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Abstract

While brain-machine interfaces (BMIs) have largely focused on performing single-targeted 

movements, many natural tasks involve planning a complete sequence of such movements before 

execution. For these tasks, a BMI that can concurrently decode the full planned sequence prior to 

its execution may also consider the higher-level goal of the task to reformulate and perform it 

more effectively. Here, we show that concurrent BMI decoding is possible. Using population-wide 

modeling, we discover two distinct subpopulations of neurons in the rhesus monkey premotor 

cortex that allow two planned targets of a sequential movement to be simultaneously held in 

working memory without degradation. Such surprising stability occurred because each 

subpopulation encoded either only currently held or only newly added target information 

irrespective of the exact sequence. Based on these findings, we develop a BMI that concurrently 

decodes a full motor sequence in advance of movement and then can accurately execute it as 

desired.

An important motivation for the design of brain-machine interfaces (BMIs) to date has been 

their potential ability to restore lost motor function in individuals with neurological injury or 

disease (e.g., due to motor paralysis or stroke). In such cases, the envisioned role of the BMI 

is to decode the intended movement from neural activity in the relevant areas of the brain, 

and use this information to control an affected limb, prosthetic, or other device.
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The design of such BMIs has received considerable attention in recent years1-18. Work to 

date has principally focused on achieving the motor goal in tasks that involve single-targeted 

movements, such as the task of moving a cursor on a display to an individual target location. 

These BMIs can decode the continuous trajectory of one- to three-dimensional movement 

(including a grasp in some studies)1-14, the intended target location15, 16, or both the target 

and trajectory jointly using approaches such as optimal feedback control17, 18. However, in 

many natural tasks—such as playing a succession of notes on a piano—the goal is more 

complex, and the motor plan for achieving it can be viewed as a complete sequence of such 

simpler plan elements to be executed in order.

Our focus is on the design of BMIs that can achieve the goal of these sequential motor plans. 

Planned sequential behavior is a fundamental motor process in which all targets of a 

movement sequence are planned ahead of its initiation. Hence a BMI for performing such 

behavior would allow a person to plan a full motor sequence ahead of execution. For 

example, when picking up a cup and bringing it to one’s lips, a person normally formulates 

the complete motor plan prior to its execution as opposed to planning and performing each 

of its elements individually and separately. Therefore, the objective of such a BMI would be 

to perform the sequential behavior by decoding all elements of the sequence concurrently 

and in advance of movement – thus requiring the consideration of a concurrent architecture. 

This BMI functionality is distinct from that in prior BMIs that decode and execute 

individual single-targeted movements one by one, and hence have a sequential BMI 

architecture1-18.

In addition to simultaneously decoding a motor sequence in advance, a concurrent 

architecture could also allow the BMI to consider the overall motor goal of the task at a 

higher-level. This is a result of the BMI having information about all the motor plan 

elements at once and in advance of execution. Hence one prospective BMI capability would 

be to consider all elements of the sequence concurrently, prior to action, in order to 

determine ways to perform the task more effectively. For example, the BMI might determine 

a way to accomplish the task more quickly, or more efficiently (to within any physical 

constraints that might exist). Alternatively, based on additional sensor inputs, the BMI might 

determine that the planned sequence of movements would result in an accident with an 

obstacle, and thus modify the execution of the task to avoid such an accident.

The realization of BMIs that can perform and potentially execute sequential motor function 

more effectively in this way will obviously require significant technological innovations. 

But as a key initial step, it requires considering a concurrent BMI architecture in which the 

elements of a planned motor task are decoded in parallel (i.e., at once), in contrast to the 

serial process of a sequential BMI. Hence, the feasibility of such BMIs hinges on the degree 

to which the elements of a motor plan sequence can, in fact, be decoded concurrently. This 

is the starting point for our research.

Prior work has demonstrated that individual neurons in the premotor cortex of primates 

display selective responses to planned single-targeted movements before their initiation, and 

that such responses often remain sustained during working memory until movement 

execution19-26. Such responses have been successfully exploited in the design of BMIs for 
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single-target tasks15, 16. In comparison, the neural encoding of tasks requiring a full 

sequence of planned targeted movements to be formulated prior to execution is less well 

understood, and the design of real-time BMIs that can concurrently decode and then execute 

such sequential motor plans remains unexplored. Prior work has shown that an individual 

neuron can display a response that is selective to one or more elements of a sequential motor 

plan27-41 (see also Discussion). However, little is known regarding how information about 

multiple elements of a sequential motor plan (e.g., the planned targets of a sequential 

movement) is simultaneously distributed across the whole premotor population during 

working memory, and whether these plan elements can be accurately decoded from the 

neural population in a concurrent manner. More importantly, it is necessary to determine 

whether adding information about the elements of the motor plan, in sequence, to working 

memory affects the integrity of information about the plan elements that are already held, 

and how it affects their neural encoding. Finally, it is necessary to assess robustness—

whether a BMI limited to recording from relatively small numbers of neurons is able to 

achieve sufficient and consistent decoding accuracy.

Here, we find that sequential motor plans can be decoded simultaneously, accurately, 

robustly, and in advance of movement from the neural activity in the premotor cortex of 

monkeys. Additionally our study reveals a surprisingly structured encoding mechanism that 

is used by the premotor populations for these sequential plans and that, in turn, allows for 

their accurate and concurrent decoding. Based on these findings, we develop and implement 

a real-time BMI that can concurrently decode a dual sequence of motor targets and then 

execute them as desired.

RESULTS

In the study, two adult male rhesus monkeys were trained to perform a task in which two 

targets were presented, in sequence, on a computer display. Each of the targets could 

randomly take on one of four possible spatial locations (“up”, “down”, “left”, or “right”). 

Repeated locations were precluded, so there were a total of 12 possible combinations 

(sequences) of two consecutive distinct target locations. After a blank-screen variable delay, 

a “go” cue appeared directing the monkeys to sequentially move a cursor from the center of 

the screen to each of the two remembered targets, in order (Dual-target task; Fig. 1a, b). We 

define the working memory period as the 500 ms blank-screen interval following 

presentation of the second target and before the earliest possible “go” cue. Therefore, the 

task here was a working-memory task in which the monkeys were required to serially add to 

working memory two randomly selected target locations in each trial and then 

simultaneously retain them in working memory prior to execution.

Multiple-unit responses were recorded from the premotor cortex as the primates performed 

this task. We recorded 281 well-isolated single neurons from the supplementary motor area 

(SMA) and dorsal premotor cortex (PMd) over 11 sessions, for an average of 26 ± 6 cells 

(mean ± s.d.) per recording session (note that some of these cells may not be distinct across 

the different sessions). Inhomogeneous Poisson models were fitted to each neuron’s spiking 

activity using an expectation-maximization algorithm42 (see Methods and Supplementary 

Modeling). Using these models, we employed a maximum-likelihood decoder to quantify 

Shanechi et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2013 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the probabilities that groups of neurons could correctly identify the first and second targets 

on a trial-by-trial basis during the working memory period (leave-one-out cross-validation; 

see Methods). We used decoding accuracy as our measure of the amount of information 

encoded by a population of neurons about each target. Specifically, for an individual (first or 

second) target, we measured the percentage of trials in which the maximum-likelihood 

decoder correctly predicted the respective target from that population’s activity. Likewise, 

we measured the amount of information encoded about the full sequence as the percentage 

of trials in which both targets were correctly decoded.

Accurate and concurrent encoding of the motor sequence

We find that neural population activity within the premotor cortex accurately encoded the 

location of both targets during the working memory period. During this period, the 

population correctly encoded the first and second targets on 85% and 82% of the trials in the 

best session, respectively. When considering all 12 possible target combinations, the 

population encoded both targets correctly on 72% of the trials in this session (Fig. 2a; 285 

dual-target trials were performed in this session). Across all tested sessions, the population 

correctly encoded the first and second targets on average on 76 ± 11% and 56 ± 17% of 

trials, respectively, both of which were significantly above chance (one-sided Z-test, P < 

10−15; Supplementary Fig. 1a). Also, the population encoded both targets correctly on 

average on 45 ± 12% of the trials across all sessions, which was also far higher than chance 

at 1/12≈8% (one-sided Z-test, P < 10−15). These results were consistent across the two 

monkeys (P < 10−15 for both; Supplementary Fig. 2).

Robustness of the encoding

Only a small number of cells were needed to decode the target sequence with high accuracy. 

When performing the decoding analysis over all trials, which employed all 12 possible 

target combinations, only 29% of the population (7.5 cells) was needed, on average, to 

achieve higher than 90% of the population sequence accuracy (Fig. 2b; see Methods). When 

performing the decoding analysis over subsets of all trials that employed only 4 or 8 target 

combinations, population sequence accuracies in the best session were as high as 93% and 

80%, respectively. In these cases, decoding from only 2 and 4 cells, respectively, was 

sufficient to achieve higher than 90% of these sequence accuracies.

Real-time concurrent BMI for sequential movement execution

Motivated by the observation that both targets can be concurrently and accurately decoded 

from the responses of relatively few neurons in the premotor cortex, we developed a real-

time BMI capable of predicting both targets simultaneously prior to monkey’s motor 

response and then executing the targeted movements. In the associated experiments, we 

recorded a mean of 20 ± 2 cells per session from the premotor cortex of the same monkeys. 

Here Poisson models were first fitted to the neural population activity during the working 

memory period prior to the “go” cue (see Methods and Supplementary Fig. 1b) as the 

primates rehearsed a subset of target combinations that included either 4 or 8 possible 

sequences over an average of 26 ± 2 training trials per sequence (Fig. 1b). We chose to use 
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either four or eight sequences in the BMI experiments to obtain sufficient training and real-

time trials per session.

Using the Poisson models, sequence decoding accuracies for the set of 4 and 8 sequences in 

these training sessions (found using leave-one-out cross-validation) were 79 ± 2% and 80 ± 

3% (mean ± s.e.m.; one-sided Z-test, P < 10−15), respectively. Following training, the 

primates performed the same task as before, but with the cursor now being sequentially 

positioned by the BMI on the targets decoded from the recorded neuronal activity during the 

single preceding working memory period (Fig. 1c; see Methods). Here, BMI-generated 

cursor movements were set to occur immediately following the presentation of the “go” cue 

and the added delays were selected to match the reaction times that the monkeys normally 

experienced when moving the cursor themselves following the “go” cue (obviously, cursor 

movements could be generated without the added delays if desired).

Both monkeys performed a total of 459 trials on the four-sequence set, and one monkey 

performed 110 trials on the eight-sequence set using the real-time BMI. Sequence accuracies 

for the set of four and eight sequences were 72 ± 2% and 71 ± 4%, respectively, both of 

which were significantly above chance (mean ± s.e.m., one-sided Z-test, P < 10−15). Both 

training and real-time BMI accuracies were similar and significantly above chance across 

the two monkeys (one-sided Z-test, P < 10−15 for both; For the four sequence sets, the first 

monkey had a BMI accuracy of 69 ± 3% and a training session accuracy of 77 ± 2% and the 

second monkey had a BMI accuracy of 75 ± 3% and a training session accuracy of 82 ± 

2%). Sequence accuracies using the BMI were also close to the cross-validated sequence 

accuracies during the training sessions when taking into account the primates’ natural error 

rates during the standard task (Fig. 3). In fact the 95% confidence bounds for the two 

accuracies were overlapping (72 ± 4% vs. 73 ± 3% and 71 ± 8% vs. 66 ± 6%, for the sets of 

four and eight sequences, respectively; see Methods). These results established that two 

planned elements, i.e., the two intended sequential targets of movement, could be 

simultaneously predicted in advance of movement and then executed by a real-time BMI 

with high accuracy.

We also examined the time required by the concurrent decoder to decode the sequence. We 

find that the sequence decoding accuracy for the set of four, eight, and twelve sequences 

reached 90% of the maximum asymptotic accuracy possible, on average, after 488 ± 135 ms, 

561 ± 119 ms, and 641 ± 121 ms from the initial presentation of the second target, 

respectively (Fig. 4). When performing the motor sequence, the minimum total time it took 

for the monkeys to both react to the two “go” cues and reach the two targets was on average 

791 ± 93 ms (this is the sum of the two reaction times plus the two center-to-target 

movement times; Fig. 4).

Population encoding reveals a novel partitioning mechanism

Observing that both target locations could be accurately and concurrently predicted from the 

neural population responses, we further examined the spatial and temporal structure of their 

encoding. In particular, we investigated how neurons within the premotor cortex were able 

to add new information about the second target to working memory without compromising 

the integrity of information about the first target that was already being held. To do so, we 
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used the decoding approach that measures the amount of information held about the identity 

of each planned target in the sequence by considering all sequence combinations 

collectively.

We find that most cells encoded significant information about only the first (currently held) 

or only the second (newly added) target during the working memory period. Moreover, this 

partitioning was present across all target locations/sequences (i.e., responses were not 

sequence specific) and remained stable throughout recordings per day. Of the 281 neurons 

recorded in all sessions, 46% had a target accuracy significantly higher than chance for at 

least one of the two targets during the working memory period (one-sided Z-test, P < 0.01). 

Of these, 68% encoded significant information about only the first currently held target 

(Supplementary Fig. 3), and 23% encoded significant information about only the second 

added target (one-sided Z-test; P < 0.01; Fig. 5). The percentage of cells that encoded 

significant information about both targets was only 9% (one-sided Z-test; P < 0.01; note that 

a Bonferroni correction for multiple comparisons was done for all comparisons; 

Supplementary Fig. 4) and, even among these, most had target accuracies much closer to 

one of the two subpopulations of cells that significantly encoded only one target (Fig. 6; 

Supplementary Fig. 5). These results revealed a highly significant divergence in the amount 

of information encoded by the two subpopulations of neurons about the two targets (random 

permutation test, P < 10−15; see Supplementary Modeling; Supplementary Fig. 6). 

Moreover, we examined the relation between the activity of each of the two subpopulations 

to upcoming motor behavior and found that each subpopulation was only predictive of 

whether the respective first or second upcoming movement would be performed correctly or 

incorrectly (i.e., resulting in a behavioral error) by the primates following the “go” cue (one-

sided Z-test, P < 10−15).

These results demonstrate that during the working memory period, most neurons were not 

selective to a specific sequence or simply to a spatial location. Rather, they were partitioned 

into two disjoint subpopulation, one encoding only the identity of the currently held (first) 

target and one encoding only the identity of the newly added (second) target within the 

sequence, regardless of the specific sequence (see Supplementary Fig. 7 for comparison to 

sequence specific selectivity found in prior work28-31, 41, 43).

The observed partitioning during working memory was not related to limb movement or 

simple visual related responses. No visual cues were presented during the working memory 

period and any movement before the “go” cue terminated the trial. This was also suggested 

by the partitioning mechanism itself since if the activity was due to targeted limb movement, 

then all cells would only reflect the direction of this single target. Finally the 

electromyography (EMG) activity during the working memory period was not predictive of 

the first movement direction (one-sided Z-test, P = 0.14), but was predictive of it during the 

first movement period after the “go” cue (one-sided Z-test, P = 0.01). In an additional set of 

analyses, we also found that encoding of the second target was not conditioned on the 

location of the first target, and vice versa (Supplementary Fig. 8).
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Effect of adding information to working memory

In order to further examine how adding a new target to working memory affected the 

integrity of the currently held target, we disambiguated the process of holding information in 

working memory from that of adding information to it. The results were obtained from 

sessions in which the monkeys performed the standard dual-target trials (as before), but also 

performed single-target trials in randomly interleaved fashion (see Methods). Unlike dual-

target trials, on single-target trials only the first target was presented and the second target 

presentation period was replaced with a blank-screen period of the same duration. The task 

timing was otherwise unchanged compared to the dual-target task.

We find that adding information about the second target location to working memory did not 

incur loss of information about the first target location. Of the cells that encoded significant 

information about the first target during working memory in single-target trials (one-sided 

Z-test, P < 0.01), most (74%) provided the same level of accuracy in decoding the first target 

during working memory in dual-target trials, despite the addition of a second target (χ2 test, 

P > 0.05). Moreover, for the whole population, there was also no significant difference in 

the first target accuracy during the working memory period when comparing dual-target and 

single-target trials across sessions (Wilcoxon’s signed-rank test, P = 0.69; Fig. 7). These 

results demonstrate that the subpopulation encoding the first target and their responses 

remained largely unchanged when the second target was added to working memory and, 

therefore, the addition of information about the second target did not comprise the integrity 

of information already held about the first target. It is important to emphasize here that the 

task involved serially adding to working memory two randomly selected target locations in 

each trial and then simultaneously holding them in working memory prior to execution. 

Such a task is distinct from memory-guided tasks in which the same motor sequence is 

repeatedly performed from memory after learning, or visually-guided tasks in which 

movements are serially cued and executed one-by-one29-31, 41, 43.

In a control analysis, we also examined whether neuronal encoding of the first target was 

affected by the number of targets presented per trial in a single session (i.e., one target 

versus two sequentially presented targets) by having one monkey perform only single-target 

trials. Comparing these single-target only sessions with sessions in which single-target trials 

were interleaved with dual-target trials on the same day, we found no significant difference 

between the population decoding accuracies of the first target on single-target trials between 

the two session types (χ2 test; P > 0.15; Supplementary Fig. 9).

Stability of the neural encoding structure

While implicit in the preceding results, it should be emphasized that as the pair of presented 

target locations varied over the hundreds of trials typical of a given day’s session, most 

neurons remained dedicated to encoding only the first (currently held) or only the second 

(added) target. For the two subpopulations of cells that encoded significant information 

about the respective first and second targets alone, most (89%) provided substantially the 

same level of accuracy in decoding their respective targets in the first and second halves of 

the recording session (χ2 test, P > 0.05; sessions included 263 ± 36 dual-target trials on 

average). Also, the sequence decoding accuracy (across all 12 sequences) of the entire 
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population did not change over time between the first and second halves of the sessions 

(Wilcoxon’s signed-rank test, P = 0.37). Therefore, the partitioned premotor subpopulations 

appeared to be physiologically dedicated to encoding either the first or the second target 

added to working memory. Inherently, the neural decoding in our BMI exploited this 

stability of the two constituent subpopulations to achieve sustainable performance.

DISCUSSION

The purpose of the present study was to examine how multiple planned targets of sequential 

movement are concurrently encoded as a population by premotor neurons during working 

memory, and to determine whether the activity recorded simultaneously from multiple 

single-neurons can be used to concurrently and accurately decode the complete motor plan 

sequence in advance of movement and in real-time. Three methodological approaches were 

used to investigate these questions. First, we simultaneously recorded the activity of 

multiple cells across the whole premotor population. Second, we used an interleaved dual-

target/single-target task in order to dissociate the dynamic process of maintaining target-

related information in working memory from that of adding new information to it. Finally, 

we employed a maximum-likelihood decoding approach that allowed us to (i) define an 

accuracy measure for the amount of information that is concurrently encoded about planned 

motor sequences and, (ii) examine the spatiotemporal distribution of information across the 

whole population.

A neural partitioning mechanism

Our results reveal a novel functional structure within the premotor cortex that allowed for 

accurate and concurrent decoding of two planned motor targets across multiple spatial 

locations. We find that during working memory, premotor populations are largely 

partitioned into two fundamentally disjoint subpopulations of cells – one dedicated to 

encoding only the currently held (first) target and one dedicated to encoding only the newly 

added (second) target, irrespective of the specific sequence. Moreover, while the two target 

locations changed from trial to trial, the two encoding subpopulations did not. Notably, the 

subpopulation dedicated to encoding the first target and their responses remained largely 

unchanged when the second target was added to working memory, so that the process of 

adding information did not compromise the integrity of existing information (across all 

target locations). Also, only a small number of neurons were sufficient to accurately predict 

the location of both targets, making the decoding of such information highly robust.

Prior work has shown that individual premotor neurons display selective responses to single-

targeted movements before their initiation19-26. It has also been shown that PMd neurons 

can be selective to the location of multiple target choices for a single-targeted movement 

before a final selection is made44, or can represent combined information about the target 

and the body-part to be used for a single-targeted movement45-47. When performing a 

planned sequential movement, prior studies have demonstrated that individual neurons 

within areas such as the parietal, premotor and prefrontal cortex can display selective 

responses to a sequential motor plan27-40, 43, 48. Some neurons (often a relatively small 

fraction) display increased activity for a specific combination of movements (for example a 
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push followed by a pull of a manipulandum) during a preceding delay, suggesting that they 

encode information about more than one motor plan element at a time28-31, 37, 41, 43. Other 

cells have also been found to display selective responses during movement itself with 

increased activity prior to performing a particular movement (e.g., a push) only when it 

follows another specific movement (e.g., a pull) in sequence29, 31, 43, or prior to a movement 

only if it has a particular order in the sequence31, 43. What has remained unclear, however, is 

how information about individual elements of such sequential plans is simultaneously 

distributed across the whole population during working memory, and whether and how the 

process of adding new information about an element to working memory affects the integrity 

of information already held and its neural encoding.

While a major focus of this study was to investigate the encoding structure of premotor 

populations during the working memory period, we find that, consistent with prior 

studies29, 31, 43, neurons often altered the degree to which they encoded information about 

the two targets across different time-points during the task. Some cells, for example, 

encoded no information about the second target during the working memory period, but then 

encoded significant information about the second target during the second movement itself 

(Supplementary Fig. 5a). Such shifts in activity may reflect the dynamic role premotor 

neurons play in processing, maintaining, and then executing motor plans in combination 

with other motor cortical areas.

Another question arising from the study is how information encoded by premotor neurons is 

related to the later execution of the sequential task. Here, we find that the subpopulation of 

cells that predominantly encoded information about the first target was only predictive of 

whether the primates would perform the first upcoming movement correctly or incorrectly, 

and this was similarly true for the second subpopulation. This thus suggests that the 

‘partitioning strategy’ revealed here was ultimately used to direct upcoming sequential 

motor behavior. In terms of the small number of cells that encoded information about both 

targets, it is interesting to speculate whether they may provide an important ‘bridge’ 

between distinct motor plan elements or a higher conceptual representation of specific motor 

combinations not provided by the other subpopulations of neurons.

A concurrent BMI for planned sequential motor behavior

We exploited the simultaneous encoding and the neural partitioning mechanism observed in 

these experiments to develop a novel BMI functionality for performance of planned 

sequential motor behavior. This is a fundamental behavior in which all targets of a 

movement sequence are planned ahead of its initiation, and is largely distinct from behaviors 

involving the performance of independent single-targeted movements. The BMI 

functionality takes advantage of the concurrent encoding of a sequential motor plan in the 

premotor cortex, allowing it to determine all elements of the sequence simultaneously, 

upfront, and in advance of movement.

In addition, because the full motor plan is simultaneously decoded upfront and in advance of 

movement, the higher-level goal of the task can, in principle, also be analyzed before 

execution, and the motor plan reformulated accordingly. This could allow the prospective 

design of BMIs that can improve the performance of a sequential motor task, for example 
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perform the task more quickly, more flexibly, or more efficiently than originally conceived. 

Such a BMI may, for example, alter the order in which the elements of the motor sequence 

are executed depending on rapid or unpredictable changes in the environment (e.g., to avoid 

unanticipated obstacles), or correct the original sequence based on the performance metrics 

of the task (e.g., proactively change a sequence of letters based on spelling rules). As a 

simple but illustrative example of such a prospective capability (in the context of our 

experiments and using a relatively small number of recorded neurons), we demonstrate that 

we could accurately decode the full sequence of two targets in a very short time period after 

target presentation (Figs. 3, 4). Taken together, we demonstrate a concurrent BMI that 

allows the performance of a sequential motor behavior in line with how we naturally plan 

and execute it. Moreover, since information about all elements of the sequence is known 

ahead of execution, considering such concurrent decoding provides the future prospect of 

designing BMIs that can perform such tasks more effectively.

ONLINE METHODS

Behavioral task

Two adult rhesus monkeys (Macaca Mulatta) were trained to perform a working memory 

sequential delayed motor task. Monkeys were first sequentially presented with two distinct 

target locations on a screen, which were randomly selected in each trial, and then had to 

move a cursor to each in order by using a joystick (Dual-target task; Fig. 1a). After initial 

presentation of a blank screen, two targets were sequentially presented each of which could 

randomly take on one of four possible spatial locations: “up” (U), “down” (D), “right” (R) or 

“left” (L). To ensure that the two target locations were distinct, the motor sequence was 

chosen at random from a total of 12 possible sequences, i.e., all possible combinations of the 

two target locations excluding the ones with repeated locations. Targets were displayed for 

500 ms each and were interleaved by a 300 ms interval during which a blank screen was 

shown. Following the end of second target presentation, there was an additional blank screen 

variable delay of 550– 850 ms (the working memory period) following which the first “go” 

cue signal appeared. After this, the monkeys were required to move a cursor from the center 

of the screen to the first remembered target. After reaching the target, they were required to 

return the joystick to the center and then wait for a second “go” cue to appear after an 

additional 500 ms delay interval. Once the second “go” cue appeared, they were allowed to 

move the cursor from the center of the screen to the second remembered target. The 

monkeys received a juice reward if they correctly moved to the two instructed targets.

Dual-target vs. single-target task

To examine the effect of adding information about a new target to working memory, it was 

necessary to disambiguate the process of holding information in working memory from that 

of adding information to it. To do this, primates performed randomly interleaved dual-target 

and single-target trials in a subset of sessions. On dual-target trials, described above, the 

primates were sequentially presented with two targets and then a blank screen delay. The 

time delay from the end of the first target presentation to the first “go” cue was therefore 

1350–1650 ms. On single-target trials, in comparison, the primates were presented by only 

the first target, and had to keep this single target in working memory for the same total 
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1350–1650 ms time duration as in dual-target trials. However, here, they were not presented 

by a second target and were only shown a blank screen until the “go” cue.

Neurophysiologic recordings

All procedures were performed under IACUC-approved guidelines and were approved by 

the Massachusetts General Hospital institutional review board. Prior to recordings, multiple 

(up to six) planar silicone multi-electrode arrays (NeuroNexus Technologies Inc., MI) were 

surgically implanted in each monkey. Each of the implanted arrays contained four shanks 

horizontally spaced 400 μm apart. Every shank was 4 mm long and, in turn, contained 8 

electrode contacts each vertically spaced 200 μm apart for a total of 32 contacts per 

electrode array. Hence the electrode contacts themselves spanned the bottom 1.6 mm of the 

shank. We advanced the electrodes approximately 2mm in depth. The electrode arrays were 

inserted into the cortex manually using microscope magnification. A craniotomy was placed 

over the premotor cortex under stereotactic guidance (David Kopf Instruments, CA). The 

multi-electrode arrays were separately implanted into the dorsal premotor (PMd) and the 

supplementary motor (SMA) areas (Supplementary Fig. 10). The electrode lead of each 

array was secured to the skull and attached to female connectors with the aid of titanium 

miniscrews and dental acrylic. Confirmation of electrode positions was done in both 

monkeys by direct visual inspection of the sulci and gyral pattern through the craniotomy. 

Additional post-mortem confirmation of electrode positions was made in one monkey (the 

second monkey is still performing experiments). Recordings began two weeks following 

surgical recovery. A Plexon multichannel acquisition processor was used to amplify and 

band-pass filter the neuronal signals (150 Hz – 8 kHz; 1 pole low-cut and 3 pole high-cut 

with 1000x gain; Plexon Inc., TX).

Shielded cabling carried the signals from the electrode array to a set of six 16-channel 

amplifiers. Signals were then digitized at 40 kHz and processed to extract action potentials 

in real time by the Plexon workstation. Classification of the action potential waveforms was 

performed using template matching and principle component analysis based on waveform 

parameters. Only single, well-isolated units with identifiable waveform shapes and adequate 

refractory periods (less than 1% of spikes within a 1 millisecond interval) were used for the 

online experiments and offline analysis. No multiunit activity was used.

Model construction

For the analysis of standard recording sessions, we model the activity of each neuron under 

any given sequence as an inhomogeneous Poisson process whose likelihood function is 

given by49, 50

(1)

where Δ is the time increment taken to be small enough to contain at most one spike,  is 

the binary spike event of the c ’th neuron in the time interval [(k −1)Δ, kΔ], λc (k|Si) is its 

instantaneous firing rate in that interval, i S is the i ’th sequence, and K is the total number 

of bins in a duration KΔ . We take Δ = 5 ms as the bin width of the spikes. By building the 
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neuronal models under each sequence separately in the dual-target task we avoid making 

any a priori assumptions about whether the cells encode individual targets or combined 

sequences. For each sequence and neuron, we need to estimate the firing rate λc (k|Si) using 

the neuronal data observed. To do so, we use a state-space approach using the expectation-

maximization (EM) algorithm42, 51, 52 (see Supplementary Modeling). After fitting the 

models, we validated them using the χ2 goodness-of-fit test on the data42 and confirmed that 

they fitted the data well (P > 0.7 for all cells in all sessions).

Maximum-likelihood decoder

Once models are fitted, a maximum-likelihood decoder is used to decode the intended 

sequence based on the neuronal activity in any period of interest. A maximum-likelihood 

decoder is the optimal decoder in the sense of maximizing accuracy, i.e., the percentage of 

trials in which the combined sequence is decoded correctly, when the sequences are equally 

likely to be presented as is the case in our experiments. The decoder finds the likelihood of 

observing the population neuronal data under each sequence and selects the sequence with 

the highest likelihood as its prediction. Using the likelihood model in (1) and assuming that 

neurons are conditionally independent given the sequence, the population likelihood under 

any sequence is given by

where K is the total number of bins in any period of interest during the trial, C is the total 

number of neurons, and λc (k|Si) for k = 1,…,K and c = 1,…,C is the estimate of the firing 

rate. The predicted sequence, , is thus given by

To find the sequence decoding accuracy of a single cell, the maximum-likelihood decoder 

uses only that cell’s spiking activity to decode the sequence (Fig. 5 and Supplementary Fig. 

5). The decoder also outputs the posterior probability of each sequence, which is the 

probability that it is the correct one after the neuronal observations, i.e.,

To dissociate the decoding accuracy of the first and second targets, denoted by T1 and T2, 

the decoder also outputs their predictions based on the neuronal activity. To do so, the 

decoder finds their posterior probabilities, i.e.,  and , for all 

possible spatial locations, l1 and l2, by summing over the posterior probability of the 

sequences that have these spatial locations as their first or second targets. The decoder then 
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picks the spatial location with the highest first target (second target) posterior, or 

equivalently likelihood in our design, as its first (second) target prediction.

Comparison of the first target decoding accuracies in the single-target and dual-target 
tasks

To find the first target decoding accuracy of the single-target task we modeled the activity of 

each neuron under any given single target location as an inhomogeneous Poisson process, 

which was fitted using the EM procedure. We then performed the maximum-likelihood 

decoding analysis using leave-one-out cross-validation on the single-target trials. To make 

the comparison, for the dual-target task we constructed two models one for the first target 

and one for the second target, and then performed the decoding analysis for each target 

separately.

Determining the number of cells required to achieve the population accuracy

We found the number of cells required to achieve a given percentage of the population 

accuracy by first sorting them in each session based on their single neuron sequence 

accuracies and then performing the decoding analysis in that session for different number of 

cells in descending order.

BMI model training

In each BMI recording session, the monkeys first performed the dual-target task using a 

joystick (training session) during which models were constructed for the neuronal activity 

during an 800 ms time window prior to presentation of the “go” cue. This window length 

was chosen because in the standard dual-target sessions, it was sufficient to achieve better 

than 95% of the (maximum) sequence accuracy possible when using the entire window 

starting from second target presentation until the “go” cue (Supplementary Fig. 1b). We 

modeled the activity of each neuron in this window under any sequence as a homogeneous 

Poisson process (point process with constant rate), instead of an inhomogeneous one, to 

make the model construction faster for the BMI experiments. Hence using (1) the likelihood 

function for the spiking activity of neuron c under any of the sequences, Si, was modeled 

as49, 50

where λc(Si) denotes the fitted firing rate of that neuron in the 800 ms window for sequence 

Si and K = 800/ Δ is the total number of bins in this period with bin width Δ = 5ms. The 

firing rates were fitted using maximum likelihood parameter estimation. Here, the task 

involved either four (both monkeys) or eight (monkey P) sequences. The four-sequence task 

consisted of either “U-R”, “U-L”, “D-R”, “D-L” or “L-U”, “L-D”, “R-U”, “R-D”. The 

eight-sequence task consisted of the union of the sequences in the two four-sequence tasks.

The training sessions were followed by the real-time BMI sessions in which these trained 

Poisson models were used to predict the sequence using the maximum-likelihood decoder.
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Concurrent online predictions and movement execution in the BMI

After the training sessions, the monkeys performed the same task as before. However, this 

time, cursor position was controlled by target predictions made by the maximum-likelihood 

decoder rather than the joystick. During the real-time BMI experiments, individual spike 

timings of all cells within the population were continuously recorded at a 40 kHz resolution 

by the Plexon multi-channel acquisition processor. Each recorded spike was then transmitted 

via an Ethernet port to a separate computer running a Matlab routine in real time. For each 

real-time trial, the Matlab routine then used the maximum-likelihood decoder to calculate 

the likelihood of the population spiking activity during the 800 ms time window prior to the 

“go” cue, i.e.,  under each sequence, Si. This likelihood was calculated based on the 

trained Poisson models and assuming neurons were independent conditioned on the 

sequence. Hence the population likelihood for each sequence was found as

The maximum likelihood decoder then outputted the sequence under which the population 

likelihood was maximized as the decoded sequence.

Based on the sequence decoded, a second Matlab routine running on the same computer then 

activated an analog output channel on the NI DAQ I/O interface to go from 0V to either +5V 

or −5V for 500 ms. The voltage line was, in turn, connected to a second NI DAQ I/O input 

channel located on a third computer running the behavioral program. Depending on the 

voltage received, the cursor displayed in the middle of the screen moved in a straight line to 

one of the four possible target locations (e.g., +5V in I/O channel 1 corresponded to a cursor 

location within the top target). This process then repeated for the second decoded target after 

another artificially introduced time delay. Here, the time delays in the two generated 

movements were selected to be similar to those that the monkeys normally experienced 

when performing the standard task using a joystick. However, the NI DAQ could in 

principle generate the two movements in as little as a few milliseconds apart.

Behavior versus prediction errors

Since the primates did not perform the dual-target working-memory task with 100% 

behavioral accuracy, some of the BMI errors were due to behavioral errors (i.e., the monkey 

not remembering the correct sequence during working memory) as opposed to decoder 

errors. Hence a more relevant accuracy number for the performance of the BMI could be the 

sequence accuracy obtained during the training session using leave-one-out cross-validation. 

This is because in the cross-validation analysis we calculate the accuracy by comparing the 

decoded sequence with the sequence the monkeys actually select after the “go” cue. For the 

BMI sessions, however, we compare the decoded sequence to the instructed sequence to find 

the accuracy. We hence tested whether after taking into account the primates’ natural error 

rates, the accuracy during training sessions would be close to the BMI accuracy. Denoting 

the behavioral accuracy of the monkeys by Pb and the decoder accuracy found from the 

training session by Pt we can calculate what the accuracy of selecting the instructed 
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sequence would be after taking into account the behavioral errors. Denoting the resulting 

accuracy by Pf we have that

In other words when the monkey and the decoder are both correct, the instructed sequence is 

selected. However, if the monkey is incorrect and the decoder is also incorrect in decoding 

the monkey’s intended sequence, the probability of the decoder selecting the correct 

instructed sequence by random chance is 1 / (S −1) . We can find the mean and s.e.m. of Pf 

from those of Pb and Pt assuming Pb and Pt are independent53 and then compare it with the 

BMI accuracy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task design and experimental setup. (a) Schematic illustration of a standard dual-target task 

over a single trial. Task periods and their timings are displayed over a single trial from left 

to right. The right end of the panel in which the second movement is made is truncated to 

conserve space. Decoding analyses are performed during the 500 ms blank-screen interval 

following presentation of the second target. (b) Experimental setup for the standard training 

sessions. (c) Experimental setup for the BMI sessions.
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Figure 2. 
Population decoding accuracy for a selected session. (a) Population decoding accuracy over 

time for the first target (red curve), second target (blue curve), and the full sequence (black 

curve). Each point on the curves indicates the decoding accuracy for the population over the 

preceding 500 ms window. Time at zero is aligned to the start of first target presentation. 

The red and blue vertical bars indicate the times during which the first and second targets 

were presented, respectively. The first and second dashed black lines indicate the mean 

times at which the first and second “go” cues were given, respectively. The arrow indicates 

the time point of decoding for the preceding working memory period (i.e., 0–500 ms from 

the end of the second target presentation). The dotted lines indicate the 99% chance upper 

confidence bounds for the first target, second target, and sequence (out of 12 possibilities), 

with the same respective color scheme used above (see also Supplementary Modeling). (b) 

Number of cells sufficient to reach decoding accuracy asymptote during the working 

memory period for the same session. The first target (red curve), second target (blue curve), 

and sequence (black curve) accuracies are displayed as a function of the cumulative number 

of cells, in descending order of single-cell sequence accuracy. The number of cells needed to 

reach over 90% of the population accuracy is indicated by the vertical dashed line.

Shanechi et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2013 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Decoding accuracies on BMI trials. The gray bars indicate the monkeys’ average behavioral 

accuracy, maximum-likelihood cross-validation accuracy on the training data, and real-time 

BMI accuracy, with their corresponding s.e.m.. The black bars indicate chance level 

accuracies. Performances using four sequences are displayed on the left, and using eight 

sequences are displayed on the right.
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Figure 4. 
Decoding and behavioral performance times. (a) Histogram of the total times it took the 

monkeys to both behaviorally react to the two “go” cues and moreover reach the two targets 

(excluding any task delays and the time required to move between targets). (b , c and d) 

Histograms of the times required for the decoding accuracy to reach 90% asymptotic 

accuracy, from the time of second target presentation, for 12, 8, and 4 sequences, 

respectively. The red line indicates the mean times for each histogram.
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Figure 5. 
Example of a second (added) target selective neuron. The subfigure at the upper left corner 

shows the first and second target accuracies of the cell as a function of time into the trial. 

The vertical bars/lines and their timings follow the same convention as Fig. 2. In all other 

subfigures, each top panel corresponds to a different sequence of movements with each row 

illustrating the spiking activity during a single trial and the black dots indicating the spike 

times. Each bottom panel indicates the corresponding mean firing rate estimates using the 

expectation-maximization procedure (black curve) and the corresponding peristimulus time 

histogram (PSTH) (magenta curve). The arrow indicates the working memory period. The 

subfigures in the same row correspond to sequences with the same first target location. The 

subfigures in the same column correspond to sequences with the same second target 

location. Note that repeated targets locations were not used in the sequences and hence there 

are 3 subfigures per row/column (see also Supplementary Figs. 3, 4).
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Figure 6. 
Distribution of first and second target information across the population. Scatter plot of the 

first and second target accuracies for the 129 cells that encoded significant information 

about at least one target during the working memory period (across 12 sequences). 

Statistical significance of the target accuracies was tested here at the 0.01 level (see also 

Supplementary Fig. 6). Red points indicate cells that encoded significant information about 

only the first target, blue points indicate those that encoded significant information about 

only the second target, and black points indicate those that encoded significant information 

about both targets. The inset indicates the proportion of cells that encoded significant 

information about only the first, only the second or both targets during the working memory 

period with the same coloring scheme, above.
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Figure 7. 
The effect of adding information to working memory. In an interleaved session, population 

decoding accuracy for the first target on dual-target trials is shown in red whereas 

population decoding accuracy for the first target on single-target trials is shown in magenta. 

Each point on the curves indicates the decoding accuracy over the preceding 500 ms 

window. Dotted lines indicate the 95% confidence bounds for accuracy of each curve (rather 

than chance level). The vertical red bar indicates the time during which the first target was 

presented. The vertical blue bar indicates the time during which the second target was or 

was not shown depending on the trial type. The arrow indicates the time point corresponding 

to the decoding accuracy of the preceding working memory period (same convention as in 

Fig. 2).
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