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Abstract

A better understanding of deforestation drivers across countries and spatial scales is a pre-

condition for designing efficient international policies and coherent land use planning strate-

gies such as REDD+. However, it is so far unclear if the well-studied drivers of tropical

deforestation behave similarly across nested subnational jurisdictions, which is crucial for

efficient policy implementation. We selected three countries in Africa, America and Asia,

which present very different tropical contexts. Making use of spatial econometrics and a

multi-level approach, we conducted a set of regressions comprising 3,035 administrative

units from the three countries at micro-level, plus 361 and 49 at meso- and macro-level,

respectively. We included forest cover as dependent variable and seven physio-geographic

and socioeconomic indicators of well-known drivers of deforestation as explanatory vari-

ables. With this, we could provide a first set of highly significant econometric models of pan-

tropical deforestation that consider subnational units. We identified recurrent drivers across

countries and scales, namely population pressure and the natural condition of land suitability

for crop production. The impacts of demography on forest cover were strikingly strong

across contexts, suggesting clear limitations of sectoral policy. Our findings also revealed

scale and context dependencies, such as an increased heterogeneity at local scopes, with a

higher and more diverse number of significant determinants of forest cover. Additionally, we

detected stronger spatial interactions at smaller levels, providing empirical evidence that

certain deforestation forces occur independently of the existing de jure governance bound-

aries. We demonstrated that neglecting spatial dependencies in this type of studies can lead

to several misinterpretations. We therefore advocate, that the design and enforcement of

policy instruments—such as REDD+—should start from common international entry points

that ensure for coherent agricultural and demographic policies. In order to achieve a long-

term impact on the ground, these policies need to have enough flexibility to be modified and

adapted to specific national, regional or local conditions.
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1 Introduction

Deforestation processes are related to human activities and endangering forest ecosystem ser-

vices in many cases [1–3]. These impacts on e.g. carbon sequestration, soil and water quality,

species losses or local livelihoods, are widely discussed among the scientific community [4,5].

The discussion is especially recurrent for the pantropics [6,7], where the FAO reported a net

annual loss of forest area of about 7 million hectares for the 2000–2010 period [8]. More recent

(2003–2014) average net carbon losses in tropical regions have been estimated in 452.2+92.0

Tg C � yr-1 globally, of which 59.8% are attributable to America, 23.8% to Africa, and 16.3% to

Asia [9]. In parallel, the main drivers behind tropical forest cover (FC) change have been

repeatedly studied as well [10–12]. In 2012, Hosonuma et al. [11] related over 80% of global

deforestation for the 2000–2010 period to agricultural expansion (both commercial and subsis-

tence), followed by other anthropogenic causes, namely mining, infrastructure and urban

expansion. In a more recent study in 2018 [12], Curtis et al. quantified the global forest loss

between 2001–2015 and attributed it to permanent land use changes due to commodity pro-

duction (27%), forestry (26%), shifting agriculture (24%), and wildfire (23%). Busch and Fer-

retti-Gallon compiled in 2017 [13] “a comprehensive database of 121 spatially explicit

econometric studies of deforestation published in peer-reviewed academic journals from 1996

to 2013”. In these studies, variables related to population, built infrastructure and market

demand for agriculture were consistently associated with high deforestation, while poverty,

higher elevations and steeper slopes were regularly identified with lower forest loss. Other vari-

ables related to aspects such as ownership and management rights, market demand for timber,

or further socioeconomic and biophysical characteristics, showed varying or no influence on

FC across the studies included in the meta-analysis.

Gathering knowledge about the drivers of deforestation across different jurisdictional levels

is as a precondition for designing effective land use planning and policies at the levels where

forest governance takes place. As an example of this, we can highlight the references for the

design and implementation of operative and efficient strategies of REDD+ projects [14–16].

Moreover, generalizations about deforestation across pantropical regions and across different

jurisdictional levels would help predicting future changes which might occur with or without

policy interventions [17]. An area of research that already points in this direction is the classifi-

cation of tropical countries or regions—and their drivers of deforestation—based on their FC

levels and deforestation rates [11,17–19]. This is frequently made under the assumptions of the

forest transition theory, which describes the existence of recurrent phases of FC decline and

re-expansion [20,21].

Despite the number of studies dealing with the identification, categorization and quantifica-

tion of the main drivers of FC change in the tropics, no empirical study of global or pantropical

focus considered the behavior of these drivers in subnational administrative units across spa-

tial scales and countries so far. On the one hand, some authors have conducted subnational or

even multilevel approaches to analyze the causes of deforestation within different interrelated

administrative hierarchies, but always putting their focus on single countries (e.g. [22–25]).

On the other hand, supranational-regional and global studies have always focused on national

and regional aggregations (e.g. [11,12,26]). For instance, from the 121 studies included in

Busch and Ferretti-Gallon’s meta-analysis [13], only nine included de jure administrative enti-

ties as their units of observation, and only four studies analyzed data from different tropical

regions [27–30]. However, no econometric study of pantropical scope has focused on the driv-

ers of deforestation at sub-national jurisdictions so far.

In order to address this research gap, we made use of spatial econometrics and conducted a

multi-level approach with nested jurisdictional units in three tropical contexts of Africa, Asia
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and South America. Spatial econometrics is a discipline with increasing interest in urban and

regional studies [31–34], which can contribute to a better understanding of spatial phenomena

and tropical deforestation patterns at different interconnected subnational administrative lev-

els. For instance, with the use of local spatial models, it is possible to estimate the spillovers

and the indirect impacts of neighboring units [35]. Furthermore, these models can provide

information about omitted variables and on how spatial clusters look like [33,36,37]. So far,

these methods have not been widely used in previous studies of tropical deforestation, even if

local interactions between neighbor administrative units and omitted spatially correlated

parameters exist in real physical deforestation processes. Again, from all the spatially explicit

econometric studies included in Busch and Ferretti-Gallon’s meta-analysis [13], more than the

half of them did not even report any treatment of spatial autocorrelation. Furthermore, only

seven of the remaining studies (5.8% of the total) considered spatial lags or the use of a weight-

ing neighbor matrix, but always focusing on one single country or region and at one single

level of analysis (e.g. [38,39]). This was also the case in more recently published studies (for

instance: [39,40]).

Within this context, our study wants to address the following research questions: Are well-

studied global drivers of tropical deforestation also constant across different subnational admin-
istrative levels? If not, which differences are observable and at which jurisdictional levels? Is this

the same for different tropical contexts, or are there country/region specific behaviors?

2 Materials and methods

2.1 Selection of study areas and the forest transition theory

With the selection of the study areas we aimed to include three countries that accounted for as

much pantropical variability as possible, regarding their FC and deforestation rates, but also

considering their biophysical, geographical, socioeconomic and demographic conditions. A

key factor behind this selection process was the situation of each country within the forest

transition curve [20], when observed at national scale (see S1 Fig). Based on this, we selected

the three following countries:

1. Zambia is a land-locked plateau in south-central Africa, which in 2010 was still in the pre-/

early stage of the forest transition [11] with a high FC (65.4%) and moderate deforestation

rates (-0.3% � yr-1) [41]. Zambia has relatively low population density, life expectancy at

birth, GDP per capita and HDI [42–44]. According to Global Forest Watch, the deforesta-

tion rates in Zambia have increased and accelerated significantly in the last ten years [1].

While the country lost 850 kha of tree cover extent with canopy larger than 10% during the

period 2001–2009, this loss more than doubled to 1.96 Mha in the period 2010–2018. This

accelerated deforestation might indicate that Zambia already entered its early transition,

reducing its total FC to 62% in 2015 [45]. Following Curtis et al. [12], most of this deforesta-

tion was due to shifting agriculture. Other identified relevant drivers of deforestation (and

degradation) in Zambia are mining and infrastructure development, wood extraction, char-

coal production and wild fires [46].

2. Ecuador is a mega-diversity hotspot that shelters the Andes and the Amazon basin, in the

Pacific side of northwestern South America. Ecuador has reduced FC to about 50%, but

deforestation is still ongoing since the late nineties at relatively high rates (-0.6% � yr-1)

[41,47]. The forest context in the country can thus be a clear example of a “frontier area”

([17]). Ecuador has twice the population density of Zambia, with a share of 63% of urban

population, and a relatively high GDP and HDI [42–44]. The key driver of deforestation in

Scale and context dependency of deforestation drivers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226830 January 29, 2020 3 / 32

https://doi.org/10.1371/journal.pone.0226830


Ecuador is again shifting agriculture [12], together with small-scale ranching and, in a more

local manner, commodity-production such as palm oil [48].

3. The Philippines is an archipelago in Southeast Asia consisting of over 7,000 islands. This

country is supposed to have achieved a net FC increase of 0.8% � yr-1 between 1990 and

2015, with less than 30% of FC left in 2015 [41]. The Philippines is very densely populated,

exhibits the highest road density among the three countries, and a share of 41% of agricul-

tural land [42–44]. According to Global Forest Watch and Curtis et al. [1,12], tree cover

loss in the Philippines is mostly commodity-driven and related to agriculture expansion.

Forestry practices and urbanization also play a bigger role on deforestation than in Zambia

and Ecuador. The forest situation on the Philippines is thus an example of a clear “forest-

agricultural mosaic” or late-post forest transition phase, when observed at national level

[11,17].

2.2 Units of observation and levels of analysis

We subdivided each of the selected countries into three nested spatial levels of analysis

(macro-, meso-, and micro-level), related to their hierarchical legal administrative configura-

tion (Fig 1). Each of these three levels of analysis corresponds to an existing de jure governance

structure, with comparable competences regarding forest policy design and implementation

across the three countries [49,50].

For Zambia, 9 provinces comprise the macro-level and 71 districts the meso-level. We

downloaded the geo-referenced data for both levels from the GADM database [51]. The third

level (micro-) represents approximations of 1,358 ward and constituency boundaries based on

printed information from the Election Commission of Zambia (ECZ) for which a polygon file

produced by Eubank (2014) [52] was used. The main institution responsible for the manage-

ment of forest resources in Zambia is the Forestry Department of the Ministry of Lands, Natu-

ral Resources and Environmental Protection (MLNREP). Zambia is experiencing a national

decentralization process which aims to increase the power and obligations of the districts

(meso-level) in order to improve the quality of the service delivery at the subnational level

[53–56]. In this line, some changes have happened in the last decade regarding the national

legal framework for the forestry sector, like the inclusion of local forest regulations and other

forms of local forest management: e.g. Joint Forest Management (JFM) or community forestry

[57–60].

In the case of Ecuador, the administrative units selected for the macro-level are the 24 prov-

inces plus the three non-delineated zones as one single unit. The meso-level includes 224

counties and the micro-level 1,024 parishes. We downloaded the data regarding these bound-

aries from the National Institute of Statistics and Census database [51,61]. Although the main

actions regarding forest policy and management in Ecuador are basically planed and coordi-

nated at national level by the Ministry of Environment (MAE) [62], these three levels of terri-

torial organization (provinces, counties, parishes), whose legislative-political role is

acknowledged by the current Ecuadorian Constitution [63] and the Organic Code of Territo-

rial Organization, Autonomy and Decentralization [64], participate actively in the implemen-

tation of MAEs policies or other forest management programs in line with the national laws.

For the Philippines, the three jurisdictional levels of analysis include 17 regions (macro-

level), 81 provinces (meso-level) and 1,652 municipalities (micro-level). The geographic data-

sets were extracted from the GADM database [51] and are based on official boundaries from

NAMRIA (National Mapping and Resource Information Authority), which can be acquired at

the Philippine Geoportal System [65]. At a national level, the main governmental body which
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deals with forest management planning in the Philippines is the Forest Management Bureau

(FMB), which belongs to the Department of Environment and Natural Resources (DENR).

DENR has offices in all the administrative regions (macro-level), and some offices that operate

in most of the provinces (PENROs, at meso-level) and in some cities or municipalities (CEN-

ROs, at micro-level) [66,67].

2.3 Selection of variables: Building of a spatial database

We built a geodatabase with the support of Geographic Information System (GIS) software

and tools: QGIS 3.4. [68]. This geodatabase (see S1 File) comprised the downloaded spatially

explicit boundaries for the three jurisdictional levels in the three countries. In the next steps,

we included the information about FC and relevant drivers of de- and reforestation (response

and explanatory variables) for each of these units and levels of analysis, as described in the fol-

lowing subchapters.

Fig 1. Maps of the three selected countries and their corresponding jurisdictional/spatial levels of analysis. The countries are displayed at the same scale with

proportional sizes.

https://doi.org/10.1371/journal.pone.0226830.g001
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2.3.1 Response variable: Forest cover (FC). We extracted the FC information for each

administrative unit (three countries and three levels) from the most recent national land cover

map that was available at the time of performing this study [47,69,70] (Table 1). Therefore, we

conducted a cross-sectional analysis, which assumed that patterns of FC development can be

detached from the temporal scale, as they are dependent of socioeconomic development

[20,21,71]. National land cover maps, contrary to global datasets like [1,72,73], presented

advantages such as higher resolution and accuracies for the regions of interest, while consider-

ing particular land cover characteristics of each tropical context.

Thus, we post-classified and harmonized forest and land cover definitions, by aggregation

of existing tree and FC classes into only three major land cover types: Forest area (FA), Poten-

tial forest vegetation area (FApot) and Non-potential forest vegetation area (Non-FApot). We

obtained the dependent variable FC by normalizing the forest area (FA) as a fraction of a unit’s

potential forest area (FApot) (Table 2). FC is, therefore, a proportion of each jurisdictional

unit’s total forest area on its potentially forested area, rather than on its total surface. The con-

cept of potentially forested area as interpreted in this study is aiming to estimate the maximum

forest area that could be reached in a limited period of time, similar to the approach of Köthke

et al. (2013) [26]. We calculated this by aggregating all relevant vegetation land cover types,

while classes not suitable for forest vegetation were consequently excluded (e.g. water bodies,

glaciers or bare areas). Built-up and artificial infrastructures were neither included into this

aggregate, assuming that urban areas are rather unlikely to experience rapid land cover

dynamics [74,75]. This allows the range for the dependent variable to vary between 0 and

100%.

Table 1. Land cover map sources and FC classification used in this study.

Country: Zambia Ecuador Philippines

Year and source: 2016, [69] 2014, [47] 2010, [70]

Sensor(s) Used: Sentinel-2 LandSat,

RapidEye

ALOS AVNIR-2, SPOT 5, LandSat

Resolution: ~20m ~5-30m ~10-30m

Potential forest area (FApot
2) Forest area

(FA1)

Tree Cover Areas Native forest Closed forest

Forest plantations Open forest

Mangrove forest

Other

non-forest vegetation area

(FApot−FA)

Shrub cover areas Herbaceous vegetation Wooded grassland

Grassland Shrub vegetation Grassland

Cropland Pasture Shrubs

Vegetation aquatic Agricultural mosaic Perennial crop

Lichens Permanent crop Annual crop

Sparse vegetation Semi-permanent crop Fallow

Annual crop

Non-potential forest area

(Non-FApot)

Páramo Bare areas Open barren

Natural (rivers) Built-up Marshland

Infrastructure Snow or ice Swamp

Glacier Open water Inland water

Artificial Fishpond

Non-vegetation cover Built-up

Settlement

1 FA: Forest area [ha]
2 FApot: Potential forest area [ha]

https://doi.org/10.1371/journal.pone.0226830.t001
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2.3.2 Explanatory variables: Drivers of forest cover change. We selected seven explana-

tory variables, which included elements related to physio-geographic, demographic and socio-

economic aspects that we expected to influence FC (Table 2). These variables have been often

identified and discussed as mostly influential and uniform across tropical countries by previ-

ous authors (see, for instance, [10,13]).

We tested the influence of total area (ATOT), as different sizes of administrative units might

be subject of differences in land pressure, political processes, as well as options for trade and

cooperation [26]. We extracted the total extent of each administrative unit from the spatial

boundaries used to define the study’s units of analysis. We did every calculation of areas or

slope degrees (see parameter FL) after re-converting the source spatial files into the corre-

sponding Universal Transverse Mercator (UTM) projected coordinate system. We used UTM

zones 35S, 17S and 51N for Zambia, Ecuador and Philippines respectively.

The potential vegetation area (PVA) describes the share of potentially forested area

(FAPOT) related to the total area (ATOT) of the analyzed administrative unit. PVA can range

from 0 to 100% and high values signify a potential for higher forest area in the unit, but not

necessarily its existence [26]. For instance, a large region in the Amazon with a lot of its surface

share covered by native forest would rank high in PVA. At the same time, a smaller region in a

rural province, which has been deforested centuries ago and nowadays mostly comprises pas-

ture- and croplands, would also rank high in PVA. Therefore, and as FC in this study is

defined as a proportion on PVA, high PVA values are expected to decrease FC. Units with

high PVA will in general have more options to establish productive locations for agricultural

land and they are expected to experience an increased need to exploit for food production

within the region’s borders.

A key driver of deforestation is the role of population density and demographic develop-

ment [13,87,88]. We expect that higher population density result in higher demand for land

and resources with related phenomena putting direct pressure on forest itself, like e.g. agricul-

tural expansion and shifting cultivation, establishment of settlements, roads and other

Table 2. Variables considered in the study (in bold) and related definitions and sources.

Definition and [unit] Sources Year(s) / Country

Dependent variable ZAM ECU PHI

FC Forest Cover [%] FA/FApot
1 2016 2014 2010

FA: total forest area [ha] [47,69,70] 1 2016 2014 2010

FApot: Potential forest area [ha] [47,69,70] 1 2016 2014 2010

Explanatory variables ZAM ECU PHI Expected impact

ATOT Total Area [ha] [51,52,61] 2006–10 2010 2010 Positive

PVA Share of potential vegetation on surface area [%] [FApot/ATOT] 1 2016 2014 2010 Negative

PPFA Population pressure on remaining forest area [pers./ha] [PTOT /ATOT] 2015–16 2014–15 2010 Negative

POPTOT: Total population [pers.] [76–79] 2015 2015 2010

RD Road density [km/km2] [RTOT/ATOT] 2016 2016 2016 Negative

RTOT: Total road length [km] [80] 2016 2016 2016

FL Flatness: share of surface with less than 16% steepness [%] [FLTOT/ATOT] 2008 2008 2008 Negative

FLTOT: Total area with low slopes (<16%) [ha] [81] 2008 2008 2008

CSI Crop suitability index [%] [82,83] 2005 2005 2005 Negative

CY Maximum cereal area yield [kcal/ha] [84–86] 2005–15 2004–14 2000–10 Positive

1 From Table 1

https://doi.org/10.1371/journal.pone.0226830.t002
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infrastructures, fuel wood collection and resource extraction. We estimated the total popula-

tion (PTOT) for each administrative unit by extracting the associated demographic data from

worldpop.org.uk [76–79]. We did this for the year closest to the corresponding land cover map

used in each country (Table 2). We calculated the density (pressure) on the remaining total

forest area (PPFA) by dividing the total population by the forest area (FA).

Similar to population pressure, indicators for accessibility, such as road density or distance

to roads, have been widely used as a measure of environmental pressure and economic devel-

opment [89–92]. The presence of roads can contribute to a range of pressures on forests and

on the natural environment in general [13] and thus, we expect that high road densities are

likely to affect FC negatively. We downloaded and calculated the total road length (RTOT) in

each assessed jurisdictional unit (including highways, roads, paths and railways) from

openstreetmap.org and geofabrik.de [80]. The total road length in km (RTOT) was divided by

the total area (ATOT) of each respective administrative unit (in km2), to calculate road density

(RD).

Slope at 90m resolution was calculated from the 4.1 version of the SRTM DEM (Shuttle

Radar Topographic Mission Digital Elevation Model) produced by the NASA (National Aero-

nautics and Space Administration) and CGIAR (Consultative Group for International Agricul-

tural Research) [81]. For each analyzed administrative unit, we divided the total area below

16% slope (FLTOT) by its total area (ATOT), thus generating a flatness indicator: FL. We selected

land under 16% steepness based on the FAO definition of non- (0–8%) or slightly (8–16%)

constrained rain-fed land ([82]). We therefore expect, that regions with a higher share of flat-

ness are more suitable for the clearing of new agricultural land have a lower FC [13]. Cross-

country and cross-level differences are also expected depending on each specific physio-geo-

graphic condition.

We estimated the crop suitability index (CSI) from FAO’s FGGD (Food Insecurity, Poverty

and Environment Global GIS Database) data regarding ‘suitability of currently available land

area for rain-fed crops, using maximizing crop and technology mix’ [82,83]. This dataset is a

global raster layer displaying values between 0 (not suitable) and 100 (very high CSI). We gave

a zero value (no crop suitability) to classes like internal water bodies, urban, closed forest, pro-

tected areas, or irrigated land. This concerned a few specific areas like the Galapagos, remote

Amazonian forest, or the metropole of Manila in the Philippines. As the pixel resolution was

rather coarse (1/12 of degree)—especially when considering the size of some units from the

smallest jurisdictional level -, we calculated the area-weighted mean of pixel values situated

within the boundaries for each unit of analysis. CSI represents the agricultural potential of the

land and is, thus, expected to affect FC negatively [13].

Finally, the cereal area yield (CY) expresses the actually achieved yield at a point or period

of time. The CY is supposed to increase over time, fluctuate short-term and maybe saturate in

a stage of high intensification. The cereal area yield of a region is an indicator of agricultural

productivity and intensification [93,94]. Thus, we expect it to release pressure on FC. We

selected two main cereal categories, which represent major crop types in the three selected

countries, namely maize and rice. We obtained data for aggregated maize and rice classes area

production yields (MY, RY in tons/ha) from official national sources between 1987 and 2015

[84–86], for five of the twelve analyzed samples. For both cereal types, we considered the arith-

metic mean of the last 10 years before the production of each particular land cover. We con-

verted the computed means to caloric yields (kcal/ha), using the general conversion factors

presented by Cassidy et al. (2013) [95]. For those administrative units with information for

both maize and rice, the highest caloric yield was taken into consideration, assuming that this

crop type is more likely occurring in the respective region.
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2.4 Spatial econometric modelling

We conducted the spatial econometric analysis with the support of the JMP1 13.1.0 and R

3.5.2 statistical software [96,97] and the spdep [98,99], rgdal [100], sp [101], rgeos [102] and

RANN [103] packages. The final product and files used for the analysis (S1 File), together with

the associated R script (S2 File), can be found in the online attachments of this article. We

defined a total of twelve samples: nine samples present the combinations of the three countries

and the three spatial levels of analysis, and three samples present the aggregated data (pantrop-

ical) of all countries at the three spatial levels.

We assumed a sigmoidal relationship between the drivers of deforestation and the depen-

dent variable, following the results of other authors [26,88,104,105]. This relationship consti-

tutes a model of FC decline with an inverted growth function approaching 1 as horizontal

asymptote at the left side and 0 at the right side (similar to the graph as shown in S1 Fig). Sub-

sequently, the dependent variable needed to be linearized by logistic transformation in order

to permit linear regression techniques and the explanatory variables were transformed using a

logarithm function:

FC
�

s ¼ ln
1

FC s
� 1

� �

¼ ln
FAPOT s

FAs
� 1

� �

ðEq 1Þ

X�v;s ¼ ln Xv;s ðEq 2Þ

where: � refers to linearized or transformed; s is the sample; and X is a vector of the seven

explanatory variables v.

The samples with missing, not linearizable extreme or nil values–in the case of FC, PVA,

CSI or RD–were dismissed. This generally consisted of micro- or meso-units from either (a)

metropoles with no registered FC (mainly a few big urban centers in Copperbelt and Lusaka in

Zambia, highly populated cities in the Philippines and a small number of settlements belong-

ing to the arid Andes, Quito or Guayaquil in Ecuador), or (b) remote areas with almost inexis-

tent human presence (like the Galapagos in Ecuador or the Turtle Islands in Philippines). This

implied the exclusion of a total 3.92% of the macro-units, 3.99% of the meso-units and 24.67%

of the micro-units from the original sample.

For each of the twelve samples, the provided explanatory variables were standardized indi-

vidually as follows, in order to later compare or estimate their relative contribution to the

model:

Xv̂;s ¼
X�v;s� mðX

�
v;sÞ

sðX�v;sÞ
¼

ln Xv;s� mðln Xv;sÞ

sðln Xv;sÞ
ðEq 3Þ

where: X^
v,s is the standardized explanatory variable v for sample s; μ(X

�

v,s) represents the

mean value in sample s for the transformed explanatory variable v; and σ(X
�

v,s) is the standard

deviation of the transformed explanatory variable v in sample s.
In a next step, we tested collinearity between the seven explanatory variables for every sam-

ple. Variables with bivariate correlation values of at least 0.6 were considered as highly corre-

lated predictors. We performed simple linear regressions for each of the independent

variables. The highly correlated variables with the lower coefficients of determination in their

respective linear regressions were not included into the further calculations, assuming they

were providing redundant information. Then, we identified the significant explanatory vari-

ables per sample, using the non-spatial OLS model following automated stepwise backwards

elimination method with the smallest Bayesian information criterion as stop rule. Therefore,

Scale and context dependency of deforestation drivers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226830 January 29, 2020 9 / 32

https://doi.org/10.1371/journal.pone.0226830


the OLS model for multivariate analysis is expressed like:

OLS Model : FC
�

s ¼ b0 þ bvln X̂ v;s þ εs ðEq 4Þ

where β are the respective coefficients and ε is the residual.

Next, we developed a spatial weights matrix (W) for each of the twelve samples. In order to

avoid model deficiencies and misapplying spatial econometrics [106–108], this matrix should

reflect how spatial units interact with each other and their degree of connectivity. We consid-

ered a graph-based—sphere of influence (SOI)—neighbor matrix for the twelve samples of our

study (Fig 2). A SOI matrix works “based on Euclidean distances between polygon centroids,

where points are neighbors if circles centered on the points, of radius equal to the points’ near-

est neighbor distances, intersect in two places” [98,109].

We examined the results from each OLS analysis [98] to check for spatial dependency of

the model residuals, by performing both Moran test [110] and to explore spatial relationships

with the Lagrange Multiplier diagnostic for lag and error models [33,111,112]. We did this in

order to reveal spatial autocorrelations and justify the use of the proposed econometric models.

Thus, with this, we did not want to explore or discuss the spatial distributions of errors/vari-

ables explicitly for each context or scale, but we rather wanted to demonstrate the existence of

spatial dependencies among the different samples (different contexts/scales) and justify the use

of our spatial econometric models.

Next, to select the most suitable regression model for each sample, we applied the LeSage

and Pace method [32,36] for local model specification. Thus, we did likelihood ratio (LHR)

tests to select the spatial model that better explained each of the twelve samples. This method

tries to demonstrate if a Spatial Durbin Error Model (SDEM) can be restricted to a simpler

nested model, such as a spatial error model (SEM), a spatially-lagged X model (SLX), or

reduced to the non-spatial OLS model:

Spatial Durbin Error Model (SDEM):

FC
�

s ¼ b0 þ bvln X̂ v;s þWs;nyv;sln X̂ v;s;n þ us; us ¼ lWs;nus þ εs ðEq 5Þ

if θ = 0, (6) results in Spatial Error Model (SEM):

FC
�

s ¼ b0 þ bvln X̂ v;s þ us; us ¼ lWs;nus þ εs ðEq 6Þ

if λ = 0, (6) results in Spatially Lagged X Model (SLX):

FC
�

s ¼ b0 þ bvln X̂ v;s þWs;nyv;sln X̂ v;s þ εs ðEq 7Þ

Fig 2. The SOI W diagrams representing the spatial interactions between the meso-level jurisdictional units. a)

Zambia b) Ecuador and c) Philippines.

https://doi.org/10.1371/journal.pone.0226830.g002
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if both θ = 0 and λ = 0, (6) results in OLS Model:

FC
�

s ¼ b0 þ bvln X̂ v;s þ εs ðEq 8Þ

where: Ws,n represents the row-standardized weight of the neighbor n for a certain sample s; θv,s

are the neighbors’ impacts on a certain variable v and sample s; ln X^
v,s,n represents the neighbors’

values for a certain variable and sample; λWs,nus represents the weighted spatial residual error.

Thus, we assigned each sample to an optimal regression model, which could account for

either neighbor impacts (SLX model), spatially correlated errors (SEM model), both spatial

effects (SDEM model) or none of them (OLS model). Fig 3 summarizes the analytical frame-

work of this research article in the form of a conceptual diagram. This graph also summarizes

Fig 3. Conceptual diagram summarizing the analytical framework of this research article.

https://doi.org/10.1371/journal.pone.0226830.g003
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how the spatial interactions and the different proposed models refer to each other in the speci-

fication method.

Finally, in order to justify the specification method, we quantified and compared different

performance indicators or global measures for both the OLS and the specified spatial models.

First, we considered the (1) Akaike and (2) Bayesian information criterions (AIC, BIC). These

are both estimators of relative quality of statistical models, where lower values indicate a better

goodness of fit. We also calculated (3) unbiased maximum likelihood estimators of the error

variance and (4) standard errors of regression. These two other measures estimate the good-

ness of fit in percentage, and they tend to decrease (approach zero) if the quality of the regres-

sion increases. Finally, we calculated (5) adjusted coefficients of determination (which indicate

the percentage of the dependent variable variance explained by the model) and (6) log-likeli-

hoods with maximum likelihood estimators for the regression coefficients. These two last

parameters increase with improved model quality. All these measures were calculated follow-

ing the formulas and definitions proposed by [113].

3 Results

3.1 Spatial weight matrices

Looking at the histograms of the number of neighboring regions (Table 3), we can observe

similar distributions across the samples. The smallest matrix consists of 30 links, while the

most complex one has 12,890 connections between regions. The matrices provide a relatively

low number of sparse non-zero weight connections, especially in the pantropical model and at

the smaller levels. These values range from 0.14% to 37.04%, which allowed us to perform the

further spatial tests. The associated average links per matrix range from 3.3 (Zambia’s macro-

level) to 4.6 (Ecuador’s micro-level) relations per sample [108].

3.2 Moran’s I and Lagrange multiplier tests

The Moran’s I test for the OLS residues was significant (considering a 1% threshold) in at least

eight of the twelve samples (Table 4). We detected positive Moran’s I between 0 and 1 in these

Table 3. Summary of the applied SOI spatial weights matrix (W) for each sample [98].

Country Level Number of neighboring regions1 N2 N links2 Avg. links2 %

NZW2

1 2 3 4 5 6 7 8 9

PAN3 Macro- 1 7 13 14 12 0 2 0 0 49 184 3.8 7.66

Meso- 0 24 75 101 97 48 12 4 0 361 1,566 4.3 1.2

Micro- 50 250 629 824 711 421 128 18 4 3,035 12,890 4.3 0.14

ZAM3 Macro- 0 2 3 3 1 0 0 0 0 9 30 3.3 37.04

Meso- 0 3 18 16 16 12 2 3 0 70 314 4.5 6.41

Micro- 7 45 172 287 272 174 49 8 2 1,016 4,590 4.5 0.44

ECU3 Macro- 1 4 4 6 7 0 2 0 0 24 94 3.9 16.32

Meso- 0 15 39 58 60 31 7 2 0 212 930 4.4 2.07

Micro- 5 35 130 223 264 155 46 6 1 865 3,986 4.6 0.53

PHI3 Macro- 0 1 6 5 4 0 0 0 0 16 60 3.8 23.44

Meso- 0 6 18 26 20 7 2 0 0 79 326 4.1 5.22

Micro- 39 168 331 309 184 87 30 6 0 1,154 4,304 3.7 0.32

1 Number of units with a certain number of neighboring regions (1–9).
2 N: Total sample size; N links: Total number of links per matrix (W); Avg. links: Average number of links per spatial unit in each matrix (W); % NZW: Percentage of

links with non-zero weights in the matrix W.
3 PAN: Pantropical; ZAM: Zambia; ECU: Ecuador; PHI: Philippines.

https://doi.org/10.1371/journal.pone.0226830.t003
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samples. At smaller administrative levels with bigger samples, I increases together with its stan-

dard deviation. Simultaneously, Is expected value and variance get closer to 0. Significances

also reflect an increase in the tests with the smaller jurisdictional units within each country-

specific sample. The aggregated pantropical models had the highest I values ranging from 0.41

to 0.58, just like the model for Zambia at the micro-level.

The Lagrange multiplier (LM) tests (Table 4) reported strongly significant results (consider-

ing a 1% threshold) for eight of the twelve samples as well. The eight samples showed signifi-

cant coefficients for the error model (SEM) test. Six of the samples also described significant

results for the lagged X model (SLX). Moreover, seven and three samples were also significant

at the robust tests for SEM and SLX, respectively. Significance for both error (SEM) and

lagged-X (SLX) models increased at smaller administrative units in the different country sam-

ples. The significant values of LM for error models were always higher than those for lagged-X

models in all of the studied samples, for both normal and robust tests. More specifically, for

both Moran’s I and Lagrange Multiplier tests, the non-significant models were those of the

macro-level in individual countries, with the smallest sample size, but also the model for the

meso-level in the Philippines.

3.3 Model specification

We could specify a spatial model in nine of the twelve samples following the LeSage and Pace

method. Table 5 shows the results of likelihood-ratio tests for the reduction of complex nested

models, as described in Eqs 5 to 8.

We could not ratify the need of a spatial model in the samples at the macro-level for indi-

vidual countries, but this was confirmed for the other nine samples (5%-significance

Table 4. Results of the Moran’s I and Lagrange multiplier tests from the OLS models.

Moran test of the residuals

(normal approximation) [110]

Alternative hypothesis, greater. 1

Lagrange Multiplier test [111] 2

SEM R-SEM SLX R-SLX

Coun

try4
Level N I Exp. Var. SD p-val3 LM p-val3 LM p-val3 LM p-val3 LM p-val3

PAN Macro- 49 0.41 -3.95E-2 1.04E-2 4.40 ��� 14.29 ��� 16.14 ��� 0.58 n.s. 2.42 n.s.

Meso- 361 0.52 -8.96E-3 1.31E-3 14.74 ��� 203.44 ��� 174.25 ��� 37.12 ��� 7.93 ��

Micro- 3,035 0.58 -1.12E-3 1.71E-4 44.55 ��� 1,970.20 ��� 1,753.80 ��� 355.64 ��� 139.32 ���

ZAM Macro- 9 -0.18 -1.66E-1 3.84E-2 -0.09 n.s. 0.48 n.s. 0.08 n.s. 2.71 . 2.30 n.s.

Meso- 70 0.23 -3.06E-2 6.05E-3 3.41 ��� 8.13 �� 4.00 � 4.19 � 0.06 n.s.

Micro- 1,016 0.58 -3.11E-3 4.63E-4 27.09 ��� 718.80 ��� 272.23 ��� 446.61 ��� 0.04 n.s.

ECU Macro- 24 0.13 -8.47E-2 1.71E-2 1.64 . 0.71 n.s. 0.86 n.s. 0.02 n.s. 0.17 n.s.

Meso- 212 0.29 -1.47E-2 2.17E-3 6.58 ��� 37.31 ��� 23.80 ��� 15.16 ��� 1.64 n.s.

Micro- 865 0.35 -3.97E-3 5.28E-4 15.49 ��� 231.56 ��� 135.61 ��� 105.66 ��� 9.72 ��

PHI Macro- 16 -0.15 -7.53E-2 2.69E-2 -0.48 n.s. 0.68 n.s. 0.88 n.s. 0.03 n.s. 0.92 n.s.

Meso- 79 0.10 -2.27E-2 5.88E-3 1.59 . 1.54 n.s. 2.87 . 0.40 n.s. 1.73 n.s.

Micro- 1,154 0.40 -2.82E-3 5.21E-4 17.48 ��� 299.24 ��� 259.71 ��� 39.54 ��� 0.01 n.s.

1 I: Moran’s I; Exp.: Moran’s I expected value under null hypothesis; Var.: I variance; SD: I Standard Deviate.
2 LM: Lagrange Multiplier Test; R-: Robust LM Test; SEM: Spatial Error Model; SLX: Spatially Lagged X Model.
3 p-val (p-values)

���: <10−3

��: <10−2

�: <5.10−2;.: <10−1; n.s.: >10−1.

4 PAN: Pantropical; ZAM: Zambia; ECU: Ecuador; PHI: Philippines.

https://doi.org/10.1371/journal.pone.0226830.t004
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threshold). In five of them, the existence of neighbor interactions (spatially lagged X) was dem-

onstrated and either SLX or SDEM was selected as the best model. This was the case for all the

micro- and meso-level specifications for Ecuador and the Philippines. Furthermore, in eight of

the twelve samples, a model which accounts for spatially dependent errors was selected,

namely SEM or SDEM. These eight cases include all the specifications for the aggregated pan-

tropical models (at the three spatial levels), and all the specifications at meso- and micro-level

for individual countries excluding the Philippines’ meso-level. In summary, from the twelve

samples: three were not specified to any spatial model (and thus remained as OLS), one was

assigned to a SLX model, three were acknowledged as a SEM model, and five were specified

as a more complex SDEM model (all the micro-level samples and Ecuador’s meso-level

sample).

3.4 Model performance

Table A in S3 File provides a detailed list of global measures for the OLS and the spatial mod-

els. The OLS models have an adjusted R2 between 0.70 and 0.95 and high statistical signifi-

cances according to the results of the F-test. Just one sample, Zambia’s macro-level, with only

nine sample units, presented lower (but still significant) F statistics. In the case of the nine

selected spatial models, the adjusted coefficients of determination range between 0.74 and

0.94, the highest being Philippines’ micro-level and the lowest being the meso-level of Zambia.

Only samples at Zambian meso- and micro- levels have a lower explanatory power (adjusted

R2) compared to the respective tests including data from all countries. The number of degrees

of freedom of the spatial models was reduced with respect to the OLS models, in a number

equal to the newly introduced parameters (one degree for the lambda error—in SEMs and

SDEMs- and one degree for each variable of the model—in the SDEMs and SLXs-). The ranges

for standard regression errors (SER) in the spatial models vary from 0.37 in Philippines meso-

Table 5. Results of the spatial model specification, following the LeSage & Pace [32,36] method by Likelihood Ratios (LHR) and nested model restriction.

SEM1 SLX1 OLS1

Country3 Level N LHR p-val2 LHR p-val2 LHR p-val2 Selected

Spatial Model 1

PAN Macro- 49 0.56 n.s. 10.21 � 12.71 �� SEM

Meso- 361 3.02 n.s. 172.50 ��� 188.98 ��� SEM

Micro- 3,035 133.63 ��� 1,804.10 ��� 2,000.90 ��� SDEM

ZAM Macro- 9 1.70 n.s. 0.08 n.s. 2.78 n.s. None (OLS)

Meso- 70 0.12 n.s. 7.36 �� 7.90 � SEM

Micro- 1,016 37.59 ��� 686.60 ��� 808.74 ��� SDEM

ECU Macro- 24 5.41 n.s. 0.22 n.s. 6.04 n.s. None (OLS)

Meso- 212 10.82 � 36.63 ��� 48.89 ��� SDEM

Micro- 865 36.31 ��� 199.33 ��� 226.20 ��� SDEM

PHI Macro- 16 1.59 n.s. 0.73 n.s. 2.69 n.s. None (OLS)

Meso- 79 12.73 �� 0.77 n.s. 15.52 �� SLX

Micro- 1,154 14.43 �� 265.63 ��� 281.91 ��� SDEM

1 SEM: Spatial Error Model; SLX: Spatially Lagged X Model; OLS: Ordinary Least Squares regression; SDEM: Spatial Durbin Error Model; LHR: Likelihood Ratio.
2 p-val (p-values)

���: <10−3

��: <10−2

�: <5.10−2;.: <10−1; n.s.: >10−1.
3 PAN: Pantropical; ZAM: Zambia; ECU: Ecuador; PHI: Philippines.

https://doi.org/10.1371/journal.pone.0226830.t005
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level until a maximum of 0.66 in Ecuador’s micro-level. The values for the inversed logarithmic

likelihoods (logLik), for the Akaike and Bayesian information criterions (AIC, BIC), for the

unbiased estimator of the error variance (MLunb) and for the SERs increased gradually at

smaller spatial levels within each countries’ samples. By this, we can see that the models at

smaller spatial levels perform better. The only exception to this was the MLunb and SER values

for Zambia’s spatial model at micro-level, which decreased when compared to the meso-level.

Fig 4 shows how all the global measures were improved by the nine selected spatial models.

This is displayed as relative increase or decrease of the original OLS parameter values. It is

clearly noticeable that most of these proportional improvements gradually grow at the lower

levels. This growth is especially strong in the micro-level SDEM in Zambia, where the highest

values are observed for all the measures, while the SEM for the meso-level presented some of

the lowest relative improvements. The models with the smallest improvements were the ones

at the meso-level for individual countries (SEM in Zambia, SDEM in Ecuador, and SLX in

Philippines) and the country-specific models at the macro-level by omission of spatial

specification.

3.5 Spatial regression models

Tables 6 and 7 show the regression results of the specified models for the pantropical samples

cross-scale and for the micro-level samples cross-country, respectively. In order to interpret

the influence of the regression determinants on FC, all coefficient signs have to be reversed

due to the transformation of the dependent variable (FC�).

Fig 5 provides a visual summary of the coefficients (and standard errors) of the seven vari-

ables in the selected models for the twelve samples (across level and country). Only the results

of the determinants, which showed a significant contribution (considering a p-value threshold

of 10%), are shown.

Only significant parameters (p-value threshold of 10%) are shown. Variables are linearized

and standardized. In the case of non-spatial and spatial error models, the coefficients or effects

Fig 4. Improvement of the global measures for the spatial models compared to the respective OLS models:

relative (in %) increase or reduction.

https://doi.org/10.1371/journal.pone.0226830.g004
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are displayed as total impacts. (Dir: Direct impacts. Ind: Indirect impacts (neighbors). Tot:

Total impacts.) (ATOT: Total Area [ha]. PVA: Share of potential vegetation on surface area

[%]. PPFA: Population pressure on remaining forest area [pers./ha]. RD: Road density [km/

km2]. FL: Flatness: share of surface with less than 16% steepness [%]. CSI: Crop suitability

index [%]. CY: Maximum cereal area yield [kcal/ha].)

Additionally, we provide Tables B-G in S3 File to assist during the analysis of this study’s

results. Namely, we compiled a detailed and comprehensive table on the descriptive statistics

for all the variables used in each of the samples (Table B in S3 File), the results of the collinear-

ity check (Table C in S3 File), the results for the simple regressions (Table D in S3 File), and

the results for all OLS models and the non-significant spatial models for macro-, meso- and

micro-level (Tables E, F and G in S3 File, respectively).

We can observe that the number of significant explanatory variables, the values of error

term parameters (λ), and neighboring effects (θ), tend to increase at smaller administrative lev-

els, in both the aggregated (Table 6) and country-specific models (Tables F and G in S3 File

and Table 7).

Across all spatial sales and countries, PPFA always depicts the strongest contribution to all

models with the highest coefficients (around three to ten times larger than the other variables)

and a negative influence on FC. The relative contribution of PPFA to the models is gradually

increasing at smaller levels, both in the pantropical models (from 1.19 to 2.14) and in the coun-

try-specific models. Together with PPFA, either CSI or PVA are also present in the models for

all the samples. On the one hand, CSI is significant in all pantropical samples, but with slightly

smaller coefficients at lower spatial levels. This determinant always has a negative contribution

to FC in all the models were it is significant (nine out of the twelve). On the other hand, PVA

was significant in eight of the twelve samples (mostly meso- and micro-levels) with negative

influence on FC in seven of those. The other variables showed a more differentiated pattern

across scale and contexts. ATOT presented smaller but significant impacts on FC with varying

signs in only three of the twelve models. FL was included in all Ecuador-specific models only,

where it influences FC positively. From the five samples where CY was available, it only had a

Table 6. Impacts for aggregated pantropical samples in specified spatial models.

Macro-level (SEM) Meso-level (SEM) Micro-level (SDEM)

N = 49 N = 361 N = 3,035

Coef SE z-

Val

P> |z| Coef SE z-

Val

P> |z| Coef

(Total)

SE z-

Val

P> |z|

Pantropical models λ(Err) 0.51 0.13 3.97 ��� 0.72 0.04 18.99 ��� 0.72 0.01 56.18 ���

Inter 0.70 0.13 5.59 ��� 1.08 0.10 10.46 ��� 1.57 0.04 41.65 ���

ATOT
^ x x x x -0.09 0.05 -1.87 � 0.08 0.04 2.07 �

PVA^ - - - - 0.19 0.04 4.76 ��� 0.03 0.03 0.94 n.s.

PPFA
^ 1.19 0.09 14.01 ��� 1.63 0.05 31.90 ��� 1.89 0.04 45.96 ���

RD^ - - - - - - - - - - - -

FL^ x x x x x x x x x x x x

CSI^ 0.27 0.07 3.97 ��� 0.21 0.04 5.37 ��� 0.28 0.36 7.87 ���

CY^ x x x x xx xx xx xx xx xx xx xx

Coef: Coefficient; SE: Standard Error; x: variable eliminated by de model; xx: not applicable in this model; -: Collinearity > 0.6

^: linearized and standardized–variable

���: <10−4

��: <10−2

�: <10–1; n.s.: >10−1.

https://doi.org/10.1371/journal.pone.0226830.t006

Scale and context dependency of deforestation drivers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226830 January 29, 2020 16 / 32

https://doi.org/10.1371/journal.pone.0226830.t006
https://doi.org/10.1371/journal.pone.0226830


significant (negative) effect on FC in the macro-level OLS model for Ecuador. We detected a

strong collinearity (correlation above 0.6, see Table C in S3 File) between RD and PPFA in ten

of the twelve samples. Thus, this variable was only included (and found significant) in two

country-specific samples at the micro-level. The samples for Zambia’s macro and meso-levels

further showed strong collinearity between other variables, for instance between ATOT and

CSI, PPFA or RD and between RD and CSI.

Table 7. Impacts for country-specific (and aggregated) samples at micro-level.

SDEM—Spatial Durbin Error Model

Direct impacts: observed unit Indirect impacts: neighboring units (lag

X)

Total impacts

Coef SE z-Val P>|z| Coef SE z-Val P>|z| Coef SE z-Val P>|z|

Zambia

N = 1,016

Inter 0.87 0.06 13.70 ��� λ(Err) 0.79 0.02 40.04 ���

ATOT
^ x x x x x x x x x x x x

PVA^ -0.09 0.02 -4.45 ��� -0.04 0.05 -0.77 n.s. -0.13 0.05 -2.45 �

PPFA
^ 1.21 0.03 35.16 ��� -0.09 0.06 -1.63 n.s. 1.11 0.06 18.45 ���

RD^ 0.01 0.02 0.47 n.s. -0.12 0.05 -2.55 � -0.11 0.06 -1.91 �

FL^ x x x x x x x x x x x x

CSI^ 0.15 0.02 7.09 ��� 0.22 0.05 4.48 ��� 0.37 0.06 6.59 ���

CY^ xx xx xx xx xx xx xx xx xx xx xx xx

Ecuador

N = 865

Inter 1.26 0.05 25.62 ��� λ(Err) 0.54 0.04 15.58 ���

ATOT
^ x x x x x x x x x x x x

PVA^ 0.21 0.03 6.58 ��� -0.14 0.06 -2.49 � 0.07 0.06 1.15 n.s.

PPFA
^ 1.86 0.04 49.84 ��� 0.25 0.06 4.27 ��� 2.12 0.06 37.33 ���

RD^ - - - - - - - - - - - -

FL^ -0.09 0.05 -1.61 n.s. -0.15 0.07 -2.04 � -0.23 0.05 -4.29 ���

CSI^ 0.09 0.03 2.72 �� 0.28 0.06 4.62 ��� 0.36 0.06 5.86 ���

CY^ xx xx xx xx xx xx xx xx xx xx xx xx

Philippines

N = 1,154

Inter 2.44 0.03 81.80 ��� λ(Err) 0.50 0.03 18.42 ���

ATOT
^ 0.21 0.02 9.37 ��� 0.11 0.04 3.23 �� 0.32 0.04 8.03 ���

PVA^ 0.40 0.02 19.34 ��� -0.04 0.02 -1.91 � 0.35 0.03 12.05 ���

PPFA
^ 2.32 0.02 96.96 ��� 0.04 0.04 1.07 n.s. 2.36 0.04 54.17 ���

RD^ -0.31 0.02 -13.18 ��� 0.07 0.04 1.75 � -0.24 0.04 -5.71 ���

FL^ x x x x x x x x x x x x

CSI^ x x x x x x x x x x x x

CY^ xx xx xx xx xx xx xx xx xx xx xx xx

Pantropical

N = 3,035

Inter 1.57 0.04 41.65 ��� λ(Err) 0.72 0.01 56.18 ���

ATOT
^ 0.01 0.02 0.79 n.s. 0.07 0.03 2.10 � 0.08 0.04 2.07 �

PVA^ 0.18 0.02 11.07 ��� -0.15 0.02 -6.16 ��� 0.03 0.03 0.94 n.s.

PPFA
^ 2.14 0.02 101.87 ��� -0.26 0.04 -7.13 ��� 1.89 0.04 45.96 ���

RD^ - - - - - - - - - - - -

FL^ x x x x x x x x x x x x

CSI^ 0.12 0.02 7.34 ��� 0.17 0.03 5.66 ��� 0.28 0.36 7.87 ���

CY^ xx xx xx xx xx xx xx xx xx xx xx xx

Coef: Coefficient; SE: Standard Error; x: variable eliminated by de model; xx: not applicable in this model; -: Collinearity > 0.6

^: linearized and standardized–variable

���: <10−4

��: <10−2

�: <10–1; n.s.: >10−1.

https://doi.org/10.1371/journal.pone.0226830.t007
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Fig 5. Coefficients and standard errors of the seven explanatory variables (drivers of deforestation) of the selected models for the twelve samples, across

spatial level and country context.

https://doi.org/10.1371/journal.pone.0226830.g005
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When observing the results for the micro-level analysis, where a SDEM including spatial

errors and indirect impacts from neighbors was always specified (Table 7), we can identify

more context dependencies. Neighbor effects are also observed in Philippines’ and Ecuador’s

meso-level results. Although in general the total effects of the spatial models are similar, in

direction and intensity, to those of the OLS models, we can see some particular exceptions.

The variable RD in Zambia’s micro-level, for example, loses its high significance in the SDEM

model. In other cases, the indirect effects of the neighbors represent a relatively large or even

more significant contribution to a variables’ behavior than the direct effects. We can see this in

Ecuador’s results, for CSI and FL, and for Zambia’s CSI as well as for the pantropical results’

CSI and ATOT. This is also true for Ecuador’s FL and for Philippines PVA at meso-level. In

some other cases, even the direction of the indirect impacts differs from the direct effects,

while still in notable intensities and significance. This happens for PVA in Ecuador’s and in

the aggregated results, PPFA in the aggregated model, and RD in the Philippines sample; all of

them, at the micro-level. At the micro-level, the strongest and most significant effect of neigh-

boring regions is observed in Ecuador and in the pantropical model.

In general, the error coefficients were higher in the pantropical models (0.51 to 0.72) com-

pared to the respective country-specific models (0.43 to 0.54). The only exception to this is the

highest spatial error coefficient (λ), which was identified in Zambia’s micro-level sample

(0.79). Moreover, the spatial error terms are relatively large in all SEM and SDEM models if

compared to the other variable coefficients (except PPFA).

4 Discussion

4.1 Insights from spatial econometrics

4.1.1 Econometric models of pantropical deforestation and spatial dependencies. We

calculated highly significant econometric models with cross-section data applying a sigmoid

function for different spatial levels and tropical contexts. This represents a first empirical

attempt in scientific research on basis of an aggregated pantropical study. Both non-spatial

and spatial regressions resulted in significant models of deforestation for different countries

and jurisdictional levels (see Table A in S3 File).

However, we demonstrated spatial dependency and consequently, the use of spatial models

was justified in at least nine of the twelve studied samples (Tables 4 and 5). Our results support

Tobler’s first law of geography [114], which implies that social and physical events are highly

clustered in space. In these nine cases (all except for the country-specific macro-levels), the

inclusion of spatial errors and/or spatially lagged Xs improved the explanatory power and the

goodness of fit of the spatial models significantly. The application of this theory to drivers of

deforestation has not yet been addressed intensively in empirical research. Our results indicate

that neglecting spatial effects in this kind of studies can lead to several problems and misinter-

pretation, e.g. bias of coefficients, falsely classified predictors, or even opposite change of effect

directions.

Before discussing our general findings into detail, we will highlight some of the methodo-

logical limitations and the potential for innovation of this study.

4.1.2 Methodological limitations and innovation. Understanding the influence of the

spatial scale on drivers of deforestation constitutes a methodological and conceptual challenge.

Especially, if generalizations on FC and deforestation rates are to be used as a framework for

operationalizing adequate forest policies like REDD+ [115,116]. First, the assumptions and

restrictions of complex spatial econometric models require cautiousness when interpreting

causality or inference. For example, the chosen variables related to the most common drivers

of deforestation can have some degree of endogeneity ([13,117]). Increasing population needs
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more roads, agricultural land and thus, results in reduced FC. But, at the same time, in areas

with middle to high FC, as deforestation increases, more roads can be built, more land can be

cleared and, thus, the number of people that can be supplied increases as well. Moreover, we

detected and treated persistent collinearity (especially strong in Zambian samples), mostly

between population and other variables, like road density. This warns us to be especially care-

ful with the analysis of these cases and suggests the thorough exploration of the relations

between selected determinants in similar approaches. Besides, due to the nested multi-level

design of our study, our samples had very different sizes ranging from 9 to over 3,000 units,

which has to be kept in mind again when comparing the respective results.

As often discussed, the results of spatial models can be very different depending on the

neighbor matrix and the specified model [118]. The spatial weights matrices (Ws) based on the

SOI method resulted to be an improved alternative to reflect the spatial interactions in the

twelve very heterogeneous samples [118,119]. As with other graph-based matrices such as

Delaunay triangulation or Gabriel W, SOI presented advantages to other–and more commonly

used–contiguity (e.g. rook, queen) or distance-based Ws. For instance, all the resulting Ws

were symmetric (if i is neighbor of j, j is neighbor of i), and row standardization allowed for

proportional weights when features had unequal number of neighbors. Moreover, this type of

spatial weight does not need a common border between units, which allowed us to work with

close island regions as neighbors like in the case of the Philippines. Moreover, this type of

matrix enabled working with separated blocks, for instance treating and comparing different

countries in the aggregated sample. The SOI matrix and a local model specification fulfilled

the purposes of our study providing relevant answers to our research questions.

Our proposed econometric models deal with the issue of spatial autocorrelation or spatial

dependency of the observations (endogenous/exogenous variables or error terms). Spatial

autocorrelation exists due to a diversity of phenomena related to measurement (choice of

observation unit), externalities or spillovers. Our selected nested models allowed us to compare

impacts between parameters and provide generalized spatial models of deforestation, which

could be compared to each other as well. However, further studies with similar approaches

could explore other types of commonly used spatial regression models, which present other

advantages or possibilities for the analysis. For example, gobal spatial models (such as the clas-

sical Spatial Durbin Model) are based on simulations and imply more complex interactions, as

the changes in neighbors’ FC affect the FC in all the system units [120,121]. Another option

are geographically weighted regression (GWR) models, which deal with another kind of spatial

phenomena–although related to autocorrelation-, namely: spatial heterogeneity, heteroscedas-

ticity, spatial non-stationary or structural instability in space. Therefore, in GWR models, the

explanatory variables can have different effects or parameters at different points, and the error

term may vary spatially as well. This is why GWR models are normally considered as a good

exploratory method to visualize non-stationary phenomena [122–124].

Other options for further analysis could be the use of spatial panel data models or laying the

focus on deforestation rates as dependent variable [120,125]. An analysis of this type could

reflect the forest trajectory of each particular administrative unit, but it would imply further

methodological compromises. For instance, it would need harmonized information about

land (forest) cover and its drivers for the three countries at different points in time. Including

more variables or indicators for drivers of deforestation could also brighten the opportunities

for further analyses. On the one hand, the availability and the quality of the existing informa-

tion vary significantly across spatial and jurisdictional levels. Some of this information is nor-

mally missing or problematic to obtain at subnational levels, especially in developing tropical

countries. For instance: economic, agricultural or land use data are normally collected and

summarized at national or regional level for international reporting, or sometimes available
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but in different formats or quality standards (e.g. CSI and CY). Another example is the reliabil-

ity of the available administrative boundaries themselves in resembling the actual political sce-

narios on the ground. Normally, official governmental boundaries do not acknowledge

customary management and governance schemes, such as chiefdoms in Zambia, indigenous

territories in Ecuador or ancestral domains in the Philippines [126,127]. Moreover, this

boundaries are frequently unsure or inaccurate, due to a combination of an on-going modern-

ization of the technical mapping capacities of the relevant institutions, and in some cases,

regional tensions and disputed boundaries [128,129]. But on the other hand, the existing data

on global deforestation and related drivers (e.g. [1,72,130]) is constantly increasing and more

new sources are regularly updated at medium to high resolution. This fact creates promising

room for innovative approaches and new research directions.

4.2 Scale and context dependency of deforestation drivers

4.2.1 Constant leading impact of population pressure and land suitability for agricul-

ture. As expected and in line with previous studies [13,26], we empirically identified popula-

tion pressure (i.e. PPFA) and land suitability for agriculture (CSI or PVA) as the main

recurrent pantropical drivers of deforestation. While previous studies have been focusing on

specific administrative levels or specific countries, our models show that this phenomenon

occurs across all jurisdictional levels and different tropical contexts.

Moreover, demographic pressure, which expresses the need for agricultural land and infra-

structure at the expense of natural resources, has by far the highest (negative) influence on FC.

Its standardized impacts are five to ten times larger than those for the other significant deter-

minants. Thus, our study not only confirms the constant negative impact of population pres-

sure on FC, but it empirically demonstrates its leading influence across different regions and

jurisdictional levels. These results suggest, that it is the best ‘stand-alone’ indicator for FC

change across contexts and scales [30,131,132].

The influence of demographics is combined and intensified by the natural conditions of the

land, expressed by the crop suitability index and the share of potential vegetation area. Con-

stantly influential across scale and context, higher land suitability for agricultural production

triggers the conversion of forests to such. This highlights the importance of competition for

land between different forest and alternative land uses–and their respective opportunity costs–

as a recurrent universal phenomenon in forest-agriculture frontiers [133,134].

4.2.2 Scale dependency: Heterogeneity at local levels. We could recognize recurrent and

clear differences across spatial levels. In general, the number of explanatory variables increases

at more local scopes, in both the aggregated and country-specific results. Moreover, the quality

and the statistical significance of the models increases with smaller administrative units, while

their explanatory power decreases. This is due to the heterogeneity and the larger sample size

of the lower levels, which is not yet completely explained by the tested variables. In addition,

strong spatial errors and larger Moran’s Is of the residues, suggest that important spatially cor-

related variables might have been omitted, especially at the lower levels. Smaller jurisdictional

units require more complex models, which account for both larger spatial errors and stronger

neighbor interactions [37]. Our results confirm the evidence from the literature and previous

studies, which is rich in local-scale cases that exhibit complex patterns and processes of cou-

pled human and natural systems [10,13,135].

Furthermore, the studied drivers influence FC with varying intensities and directions

depending on scale and the regional context. The impact of demographics, for instance, gains

strength at smaller administrative units across contexts, while the variables associated with

agricultural suitability (CSI for Ecuador, Zambia and pantropical models, PVA for Philippines’
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model), present similar ranges of intensities across scales. This could be representing a more

direct pressure on the natural resources and signifying the human competition for land in sys-

tems with narrower limits [136]. Likewise, when analyzing the results of the pantropical mod-

els, the area size of the administrative unit apparently has a negative influence on forest at the

micro-level, but positive at the meso-level. Although this impact is relatively little if compared

with the ones of other determinants, it is related to the existence of small units within urban

areas at the micro-level. According to our definitions, these areas result in high FC as most of

its limited potential vegetation area comprises natural parks and tree areas, but little pastures,

crops or grasslands.

4.2.3 Context dependency: Particularities of the countries. Some context-specific find-

ings of our study can be highlighted. The larger error coefficients (λ) of the pantropical models

indicate the importance of some omitted variables that account for these contextual differ-

ences. The missing factors could be related to regional, geographic or ecological dissimilarities

of the three countries.

In the case of Zambia, the variable potential vegetation area had a positive influence on FC.

This might be representing the relevance of woodland areas and shrubs and their compensa-

tion effect when being used or classified as forests [126,137]. Another possible explanation

could be the land cover information used, which is generalized for Africa and does not distin-

guish between the varying and complex forest ecosystems in the country, ranging from ever-

green closed forests to open miombo or mopane woodlands and bushlands [58,138,139].

Furthermore, the lower quality and explanatory power of the models, together with their

higher spatial errors (especially at the micro-level), clearly suggest that the models could not

capture another determinant, which is less relevant at district or province level. As suggested

by other authors [46,58], this could be related to the existence of more local events such as fire

occurrence or wood extraction for charcoal and fuel production. Furthermore, we observe a

less important role of demographics in comparison to Ecuador and Philippines, most likely

due to the lower population density.

Besides, Ecuador has the models with the most significant independent variables, explain-

ing the heterogeneity of the country at all spatial levels from an ecological and socio-economic

perspective. Flatness, for example, was positively correlated with deforestation at all spatial lev-

els, only in this country. This might be due to the more diverse geographic conditions and the

larger differences between the steep Andean slopes with historical deforestation and the low-

land areas as a current deforestation frontier [140,141]. Similarly, cereal yield was significant at

the macro-level of Ecuador only, and associated with deforested provinces. At this large-scale

picture of the country, cereal yields for maize and rice are much higher in the coastal and cen-

tral areas, where the cultivation of these crops is more extended and more commercially ori-

ented [142]. In these provinces, relatively little or almost none forest is left. At the same time,

indigenous groups with a more subsistence oriented crop production inhabit large areas of the

Amazon with lower agricultural yields [142,143]. These results might reflect the importance of

effective and conscious territorial organization [144], like the particular governance schemes

taking place at the different spatial levels in the country [127,145].

The models for the Philippines included the smallest number of significant explanatory var-

iables, and population pressure is apparently explaining FC change almost exclusively. It is

important to understand the archipelago condition of this highly populated country, plus its

late/post- transition context, in which massive deforestation has already taken place resulting

in the actual national forest-agriculture mosaic [146,147]. This might also be the reason why

factors like the crop suitability index are not significant, in contrast to the other countries

where higher deforestation rates are still observed. However, the uniform and substantial con-

tribution of the share of potential vegetation area to the model might be capturing this
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influence of key deforestation and degradation drivers, such as agricultural expansion or forest

product extraction [148]. A last remark must be made regarding the omission of flatness in the

three spatial levels. This is observed despite the biophysical heterogeneity of the Philippines, a

country which has even been using a slope threshold to legally define forestland [149]. For

decades, all areas above 18% of slope have been classified by the Philippine institutions as for-

estland regardless of whether any tree cover was present, because of their location in mountain

ranges or in hardly accessible areas where forest was (usually) found [150].

4.2.4 The impacts of neighbors: Defining the system limits. It is important to under-

stand that the effects of many socioeconomic, political and ecological drivers of de- and refor-

estation are often perceived at other spatial levels or at different jurisdictional units than those

ones where the actual causes are being generated [17]. For example, national, regional or global

decisions from private and/or public actors regarding forests and agriculture (e.g. trade agree-

ments or conservation policies), might help intentionally or not in halting or increasing defor-

estation at different smaller geographical contexts [151–153]. Similarly, but on the opposite

direction, both community decisions referring to priority areas for protecting forest functions,

as well as land use/cover changes related to local income or opportunity costs, might turn rele-

vant on provincial, national or international levels, sometimes even in conflict with private or

governmental interests [2,154,155]. These connections between neighbors and hierarchies are

not always easy to identify, quantify and weight, as they are a miscellaneous result of geograph-

ical, historical, political, economic and even random conditions that may vary from region to

region.

The results for the indirect impacts provided by the spatial models at the smaller levels offer

some interesting insights and room for discussion. For instance, the neighbors’ suitability for

crop production (in Ecuador and Zambia) even has a stronger influence on FC than the unit

of analysis itself. We can observe the exact same behavior between adjacent units (stronger

impacts of neighbors) in Ecuador with other variables of higher resolution, like flatness or pop-

ulation. Moreover, we also identified these interactions in the results for the potential vegeta-

tion area in the Philippines’ at meso-level. In some other cases, the neighbors influence FC

with inverse directions. If we analyze the pantropical model, for example, larger potential vege-

tation areas and population densities in the neighboring units apparently release the pressure

on forest. Furthermore, the influence of neighboring units on deforestation at meso-level

appears to be more significant in Ecuador and Philippines than in Zambia. Perhaps, because

the smaller size of the counties (Ecuador) and provinces (Philippines) allows these interactions

to happen, if compared with the larger districts in Zambia. Other reasons could be the con-

trasting geography of the countries, the obvious differences on connectivity (e.g. islands vs.

landlocked) and infrastructure, or other data-driven explanations such as the use of a non-real-

istic neighboring matrix and the quality of Zambia’s unofficial boundary dataset [52]. More-

over, these neighbor interactions between provinces and administrative regions do not seem

to be relevant at the macro-level in any of the countries, individually or aggregated.

In any case, our results are empirical evidence that certain deforestation forces occur inde-

pendently of de jure governance boundaries; thus, they should be addressed setting broader

and more flexible system limits, which consider the complex socio-ecological characteristics of

each particular landscape.

4.3 Policy implications: The scale of REDD+

Policy design usually takes place on different interacting levels, such as international conven-

tions, national laws, regional policy programs and local on the ground initiatives. The degree

of federalism and decentralization differs among countries. Developing countries often have
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highly complex laws and regulations, which are, however, frequently inconsistent among con-

curring policy resorts or governance hierarchies and therefore unclear. Additionally, low

capacities and weak law enforcement impede the governance process [156,157]. A clear exam-

ple of this are the challenges and difficulties often faced during the design and implementation

of REDD+ programs on the ground [158–160]. In order to ensure the success of such mea-

sures and reach both global and local objectives, there is a need for coordinated coherent pol-

icy design [14,160,161].

Our results indicate that anticipating demographic development and harmonizing forest

and agricultural policies with increasing population pressure are of highest priority at all spa-

tial levels and across countries. However, the strikingly strong relationship between demogra-

phy and FC could indicate clear limitations of sectoral policy far beyond forestry, agriculture

or even beyond bioeconomy. Although the main drivers of tropical deforestation are strongly

dominated by socio-economic factors (e.g. demographic and infrastructure development),

they are sensitive to the context and spatial scale, thus being case specific. Our findings stress

the importance of taking context-specific factors into account, especially at smaller spatial

scales. The varying spatial interactions between neighbors and drivers suggest a demand for

flexibility when setting system boundaries in forest-related policy. Thus, depending on the spe-

cific tropical context and scale, a different spatial focus (beyond the existing de jure governance

configurations) might be needed, in order to design effective measures, which halt

deforestation.

Our results highlight the need for coherence between forest conservation and management

policy implementation from national to local level on the one side. On the other side, they sig-

nalize the need for suitable demographic and agricultural policies across scales and countries.

These raises some questions in line with frequent discussions [16,160], such as how sustainable

and efficient conservation and restoration measures can be in highly populated areas or in

societies with weak governance.

5 Conclusions

Our study represents a first attempt of generating econometric models of pantropical defores-

tation that consider subnational administrative units. We were successful in providing highly

significant models that quantify the influence of commonly identified drivers of deforestation

for different tropical contexts and spatial levels. We also demonstrated that neglecting spatial

effects in this type of studies can lead to several problems or misinterpretations.

We conclude from our findings that the enforcement of policy instruments should start

from common entry points at the international level and has to be then modified and adapted

to particular national, regional or local conditions. International and national policy makers

should focus on addressing demographic/infrastructure development and overcoming con-

flicts with agricultural purposes, while designing the framing conditions for efficient land use

planning and policies. This can only be effective if global, national (large scale) REDD+ policy

leaves enough flexibility for smaller scale adaptation of the policy frameworks to the respective

socio-ecological conditions. Some successful examples of this are decentralization efforts such

as ‘landscape approaches’ or participatory and community-based forest management, as long

as broader national and international political commitment is present [162,163].
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S1 Fig. Forest transition phases according to different categorizations and expected situa-

tion of the selected countries within the forest transition curve. Forest Cover (FC) vs. Socio-
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development (behind): (a) FAO (2015)–FC: Forest cover; AFCR: Annual forest change rate.

(b) Angelsen and Rudel (2013)–Quote: “The FT framework suggests that over time a country

(or region) moves through three stages: (1) high forest cover and low deforestation (“core for-

ests”), (2) accelerated deforestation and shrinking forest cover (“frontier forests”), and (3) sta-

bilization and eventual reversal of the deforestation process (“forest-agricultural mosaics”)”.

(c) da Fonseca et al. (2007)–HFLD: High FC (>50%), Low Deforestation rate (AFCR >

-0.22%/yr.)–HFHD: High FC (>50%), High Deforestation rate (AFCR < -0.22%/yr.)–LFHD:

Low FC (<50%), High Deforestation rate (AFCR < -0.22%/yr.)–LFHD: Low FC (<50%), Low

Deforestation rate (AFCR > -0.22%/yr.). (d) Hosonuma et al. (2012) Pre-transition: FC>50%

and AFCR> -0,25%, Late transition: FC < 15% or AFCR = 0% or decreasing AFCR, Post-

transition: FC < 50%, Early transition: Remaining cases.

(TIF)

S1 File. Geodatabase. Compressed file including Excel tables and ESRI shapefiles with the var-

iables for all the samples.

(7Z)

S2 File. R Script used for statistical analysis.

(R)

S3 File. Supporting information. Table A: Global measures of the models. Table B: Descrip-

tive statistics. Table C: Multi-collinearity results. Table D: Simple linear regressions. Tables E,

F, G: Impacts for the additional OLS and spatial models.

(PDF)

S4 File. Executive summary of the main findings.
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159. Hargita Y, Günter S, Köthke M. Brazil submitted the first REDD+ reference level to the UNFCCC—

Implications regarding climate effectiveness and cost-efficiency. Land Use Policy. 2016; 55:340–7.

160. de Sassi C, Sunderlin WD, Sills EO, Duchelle AE, Ravikumar A, IAP R, et al. REDD+ on the ground:

Global insights from local contexts. In: REDD+ on the ground: A case book of subnational initiatives

across the globe. Center for International Forestry Research (CIFOR), Bogor, Indonesia; 2014.

161. Angelsen A. Realising REDD+: National strategy and policy options. Cifor; 2009.

162. Lima MGB, Visseren-Hamakers IJ, Braña-Varela J, Gupta A. A reality check on the landscape

approach to REDD+: Lessons from Latin America. Forest Policy and Economics. 2017; 78:10–20.

163. Agrawal A, Angelsen A. Using community forest management to achieve REDD+ goals. Realising

REDD+: national strategy and policy options. 2009; 1:201–12.

Scale and context dependency of deforestation drivers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226830 January 29, 2020 32 / 32

https://doi.org/10.1126/science.1155369
http://www.ncbi.nlm.nih.gov/pubmed/18556552
https://doi.org/10.1126/science.1187774
http://www.ncbi.nlm.nih.gov/pubmed/20395498
https://doi.org/10.1371/journal.pone.0226830

