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Abstract

Background: To date, only a limited number of transcriptional regulatory interactions have been
uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix
(PWM) performed poorly in inferring transcriptional interactions (TIs), which represent physical
interactions between transcription factors (TF) and upstream sequences of target genes. Inferring a
TI means that the promoter sequence of a target is inferred to match the consensus sequence
motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a
robust PWM (rPWM) was developed to search for consensus sequence motifs. In addition to
rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under
specific conditions. An interaction type classifier was assembled to predict activation/repression of
potential TIs using microarray data. This approach, combining an adaptive (learning) fuzzy inference
system and an interaction type classifier to predict transcriptional regulatory networks, was named
AdaFuzzy.

Results: AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces
cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse
matrix factorization (cPSMF), and using 19 transcription factors (TFs), we compared AdaFuzzy to
four well-known approaches using over-representation analysis and gene set enrichment analysis.
AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform
comparably to ‘ChIP-experimental method’ in inferring TIs identified by two sets of large scale
ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more
of the four promoter architectures. The results coincided with known promoter architectures in
yeast and provided insights into transcriptional regulatory mechanisms.

Conclusion: AdaFuzzy successfully integrates multiple types of data (sequence, ChIP, and
microarray) to predict transcriptional regulatory networks. The validated success in the prediction
results implies that AdaFuzzy can be applied to uncover TIs in yeast.
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Background
Identifying transcriptional interactions (TIs) is one of the
central challenges in the post-genome era. When
transcription factors (TFs) bind to cis-regulatory mod-
ules in the upstream DNA sequence of a target gene, its
mRNA transcribes (expresses). In general, a cis-regulatory
module consists of multiple TF binding sites, which may
require several cooperating TFs to transcribe a given
target gene. Therefore, predicting TIs for a whole genome
can be computationally intensive. Nevertheless, integrat-
ing whole-genome DNA sequence, ChIP-chip, and
microarray data may assist in the uncovering of gene
regulatory networks.

Many types of resources have been exploited to predict
gene regulatory networks; most of them use sequence
data, localization data, gene expression data, protein
structure data, or orthologs across different species.
Sequence-based approaches focus on a group of genes
and predict TIs within the group. Position weight
matrices (PWMs) were incorporated to infer TF binding
sites in [1]. Other approaches have been developed to
find target genes with potential TIs such as, text mining
[2], and support vector machines [3]. Besides sequence
data, microarray data are also frequently used to reveal
gene regulatory networks. The latest advance in Gaussian
graphical models employed an empirical Bayes approach
(EB-GGMs), and it can infer a large network of 3000+
genes [4]. The dynamics of pairwise TIs were studied
using a nonlinear differential equation (NLDE) [5],
which was shown to capture the behavior of transcrip-
tional regulation with good accuracy. Other models
proposed include Bayesian networks [6-9], state-space
models [10], deterministic differential systems [11],
linear differential systems [12], a linear dynamic model
with latent factors [13], co-expression analysis [14], and
machine learning [15,16]. In particular, [17] proposed a
statistical approach (PAP) that incorporated sequence
and microarray data to infer transcriptional regulators
for co-regulated genes. PAP first gathers a set of co-
expressed genes, then analyzes the regulatory sequence
of these genes to identify potential TF binding sites.

Recently, integrating multiple types of data to infer TI
has been proposed. Several approaches, including GRAM
[18], COGRIM [19] and ReMoDiscovery [20], have been
proposed to predict transcriptional regulatory networks
using both TF binding information and microarray data.
A two-stage constrained matrix decomposition model,
called cPSMF [21], is the latest advanced algorithm
proposed to predict TIs using ChIP-chip, sequence and
microarray data. cPSMF considered the nonlinear struc-
ture in gene expression data of TIs, and used a linear
combination of weighted TF activities to predict TIs and
transcriptional modules. These approaches allow the

prediction of TIs with more biological significance than
models that use microarray or sequence data alone.

In our preliminary study [22], a conventional fuzzy-logic
approach (FuzzyTRN) was proposed to integrate both
DNA sequence and microarray data to infer TIs. Here, we
present a further enhanced machine-learning (adaptive
fuzzy) approach, called AdaFuzzy, to infer TIs, which
incorporates DNA sequence, ChIP-chip and microarray
data. A robust position weight matrix and a feature vector
are proposed in AdaFuzzy. Furthermore, potential TF
binding sites in upstream sequences of a specific target
gene are identified by an adaptive neuro-fuzzy inference
system (ANFIS) using sequence data. ChIP-chip data
confirms that TIs do indeed occur under specific experi-
mental conditions. In addition, microarray data is used to
classify predicted TIs into activator-target or repressor-
target relations via a weighted regression. After potential
TIs are identified, AdaFuzzy also classifies their types of
promoter architectures to provide insights into the
organization of transcriptional regulatory interactions.

Methods
The proposed method (AdaFuzzy) consists of three parts.
(1) Identifying consensus sequence motifs of a given TF
using a robust PWM (rPWM). A rPWM is different from a
PWM as it allows adjustment for gaps in the aligned
sequence motifs. The rPWM of a TF is used to search for
potential TF binding sites in the upstream sequence of a
given target gene. For each pair of TF-target genes, a
feature vector consisting of three indices to identify
possible TF binding sites is constructed. The novelty of
the feature vector lies in the adjustment for gaps of
the aligned sequence motifs to make the score robust.
(2) The feature vector and ChIP-chip data are then
incorporated to predict potential TIs by an adaptive
neuro-fuzzy inference system (ANFIS), which is a
learning fuzzy approach. (3) Finally, a classifier is
developed to infer the interaction types of predicted TIs
(activator-target (AT) or repressor-target (RT) interac-
tion) using microarray data. Figure 1 shows a conceptual
schematic diagram of AdaFuzzy. The TI discussed here is
the physical interaction between a TF and its target gene.
After all TIs have been identified, they can be categorized
into one or more of the four major types of promoter
architectures defined in [23] to provide insights into the
organization of transcriptional regulatory interactions.
The details of the proposed method for inferring TIs are
stated in the following sections.

Identifying consensus sequence motif
For a group of genes of interest, suppose that some of
them encode known TFs, for instance, a regulating gene
that encodes a TF with n candidate sequence motifs of
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different length ki, which can be denoted by B = (bij: i =
1, ..., n; j = 1, ..., ki), and bij Œ {degenerate characters}.
Each degenerate character is represented by two or more
capital symbols with uniform frequencies and possibi-
lities of occurrences. The details of these degenerate
characters are summarized in the IUPAC website http://
www.bioinformatics.org/sms/iupac.html.

ClustalW [24] is used to align the motifs of a regulating
gene. To eliminate the length differences between motifs,
the empty symbol ‘-’ is inserted to fill in gaps introduced
by the alignment. The aligned candidate sequence motifs

of the regulating gene are denoted by ℛ = (rij: i = 1, ..., n;
j = 1, ..., k), k is the length of the aligned candidate
sequence motifs of each TF, and rij Œ {degenerate
characters or ‘-’}. Then, the alignment result is summar-
ized into a position-specific frequency matrix, denoted
by F, as
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Figure 1
Conceptual diagram of the AdaFuzzy algorithm. First, consensus sequence motifs of a given TF are identified using a
robust PWM (rPWM), which the rPWM is then used to search for potential TF binding sites in the upstream sequence of a
given target gene via a vector of three features. Then this feature vector is incorporated to predict potential TIs by an adaptive
fuzzy system (ANFIS), and a classifier is developed to infer the interaction types (AT or RT). Finally, all inferred TIs are
categorized into one or more of the four major types of promoter architectures.
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where rx, j is the count of occurrences of nucleotide x at
column j of ℛ calculated based on the occurrence
probability of IUPAC nucleotide codes in additional file
1. Here, when computing rx, j the proportions of {A, C,
G, T} in degenerate characters were also summed
together with the frequencies of non-degenerate nucleo-
tides. For instance, at the first column of three aligned
sequences, there are A, C and Y, where Y assumes C and T
with equal probability. Then rA,1 = 1, rC,1 = 1.5, rG,1 = 0
and rT,1 = 0.5. Next, in PWM the probability of
observing a nucleotide b Œ {A, C, G, T} in the whole
genome of a given organism is equal to pb. However, a
large number of gaps in the aligned sequences would
inflate the values in the PWM. To correct this, we
propose to multiply the probability of a nucleotide in
PWM by its proportion of valid nucleotides (non-gaps)
in n sequences. For a given TF, the robust position
weight, denoted by S, is proposed as

S r b p
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where S(r.j = b) denotes the robust position-specific score
of nucleotide symbol b occurring at column j of ℛ, n
represents the number of candidate sequence motifs in
ℛ, and ωj is the number of valid nucleotides (non-
degenerate characters) at column j of ℛ. With small ωj,
the value of S(r.j = b) will be reduced to reflect that
information of all aligned jth elements of candidate
motif sequences (column j of ℛ) is less representative.
Hence, a rPWM, denoted by M, can be derived as M =
(Mbj = S(r.j = b); b Œ {A, C, G, T}; j = 1, ..., k), which is a
4 × k matrix. The rPWM can be used as a matching
template to identify potential TF binding sites in the
upstream sequence of a given target gene.

Uncovering TF binding sites
For a given target gene, suppose that we have attained a
fragment of its upstream sequence of length l, which can
be denoted by U = (u(-x): x = l, l - 1, ..., 1), where u(-x) Œ
{A, C, G, T}, and u(0) is the transcription start site. The
rPWM of a given TF is used to identify possible TF
binding sites in the upstream sequence U of a given
target gene. The first feature, a function that captures the
probability that a candidate TF is indeed the regulator, is
formulated as
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where -l ≤ � ≤ -k, and k is the length of the aligned
candidate sequence motifs of each TF. A large score of
ˆ( )S υ indicates a higher similarity between ℛ and the
sequence fragment in the range [� , � + k - 1] of the
upstream sequence U, and hence the sequence fragment
might be a potential TF binding site for the TF. The
maximum score is obtained by matching the rPWM with
sequence fragment U’ in the range

[ , ] , arg max ( ).maxυ υ υ υ
υ

+ − =k U S1  of  and �

The nucleotide fragment in the range [� , � + k - 1] is used
to determine the proportion of matched nucleotides
which is the second feature. For a given pair of TF and
target, the overall proportion of matched nucleotides
adjusted for the effect of gaps is
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where the indicator function I(E) = 1 if the event E holds;
otherwise, 0. The weight (ωj/n) is to adjust for gaps in ℛ.
The more valid nucleotides exist at column j of ℛ, the
more important the matching event is. Large values of O(
�) indicate that ℛ and U’ match well.

In addition, ChIP-chip data is also used to uncover TF-
target gene interactions. For a given TF, the p-values of
ChIP signals of all genes can be obtained after
preprocessing all ChIP-chip data, and the p-value
represents the significance level of a binding strength.
Thus, the p-value of a TF associated with a given target
gene, denoted by �, is utilized as the third feature of
AdaFuzzy.

Then, for any possible combination of TF and target
gene, feature vectors [ ˆ( )S υ , O(�), �] can be calculated for
predictions of TF binding sites via an ANFIS. The feature
vector consists of information gathered by some similar
but not completely overlapping features, and AdaFuzzy
yields better results than using any subset of them. This
concept is known as data fusion, a process of combining
information gathered from multiple measurements into
a single output to result in higher accuracy [25]. Data
fusion has been proven effective in various applications.
Thus, we use the feature vector to infer potential TIs by
the ANFIS, introduced in the next subsection. Note that
feature vectors [ ˆ( )S υ , O(�), �] with -l ≤ � ≤ -k can be used
to predict TF binding sites in the upstream sequence of a
target gene for a given TF, and this additional informa-
tion can be further used to identify the promoter
architectures of target gene, which is stated in the next
subsection.
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Identifying TIs using ANFIS
The three features above capture information about how
a TF matches the promoter sequence of a target.
However, whether a linear or nonlinear function of
these features and what appropriate weights should be
used to best summarize the information are unknown.
Nevertheless, information on TIs, e.g. a few hundred
pairs of TIs in the repository YEASTRACT already exists.
Therefore, it is reasonable to take a learning approach.
Here, a learning version of the fuzzy logic approach,
called adaptive neuro-fuzzy inference system (ANFIS) is
proposed to identify potential TIs from the three
features. The three quantitative inputs of the ANFIS,
ˆ( )maxS υ , O( � max), and �, which are converted into
qualitative descriptions by using some membership
functions (e.g. large, medium, and small) for fuzzy
reasoning, the parameters for which can be estimated by
existing TIs. Then, the reasoning process (fuzzy rules)
maps all combinations of the qualitative descriptions
onto a decision score. For instance, a trained ANFIS may
contain rules such as “if ˆ( )maxS υ is large, O(�max) is large
(the match of the sequences of a potential TF-target pair
is good), and � is small (ChIP signal intensity of a
potential TF-target pair is significantly high), then the
decision score is large (the chance that the potential TF-
target pair is a TI is high)”; another extreme example
would be, “if ˆ( )maxS υ is small, O(�max) is small (the
match of the sequences of a potential TF-target pair is
bad), and � is large (ChIP signal intensity of a potential
TF-target pair is insignificant), then the decision score is
small (the chance that the potential TF-target pair is a TI
is small)”. Finally, an overall decision score (denoted by
l) summarizes the reasoning results of the if-then rules
for predicting TIs. By applying known TIs to train ANFIS,
the parameters of membership functions for the fuzzy
qualitative transformation and fuzzy rules can be
automatically tweaked. When the number of member-
ship functions or fuzzy rules of an ANFIS is large, an
over-fitting problem will occur (i.e., the number of
parameters is larger than the number of observations),
but this disadvantage can be circumvented by setting a
limit on the numbers of membership functions or fuzzy
rules when initiating ANFIS.

Here, a Sugeno type-3 reasoning ANFIS [26,27] is used,
which is the simplest model of ANFIS with a five-layer
feed-forward architecture. A detailed description of this
ANFIS can be found in additional file 2. Note that the
cut-off for the decision score is also trained by existing
TIs (say c), which is different from conventional ANFIS;
the gradient descent method is used to train all
parameters of the ANFIS. A decision score l can be
computed from the corresponding feature vectors [ ˆ( )S υ ,
O(�), and �] for any given �. If the score l of a given TF-
target pair is greater than c, then this pair is predicted to

be a TI. Furthermore, for all those l scores greater than c,
their associated �’s are used to identify the positions of
predicted TF binding sites.

Classification of Promoter Architectures
After potential TIs are identified, insight into their
transcriptional regulatory mechanism can be obtained
if the prediction results include promoter architecture
type. We thus used information from both sequence and
ChIP-chip data to identify TF binding sites, and were
able to predict some promoter architectures that ChIP
experiments alone could not predict (see the experi-
mental results section for details). In this subsection, we
show how AdaFuzzy can classify the promoter architec-
ture of identified TIs into at least one of the four types
defined in [23], namely single regulator, repetitive
motifs, multiple regulators and co-occurring regulators;
see Figure 2 in [23] for an illustration of these
architectures.

The first type of promoter architecture is single regulator
architecture. This is the simplest type of architecture. For
the upstream sequence of a given target gene, if there is
only one TF with a � that forms a feature vector [ ˆ( )maxS υ ,
O(�max), �] resulting in a l > c, the predicted TI is classified
as having single regulator architecture. The second type of
promoter architecture is repetitive motif architecture. To
identify this architecture, the feature vector [ ˆ( )S υ ,O(�), �]
was fed into the ANFIS for -l ≤ � ≤ -k to identify all
possible TF binding sites in the range [�, � + k - 1] of U. If
the upstream sequence of a given target gene is identified
to contain multiple TF binding sites for a TF (multiple
number of � that results in l > c), then the predicted TI is
classified as having repetitive motifs architecture. The
third type of promoter architecture is multiple regulator
architecture. If the upstream sequence of a given target
gene contains multiple binding sites for multiple TFs, all
related TIs are classified as having multiple regulator
architecture. The final type of promoter architecture is co-
occurring regulators architecture. Such architecture is
formed by a pair of TFs on the same target, where in
general the distance between the two TFs is significantly
closer than expected by chance, and the distance between
two TF binding sites is the length of inter-sequence
between them [23]. Furthermore, by plotting the dis-
tribution of inter-sequence lengths of all predicted TIs,
any TF pair whose inter-sequence length has a p-value <
0.005 is classified as having co-occurring regulators
architecture. Please note that the co-occurring regulators
discussed here do not include the regulatory mechanism
of heterodimers. In addition, these four types of promoter
architecture are not necessarily mutually exclusive. An
identified TI can be classified into one or more types of
promoter architectures.
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Due to the lack of a benchmark, it is hard to evaluate the
classification of a TF-target pairs to types of promoter
architectures. However, as long as the overall advantages
of the classification outweigh the disadvantages, it is still
worthwhile performing.

Classification of AT/RT interactions
In our previous works [15,16], patterns in expression
curves of paired genes were shown to be associated with
the types of interactions, such as activator-target (AT)
interaction and repressor-target (RT) interaction. The
causal relation is inferred based on the observation of
gene expression data taken with time lags to uncover the
expression behavior of one gene that led to a delayed
pattern of altered expression of its partner [28].

The patterns of paired gene expression curves can be used
to identify the type of interaction between them. For
example, a similar (anti-similar) pattern in a gene
expression pattern (gradients with the same (different)
signs) implies an AT (RT) interaction, and these patterns
can be captured by the time-lagged gradients. To determine
the type of interaction between a pair of genes, denoted by
{G1 andG2}, we fitted a weighted least square regression to
time-lagged gradients of expression levels of G1 and G2.
Weighted least square regression was used since it can
dampen the effect of noise in the microarray data. The
slope of the regression line, denoted by b1, can be obtained
by the command ‘robustfit’ in MATLAB. The value of b1 can
be used to infer the association between paired curves.
A positive (negative) b1 indicates that overall the gradient
signs of paired expression curves are of the same (opposite)
sign, and this leads to a prediction of an AT (RT)
interaction. The value of b1 can be mapped linearly to a
decision score ranging from -1 to 1 to infer the interaction
type of the gene pair. If the decision score is positive
(negative), then the paired expression curves of G1 and G2

has a similar (anti-similar) pattern. The magnitude of the
decision score indicates the strength of a pairwise interac-
tion. For example, the decision score equals to 1 (- 1)
indicates that the gene pair genes has a perfect positive
(negative) association, and 0 means that there is no
significant interaction between them. Furthermore, the p-
value < 0.0001 of the decision score is used as the cutoff to
predict an interaction type. Using such a stringent criterion
can circumvent the noise in microarray data. Detailed
description is in additional file 3. Note that a training
version of this classifier can be used. However, this would
be too complicated; for simplicity, the current version is
used.

Results and discussion
In this section, AdaFuzzy, consisting of an ANFIS and
an interaction type classifier, is applied to identify

condition-specific TIs by integrated analysis of sequence,
ChIP-chip and microarray data. The demonstration of
the experimental results is divided into two parts:
(1) inferring TIs using data in the public domain,
(2) classifying all predicted TIs into one of the four
architectures.

In this subsection, upstream sequence data of genes
(-1000 bp to -1 bp) in different species are gathered from
EMBL-EBI database [29]. Sequence data of candidate
sequence motifs are collected from YEASTRACT [30] and
TRANSFAC [31]. By scanning the complete genome
sequences of S. cerevisiae, the probabilities of observing
nucleotides pb, b Œ {A, C, G, T} were calculated to be
{0.3098, 0.1909, 0.1906, 0.3087}. The yeast ChIP-chip
data set used was from [23], in which the genome-wide
analysis contains 203 TFs in rich media condition, and
84 of them were also examined in at least one of 12
environmental conditions that may induce a stress
response. A total of 19 TFs involved in the cell cycle
and stress response were chosen to evaluate the
performance of the proposed algorithm. The p-values
of TF-gene pairs from [23] therein were used as the input
(�) of the ANFIS. Two publicly available yeast time-
course microarray data sets were used, in which a cell
cycle data set measured under normal growth conditions
has 18 time points from [32], and the second set is
related to yeast stress response to different experimental
conditions, such as heat shock, amino acid starvation,
nitrogen source deletion and progression into stationary
phase [33]. There are 173 time points available in the
second data set. The normalization process and missing-
data imputation were conducted using zero transforma-
tion [34] and KNNimpute approaches [35], respectively.

Because ANFIS requires a complete training before it can
produce any useful prediction, we collected 9609
positive TIs as training data set from YEASTRACT
database. In addition, to control false negative rate of
AdaFuzzy, 5260 negative TIs were formed by pairing up a
TF with the other 18 TFs’ target genes annotated in
TRANSFAC and YEASTRACT.

Inferring TIs using cell cycle/stress condition data in yeast
To see how AdaFuzzy performs, we compare AdaFuzzy
with four well-known methods, cPSMF [21], GRAM [18],
COGRIM [19] and ReMoDiscovery [20]. Similar to
AdaFuzzy, these approaches predict TIs by performing
an integrated analysis of sequence, ChIP-chip and
microarray data. cPSMF unravels TIs and combinatorial
gene regulation of TFs based on a two-stage constrained
matrix decomposition model. GRAM utilizes an iterative
search method to identify common TF binding sites of
genes, then it relaxes its cutoff for co-expressed genes to
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extend the original gene set. COGRIM uses a Bayesian
hierarchical model to represent expression level as a
function of TF expression and binding strength. ReMo-
Discovery is an intuitive method that concurrently
analyzes all three types of data. Among these methods,
AdaFuzzy, cPSMF and COGRIM are able to predict the
interaction types (AT/RT) of the predicted TIs, while
GRAM and ReMoDiscovery cannot. The comparison of
these approaches was based on the same set of data
(sequence, ChIP-chip and microarray data). In addition,
since AdaFuzzy is a machine learning-based approach, a
training set with 14491 gene pairs (9231 positives (TIs)
and 5260 negatives (non-TIs)) was used to evaluate the
performance of AdaFuzzy by 3-fold cross validation (CV)
with 500 repeats.

Following one of the latest advances in predicting TIs
[21], we compare these five algorithms using over-
representation analysis [36] and gene set enrichment
analysis (GSEA) [37] using the 19 TFs in [21], in which
the target genes of all predicted TIs were clustered by GO
terms. The over-representation analysis examines the
predicted target genes and determines if there are gene
sets which are statistically over-represented. GSEA
attempts to determine whether members of a gene set
(a set of predicted targets for a given TF) tend occur at the
top (or bottom) of all genes considered; this gene set is
expected to correlate with the phenotypic class distinc-
tion (targets or non-targets of the TF). The enrichment
scores of GSEA can be calculated by the free software
GSEA-P and its key steps are in p. 15546 of [38].

Using these two analyses, the performances of the four
algorithms applied to the 19 TFs, and the average result of
AdaFuzzy conducting 500 repeated 3-fold cross-valida-
tion experiments (CVs) are summarized in Table 1. All
gene pairs were grouped into 19 subgroups by TFs, e.g. all
gene pairs with TF1 being grouped into Subgroup 1, and
CVs were performed on the subgroups. Therefore, the
training set was formed from 13 randomly-selected
subgroups, and the test set was constructed from the
remaining subgroups. The proposed AdaFuzzy outper-
formed the other methods in both analyses. The averaged
enrichment level of AdaFuzzy over all TIs associated with
the 19 TFs in over-representation analysis was 6.00, better
than those of cPSMF (5.81), ReMoDiscovery (5.40),
COGRIM (5.22) andGRAM (4.96). In GSEA, the averaged
enrichment level of AdaFuzzy was the highest (4.03),
followed by cPSMF (3.65), COGRIM (3.42), GRAM
(2.90) and ReMoDiscovery (2.64). These results imply
that the target genes of all TIs identified by AdaFuzzy and
cPSMF are more functionally relevant than the others. The
average number of TIs identified by AdaFuzzy was 364,
while those of cPSMF, COGRIM, ReMoDiscovery and
GRAM were 91, 85, 74 and 32, respectively. This suggests

that the machine learning-based AdaFuzzy is able to
produce functionally coherent information on transcrip-
tional regulatory mechanisms.

The performances of AdaFuzzy, ‘ChIP-experimental
method’ and the other four methods applied to infer
TIs of the 19 TFs are summarized in Table 2, and they
were checked against the experimentally validated
interactions from YEASTRACT as follows. Among
109130 possible TIs (19 TFs × the number of target
genes), 6924 links were predicted to be TIs, in which the
modified true-positive rate (mTPR) was 73% (6736/
9231), and the modified false negative rate (mFNR) was
27% (2495/9231). In terms of sensitivity and specificity,
AdaFuzzy outperformed the others (followed by ‘ChIP
only method’ and cPSMF). If we manually relax the
thresholds of some parameters in AdaFuzzy, e.g., the
significance level of b1 or the cut-off c of the output of
ANFIS, more TIs will be predicted, but this will also lead
to higher false positive rates. The parameters of
AdaFuzzy can be further tuned by users to meet their
preference.

We further compared AdaFuzzy and ‘ChIP-experimental
method’, which applied the criterion of p-values < 0.001
to ChIP-chip experiment to identify TIs, using experi-
mentally validated TFBSs in [23] and [38] intersecting
with YEASTRACT. By definition, mFNR = 1-mTPR, so we
only report mTPRs in the following. Under the rich
media (stress) condition in [23], the mTPR of ‘ChIP-
experimental method’ and AdaFuzzy, applied to 1955
and 1220 TIs, are 100% (100%) and 90% (82%),
respectively. While under the normal (methyl-methane-
sulfonate exposure) condition, the mTPR of ‘ChIP-
experimental method’ and AdaFuzzy, applied to 2529
and 1021 TIs, are 45% (18%) and 81% (59%),
respectively. Detailed prediction results are summarized
in additional file 4. The MATLAB code of AdaFuzzy is
available at http://www.stat.sinica.edu.tw/~gshieh/Ada-
Fuzzy.rar.

Classifying Promoter Architectures
In the following, AdaFuzzy is applied to classify these
6865 TIs associated with the 19 aforementioned TFs to
one or more types of promoter architectures in [23]. The
predicted results are checked with biological information
from the Saccharomyces Genome Database (SGD, http://
www.yeastgenome.org).

For the results predicted by AdaFuzzy using cell cycle
ChIP-chip and microarray data under the rich medium
condition, ABF1 was predicted to be the TF regulating
genes CDC24, GCN1 and IME4. These target genes share
some common functions such as cellular developmental
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process and macromolecule metabolic process, and their
promoters have been classified to single regulator
architecture regulated solely by ABF1. Published litera-
ture shows that the ABF1 gene product binds to the
upstream sequences of genes CDC24 [23,38,39], GCN1
[23] and IME4 [23,38,39]. Using the stress response data
set in yeast, AdaFuzzy predicted that the gene product of
REB1 interacted with the promoter sites of ABC1, MNP1
and NUT1. These target genes were found to be involved
in cellular metabolic processes. Existing literature also
confirms that protein Reb1p binds to the upstream
sequences of ABC1 [24,38,40], MNP1 [38] and NUT1
[24,38,40], and these TIs were identified to be AT
interactions. Figure 3 illustrates that the binding sites
and their types of promoter architectures predicted by
AdaFuzzy coincide with experimental results annotated
in SGD.

Several genes were predicted to have the repetitive motifs
promoter architecture. Target genes with such promoter
architecture are regulated in a graded manner by specific
TFs. Among all TIs predicted by AdaFuzzy using the cell
cycle yeast data set, ALG14 was classified to the repetitive
motifs promoter architecture. The upstream sequence of
ALG14 contains binding sites for the proteins of SWI4
and MBP1, while protein Swi4p was shown to regulate
ALG14 [23,38,41,42]. When using the stress response
yeast data set, MET13 was predicted to have the
repetitive motifs architecture which is bound by protein
Gcn4p, while the regulation of Gcn4p on MET13 under
stress conditions has been demonstrated [23,43-45]. In
addition, Gcn4p was identified to be an activator for
MET13. Figure 2 shows that the predicted binding sites
are in agreement with experimental results from SGD.
Note that a potential binding site for Gcn4p was found in

Table 1: Comparison of AdaFuzzy to other methods using over-representation analysis and gene set enrichment analysis

TF # TIs Over-representation analysis Gene set enrichment analysis

AdaFuzzy* cPSMF GRAM COGRIM ReMoDis AdaFuzzy* cPSMF GRAM COGRIM ReMoDis

ABF1 598 5.48 5.93 6.12 5.74 4.55 4.57 4.56 4.60 5.05 3.76
ACE2 125 4.32 4.43 1.60 3.59 4.47 3.47 2.06 5.23 3.43 1.53
FKH1 164 4.53 4.62 4.79 1.76 4.05 4.26 4.51 1.91 2.99 2.04
FKH2 227 6.53 6.10 1.28 5.82 6.09 3.96 2.86 3.60 4.02 2.41
GCN4 306 6.96 7.23 6.64 7.40 7.61 4.36 5.71 2.09 1.48 4.72
LEU3 267 6.95 7.74 7.29 6.44 5.20 2.19 2.70 1.32 1.05 1.83
MBP1 315 6.48 6.08 6.15 4.93 6.17 4.78 4.17 4.21 4.91 3.40
MCM1 378 6.81 6.13 6.87 5.97 6.74 3.36 2.71 1.19 2.93 1.40
NDD1 60 4.33 1.64 1.82 1.66 4.49 3.09 2.67 2.40 3.09 3.47
RAP1 993 9.05 8.39 7.37 8.92 6.60 5.45 6.49 0.85 2.17 2.04
REB1 216 5.30 5.52 5.03 5.53 5.10 5.12 4.13 5.09 4.92 3.46
STB1 143 5.51 4.72 4.43 3.91 6.51 4.92 2.11 0.50 2.89 5.09
SWI4 346 6.73 7.06 5.61 5.76 6.42 4.52 5.22 4.25 4.73 1.56
SWI5 255 5.36 4.41 2.36 5.70 4.78 5.51 6.01 5.79 5.54 0.94
SWI6 237 5.93 5.66 4.58 4.79 4.90 3.64 2.81 4.08 4.23 4.23
HSF1 335 5.61 6.53 4.42 4.40 4.38 3.74 3.47 1.64 2.92 3.52
MSN4 310 5.93 6.31 5.51 5.67 5.72 4.01 2.77 0.86 4.58 1.93
SKN7 403 5.78 5.86 6.75 4.55 2.91 2.57 1.29 2.88 1.27 0.85
YAP1 1246 6.46 6.08 5.69 6.64 5.92 3.03 3.10 2.62 2.81 1.90

Averaged 6.00 5.81 4.96 5.22 5.40 4.03 3.65 2.90 3.42 2.64

* The performances of AdaFuzzy are average results of 500 repeated 3-fold CVs.

Table 2: The performances of AdaFuzzy and the other approaches, checked against validated TIs of the 19 TFs from YEASTRACT

Methods True
positives

False
positives

False
negatives

True
negatives

Sensitivity Specificity False
Positive
rate

False
Negative

rate

AdaFuzzy 6736 188 2495 108942 73.0% 99.8% 0.2% 27.0%
ChIP* 2799 108 6432 109022 30.7% 99.9% 0.1% 69.3%
cPSMF 1729 0 7502 109130 18.7% 100.0% 0.0% 81.3%
GRAM 1615 0 7616 109130 17.5% 100.0% 0.0% 82.5%
COGRIM 1406 0 7825 109130 15.2% 100.0% 0.0% 84.8%
ReMoDis. 608 0 8623 109130 6.6% 100.0% 0.0% 93.4%

2907 TIs identified by ‘ChIP’ were obtained by ChIP-chip experiment presented in Harbison et al. (2004) using criterion p-value < 0.001.
† False-positives are assumed zero to estimate the best (upper bound of the) performance yielded by the other competitive methods.
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the upstream sequence of MET13 that was not annotated
in SGD or [23].

The multiple regulators promoter architecture type is
commonly seen in the yeast genome. For instance, SLM4
has been classified to be co-regulated by multiple
regulators using the yeast cell cycle data set, such as
Abf1p [23,43], Fkh1p [23], Fkh2p [23,38,40,42] and Swi6p
[38,40]. Applying AdaFuzzy to the stress response data set
in yeast resulted in that HSP26 had multiple TF binding
sites, while HSP26 was shown to be regulated by TFs
Msn4p and Hsf1p, in [23,46-48] and [23,46-50], respec-
tively. Msn4p was predicted to be an activator for HSP26.
These prediction results are illustrated in Figure 4, which
shows that the TF binding sites architectures classified by

AdaFuzzy are consistent with experimental results in
SGD. The binding sites of MBP1 and SKN7 were
presented in the upstream sequence of SLM4, but
AdaFuzzy applied to the rich medium data set failed to
identify these as expected because the regulation of MBP1
and SKN7 on SLM4 occur only under stress conditions
[23]. In addition, four binding sites were identified for
Reb1p, Hsf1p and Abf1p, while these binding sites were
not annotated in SGD or [23]. This shows that AdaFuzzy
can predict novel results for biologists to test transcrip-
tional regulatory interactions.

The fourth type of promoter architecture consists of
binding site sequences which are closer than expected by
chance. This implies that two independent regulators
may interact with each other before regulating their
target gene. In Figure 5, Fkh1p-Fkh2p and Mbp1p-Swi6p
are predicted to be co-occurring regulators that interact
with the promoter of SLM4 under rich medium condi-
tion. AdaFuzzy predicted that Swi4p-Swi6p is likely to co-
active OCH1, which is supported by [23,38,40-42].
Under stress conditions, Swi4p-Swi6p and Swi4p-Mbp1p
were classified to be co-occurring repression and

Figure 2
Repetitive motifs promoter architecture identified
by AdaFuzzy. Yellow boxes represent binding sites
predicted by AdaFuzzy, red boxes denote the results
annotated in SGD or [23], and blue boxes show the results
that are not annotated. Please note that the scale of the box
(binding site) is not realistic.

Figure 3
Single regulator promoter architecture identified by
AdaFuzzy. Yellow box represents binding sites predicted
by AdaFuzzy, and red box denotes the results in SGD. Please
note that the scale of the box (binding site) is not realistic.

Figure 4
Multiple regulators promoter architecture identified
by AdaFuzzy. Yellow box represents binding sites
predicted by AdaFuzzy, red box denotes false negative, and
blue boxes show the results that are not annotated in SGD
or [23]. Please note that the scale of the box (binding site) is
not realistic.

Figure 5
Co-occurring regulators promoter architecture
identified by AdaFuzzy. Yellow boxes represent binding
sites predicted by AdaFuzzy, and red boxes denotes false
negative. Please note that the scale of the box (binding site) is
not realistic.
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activation regulators of CRH1, and these were confirmed
by previous publications [23,38,40-42,51]; these results
are illustrated in Figure 5. In addition, 13 regulatory gene
pairs, some validated and the others novel, identified by
AdaFuzzy to be co-occurring regulators are summarized
in Table 3. Among these results, MCM1-FKH1 and SWI4-
MBP1 were not reported by ChIP-chip experiments in
[23] but were validated by other biological experiments.

Taken together, AdaFuzzy performs well in identification
of TIs and is able to classify promoter architecture types
using genomics data in yeast to provide insights into the
organization of transcriptional regulatory interactions.

Conclusion
A novel algorithm AdaFuzzy is introduced for identifying
TIs using sequence, ChIP-chip and microarray data.
AdaFuzzy, cPSMF, GRAM, COGRIM and ReMoDiscovery
were applied to TIs in yeast using genomic data from cell
cycle and stress condition. AdaFuzzy performed better
than the other methods in terms of over-representation
analysis and GSEA, which were used in one of the latest
advances [21]. Checked against known TIs of the
preselected 19 TFs in [21] as annotated in databases
and published literature, the mTPR and mFNR of
AdaFuzzy were 72% and 28%, respectively. Furthermore,
AdaFuzzy performed compatibly to ‘ChIP-experimental
method’ in inferring TIs identified by two sets of large
scale ChIP-chip experiments in [21] and [38]. This
suggests that AdaFuzzy is useful for uncovering tran-
scriptional regulatory interactions in yeast. AdaFuzzy can
also classify the predicted TIs into one or more of the
four promoter architectures in [23] to provide insights
into the organization of transcriptional regulatory

interactions. The classification results also coincide
with known promoter architectures annotated in SGD
and [23]. Some predicted TIs are not annotated in SGD
and [23], and these can be tested further by biologists.
However, AdaFuzzy is not able to predict TIs involved
with heterodimers, which is an important regulatory
mechanism in developmental and physiological pro-
cesses in humans. We leave this for future research.
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