210 ANK1 A/T 2.00E-11 2.98E-02  6.57E-01 5.10E-03 

rs13322435 CCNL1 A/T 1.00E-42 5.24E-02  1.64E-01 -1.37E-02 

rs134594 KREMEN1 C/G 2.00E-08 2.15E-02  3.07E-02 -2.07E-02 

rs1351394 HMGA2 T/A 2.00E-33 4.30E-02  3.40E-02 -2.03E-02 

rs1374204 EPAS1 T/A 2.00E-29 4.59E-02  3.98E-01 -8.52E-03 

rs138715366 YKT6 C/G 1.00E-26 2.44E-01  1.29E-01 -9.68E-02 

rs1415701 L3MBTL3 G/C 4.00E-11 2.70E-02  8.78E-02 -1.79E-02 

rs144843919 SUZ12P1 G/C 2.00E-09 6.85E-02  6.89E-02 -7.51E-02 

rs1819436 RNF219 C/G 2.00E-09 3.29E-02  3.60E-02 2.96E-02 

rs2150052 LPAR1 T/A 3.00E-08 2.03E-02  1.75E-01 -1.25E-02 

rs2229742 NRIP1 G/C 2.00E-08 3.37E-02  1.82E-02 -3.93E-02 

rs2242116 PTH1R A/T 1.00E-08 2.09E-02  2.21E-01 1.17E-02 

rs2324499 LINC00332 G/C 8.00E-09 2.25E-02  8.94E-01 1.39E-03 

rs2421016 PLEKHA1 T/A 6.00E-09 2.07E-02  1.27E-01 -1.41E-02 

rs2473248 WNT4 C/G 1.00E-09 3.31E-02  9.76E-01 3.83E-04 

rs28510415 PTCH1 G/C 4.00E-16 5.26E-02  1.06E-01 -2.74E-02 

rs28530618 C20orf203 A/T 8.00E-11 2.40E-02  5.89E-01 5.16E-03 

rs2854355 RB1 G/C 2.00E-08 2.40E-02  2.15E-01 1.33E-02 

rs35261542 CDKAL1 C/G 1.00E-28 4.44E-02  3.05E-02 -2.21E-02 

rs3753639 ZBTB7B C/G 1.00E-12 3.10E-02  6.05E-03 -3.33E-02 

rs6016377 MAFB T/A 4.00E-10 2.39E-02  7.13E-03 -2.61E-02 

rs6040076 JAG1 C/G 7.00E-09 2.18E-02  1.73E-01 1.32E-02 

rs61154119 ACTL9 T/A 2.00E-08 2.83E-02  6.48E-01 6.01E-03 

rs61830764 DTL A/T 5.00E-08 2.18E-02  9.62E-01 5.36E-04 

rs61862780 HHEX T/A 1.00E-14 2.79E-02  7.55E-02 -1.69E-02 

rs62240962 SREBF2 C/G 4.00E-12 4.70E-02  7.52E-01 -6.01E-03 

rs62466330 MLXIPL C/G 6.00E-12 5.12E-02  9.99E-02 -3.68E-02 

rs6537307 HHIP G/C 1.00E-12 2.59E-02  9.11E-01 -1.05E-03 

rs6989280 TRIB1 G/C 5.00E-08 2.21E-02  5.61E-01 -5.95E-03 

rs700059 STRBP G/C 1.00E-12 3.61E-02  7.39E-01 4.23E-03 

rs7076938 ADRB1 T/A 5.00E-18 3.49E-02  3.97E-01 8.89E-03 

rs72480273 FCGR2B C/G 2.00E-09 3.00E-02  2.36E-01 -1.70E-02 

rs72851023 INS T/A 7.00E-10 4.63E-02  4.75E-01 1.51E-02 
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rs7402982 IGF1R A/T 1.00E-09 2.31E-02  5.19E-01 -6.29E-03 

rs74233809 NT5C2 T/A 2.00E-09 -3.87E-02  4.09E-07 7.21E-02 

rs7575873 ATAD2B A/T 6.00E-11 3.62E-02  7.08E-03 -3.87E-02 

rs7729301 EBF1 A/T 1.00E-09 2.46E-02  1.12E-02 -2.59E-02 

rs7742369 HMGA1 G/C 1.00E-08 2.68E-02  7.87E-01 -3.53E-03 

rs7964361 IGF1 A/T 1.00E-08 3.78E-02  2.12E-01 -2.08E-02 

rs798489 GNA12 C/G 5.00E-09 2.40E-02  9.54E-01 -6.78E-04 

rs854037 Intergenic A/T 3.00E-08 2.51E-02  6.33E-01 5.40E-03 

rs925098 LCORL G/C 1.00E-15 3.22E-02  1.01E-02 -2.72E-02 

 

Supplementary Table 11. Heterogeneity test assesses whether heterogeneity exists in SNPs. 

Method Q Q_df P_value 

Fixed effects meta-analysis (simple SE) 121.202 51 0.1804443 

Random effects meta-analysis (delta method) 121.202 51 0.1804443 

Maximum likelihood 120.8839 50 0.1289658 

MR Egger 121.202 51 0.1143716 

Inverse variance weighted 119.6123 51 0.1415539 

 

Supplementary Table 12. Causal association from CAD to BW by mendelian randomization analysis. 

Method nSNP β(95%CI) P_value 

Simple median 39 -0.0002 (-0.0152, 0.0149) 0.98 

Weighted median 39 -0.0002 (-0.0253, 0.0250) 0.99 

Weighted mode 39 0.0163 (-0.0077, 0.0403) 0.19 

Maximum likelihood 39 -0.0002 (-0.0155, 0.0152) 0.98 

MR Egger 39 0.0162 (-0.0443, 0.0767) 0.60 

Inverse variance weighted 39 -0.0002 (-0.0253, 0.0250) 0.99 

 


